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Graphene nanoflakes as a nanobiosensor for amino 
acid profiles of fish products: Density functional theory 
investigations
Fouad N. Ajeel1*, Yasser W. Ouda2, Sajad A. Abdullah2

INTRODUCTION
In Iraq, the amino acid profiles and protein quality 
of fish products available are a significant project for 
study. The large consumption of fish products in Iraq 
as compared to other countries is due, among other 
reasons, to a deficiency of sufficient information about 
their nutritional qualities. Fish products are recognized 
to be a source of protein-rich in essential amino 
acids (methionine, lysine, cystine, threonine, and 
tryptophan), fats that are valuable sources of energy, 
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fat-soluble vitamins, and unsaturated fatty acids, and 
macro-  and microelements (phosphorus, calcium, 
fluorine, and iodine).[1] Amino acids are the building 
blocks of protein, which play an essential role in 
nearly all biological systems. A large proportion of the 
cells, tissue, and muscles is made up of amino acids, 
meaning they do several essential bodily functions.[2,3]

The excellent structural and electrical properties of 
graphene have stimulated great focus on the application 
of these nanomaterial’s as physical transducers 
in biosensors graphene have exceptionally high 
electrical, mechanical, and thermal conductivities as 
well as low density and high aspect ratio.[4] Individual 
graphene has been demonstrated to be a promising 
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molecular platform in sensing applications due to their 
fast response time and high sensitivity. Biosensors 
rather than other diagnostic devices will offer higher 
performance in sensitivity and selectivity. Biosensors 
comprise of a biological entity as detecting elements 
joined with a physicochemical detector part.[5-8]

Nanobiosensors are extensively used due to 
their promising applications in the detection and 
monitoring of biological processes, clinical and 
diagnostic analysis, monitoring and environmental 
pollution monitoring, and industrial processing.[9,10] 
Graphene is the great characteristics in the fabrication 
of graphene-based nanobiosensors, due to the 
outstanding ability to fast electron transfer kinetics, 
low detection limits, and compatible size with the 
biological structures.[11,12]

The purpose of the present study is to design a new 
nanobiosensor to biological substances by means of 
the density functional theory (DFT) investigations. 
Here, the graphene nanoflakes (GNFs) used as a 
nanobiosensor for amino acids in fish products, 
because of the week Van der Waals interaction of 
GNFs-surface with the adsorbents. The biosensors 
based-nanomaterial with low detection limit, high 
sensitivities and short response time are suitable 
candidates for biosensing applications.

METHODOLOGY
Computational Details
The computational model of GNFs consists of 24 
carbon atoms with 12 hydrogen atoms in ends. 
The GNF is a nanostructure with a high aspect 
ratio and the greater area of contact, which can 
enhance the chemical reactivity of biomolecules. 
The non-covalent interaction of amino acids with 
the GNFs would change the electrical conductance 
of GNFs-based sensors by charge transfer between 
GNFs and amino acid adsorbed through the local 
chemical reactivity and cause efficient detection of 
a variety of biomolecules and more development in 
biomedical applications.

The geometry properties and energy calculations on 
the GNFs were realized in the presence and absence 
of amino acids using DFT at the level B3LYP 
functional and the 6–32 G basis set with Gaussian 
09W software.[13,14] The B3LYP density functional has 
been previously presented to reproduce experimental 
proprieties and has been usually used in nanostructures 
because of the accuracy associated.[4,15-18] The 
adsorption energy (Eads) of amino acids (methionine, 
lysine, and threonine) on GNFs is calculated with this 
equation:[19,20]

	 Eads(GNFs)=Ecomplex−(EGNFs+Eamino acid)� (1)

Where the EGNFS is the total energy of the of GNFs; 
Eamino acid denotes to the energy of isolated amino acid; 
and then Ecomplex is the relaxed energies of the complex 
amino acid/GNFs, respectively. It should be noted, 
the negative value of adsorption energies shows 
the exothermic nature of the adsorption process. 
DFT-based and with the Koopmans theorem the 
descriptors of the stability and the reactivity for the 
sensor were defined:[15,21]
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Where E is the total electron energy, N is the number 
of electrons at a constant external potential V(r)



, µ is 
chemical potential, S is global softness, η is chemical 
hardness, and ω is electrophilicity index.

RESULTS AND DISCUSSION
Geometric Properties
We select GNFs as a model biosensor that consists 
24C atom and the end atoms have been saturated by 
12H atoms, as seen in Figure 1a. After full structure 
relaxation, the geometric properties and the bond 
lengths of GNFs and His are given in Figure 1, 
respectively. The amino acids (lysine, methionine, 
and threonine) under study are shown in Figure 2. 
Our results display that the bond lengths of the C-C 
bond (1.42 Å) are in well agreement with previous 
articles.[18,22,23] To study the interactions between GNFs 
and amino acids, adsorption of the amino acid molecule 
on the GNFs is considered and displayed in Figure 3.

Energetic Properties
Here, the frontier molecular orbitals (FMOs) analysis 
was employed, to study the electronic behavior of the 
systems under study. Furthermore, the determination of 
interaction between the biosensor and His molecule can 
be best described with the concept of FMOs analysis. 
The lowest unoccupied molecular orbital (LUMO), the 
highest occupied molecular orbital (HOMO), Fermi 
level, and energy gap that are important properties 
related to the FMO are shown in Table 1. The calculated 
energy gap displays that the GNFs in free mode have the 
value 4.133 eV that is in well agreement with previous 
articles,[18,22,24] but after the interaction of his molecule 
with GNFs, the energy gap of GNFs is changed.
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The calculated values of the total energy (Etot), dipole 
moment (Dm), HOMO energies (EHOMO), LUMO 

energies (ELUMO), Fermi level energy (EFL), and energy 
gap (Egap) in gas phase for GNFs and amino acids with 

Table 1: The total energy (Etot), adsorption energies (Eads), dipole moment (Dm/Debye), HOMO energies (EHOMO), 
LUMO energies (ELUMO), Fermi level energy (EFL), and energy gap (Egap), and change of Egap calculated for amino 
acids/GNFs

System Property

Etot Eads Dm EHOMO EFL ELUMO Egap ΔEgap%

Lysine/GNFs −38611.518 −139.4 8.157 −2.040 −1.573 −1.107 0.933 −77.4
Methionine/GNFs −38611.518 −129.3 8.157 −5.354 −3.387 −1.421 3.933 −4.8
Threonine/GNFs −43544.185 −229.6 6.205 −5.769 −5.205 −4.641 1.128 −72.7
*All energies are in eV unit. GNFs: Graphene nanoflakes. HOMO: Highest occupied molecular orbital, LUMO: Lowest unoccupied molecular orbital

Figure 1: The structured geometries (a) and the bond lengths (b) in angstrom unit of graphene nanoflakes
ba

Figure 2: The structured geometries and the bond lengths in angstrom unit of amino acids under study: (a) Lysine, (b) methionine, 
and (c) threonine

a b c
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Figure 4: The molecular electrostatic potential graphic calculated in the gas phase for graphene nanoflakes and amino acids 
understudy, a colored spectrum, with red as lowest and blue as the highest electrostatic potential energy values 

Transparent Solid
GNFs

Lysine

Methionine

Threonine

Figure 3: (a-c) Adsorption of amino acids on graphene nanoflakes with the interatomic distances in angstrom
a b c
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Transparent Solid
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Methionine/GNFs
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Figure 5: The molecular electrostatic potential graphic calculated in the gas phase for amino acids/GNFs understudy, a colored 
spectrum, with red as lowest and blue as the highest electrostatic potential energy values.

Table 2: The total energy (Etot), dipole moment (Dm/Debye), HOMO energies (EHOMO), LUMO energies (ELUMO), Fermi 
level energy (EFL), and energy gap (Egap) calculated in gas phase for GNFs and amino acids

System Property

Etot Dm EHOMO EFL ELUMO Egap

GNFs −24948.142 0.00002 −5.615 −3.548 −1.482 4.133
Lysine −13524.011 20.851 −1.888 −1.629 −1.370 0.518
Threonine −21780.116 1.323 −5.998 −3.182 −0.365 5.633
Methionine −18366.439 3.107 −7.437 −6.806 −6.175 1.262
*All energies are in eV unit. GNFs: Graphene nanoflakes, HOMO: Highest occupied molecular orbital, LUMO: Lowest unoccupied molecular orbital

Table 3: The Global chemical indexes: The chemical potential, chemical hardness, softness, and electrophilicity 
calculated for amino acid/GNFs

System Property

Ip EA µ η S ω
Lysine/GNFs −2.040 −1.107 −1.573 −0.466 −0.233 −2.654
Methionine/GNFs −5.354 −1.421 −3.387 −1.966 −0.983 −2.918
Threonine/GNFs −5.769 −4.641 −5.205 −0.564 −0.282 −24.016
*All energies are in eV unit. GNFs: Graphene nanoflakes
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DFT/6-31G level are considered and presented in 
Table 2. From Table 1, it is found that the lysine/GNFs 
have the biggest change in energy gap (−77.4 eV), 
there is a decrease in the total and adsorption energies, 
while the threonine/GNFs has the biggest adsorption 
energies (−229.6 eV) and the smallest dipole moment 
(6.205 D). The negative value of threonine/GNFs 
indicates to the stable systems. Dipole moment is 
another important factor in the orbitals analysis 
of molecules. Higher dipole moment normally is 
associated with higher values of interaction energy.

The Global Reactivity Descriptors
Koopmans’ theorem is used to evaluate solvent 
effects on the reactivity descriptors. These descriptors 
include the ionization potential, electron affinity, 
electronegativity, chemical hardness, chemical 
softness, and electrophilicity, Table  3. Based on the 
Koopmans’ theorem, the HOMO energy is a good 
approximation to negative experimental ionization 
potential and the negative electron affinity is equal 
to the LUMO energy.[25,26] The chemical hardness 
(η) and softness (S) are one of the most important 
parameters to describe the stability and reactivity of 
the molecules. The molecule that has the maximum 
values of chemical softness is expected to be excellent 
corrosion inhibitors.

The Molecular Electrostatic Potential (MEP) 
Counter Map
In this section, we were constructed the MEP counter 
map and the total electron density. Visualization of 
variable charge distributions provides good insight 
into the intermolecular interactions, reactive position 
of molecules, molecular properties and prediction 
of electrophilic, and nucleophilic reactions at the 
specific site of nanobiosensor. The visualized results 
for energy surfaces of MEP of GNFs, amino acids, 
and amino acids/GNFs are shown in Figures 4 and 5. 
Electronegativity difference is another important index 
to define the nature of a chemical bond. The electrostatic 
potential is designated by a colored spectrum.

This study shows that the amino acids get physically 
adsorbed on the GNFs and this works in favor of the 
suitability of GNFs as it assures reusability of GNFs 
as well as targeted delivery of the amino acid as 
desorption can be easily achieved. The results show 
that GNFs is a new candidate than graphene to absorb 
amino acids and should be exposed to additional 
biomedical applications.

CONCLUSIONS
The adsorption behavior of three different types of 
amino acids in fish products on the GNFs has been 
studied using DFT investigations. The adsorption 
energy values, nearest atom distance, and partial 

charge analysis establish the energetic and physical 
nature of adsorption on GNFs. The total energy and 
adsorption energy values suggest that GNFs is potential 
nanobiosensor as adsorption surface for amino acids. 
The electronic changes have been observed through 
HOMO, LUMO, and energy gap. The MEP plots 
conclude that there is charge transfer between the GNFs 
and the amino acids. The reliable conclusions shown 
in this study will encourage the experimentalists to 
explore and use these nanomaterials as an amino acid 
carrier and to immobilize the amino acid that can lead 
to useful to proposal novel generation of biosensors 
based on GNFs.
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