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background: Proper folliculogenesis is fundamental to obtain a competent oocyte that, once fertilized, can support the acquisition of
embryo developmental competence and pregnancy. MicroRNAs (miRNAs) are crucial regulators of folliculogenesis, which are expressed in
the cumulus–oocyte complex and in granulosa cells and some can also be found in the bloodstream. These circulating miRNAs are intensively
studied and used as diagnostic/prognostic markers of many diseases, including gynecological and pregnancy disorders. In addition, serum contains
small amounts of cell-free DNA (cfDNA), presumably resulting from the release of genetic material from apoptotic/necrotic cells. The quanti-
fication of nucleic acids in serum samples could be used as a diagnostic tool for female infertility.

methods: An overview of the published literature on miRNAs, and particularly on the use of circulating miRNAs and cfDNA as non-invasive
biomarkers of gynecological diseases, was performed (up to January 2014).

results: In the past decade, cell-free nucleic acids have been studied for potential use as biomarkers in many diseases, particularly in gyne-
cological cancers, ovarian and endometrial disorders, as well as in pregnancy-related pathologies and fetal aneuploidy. The data strongly suggest
that the concentration of cell-free nucleic acids in serum from IVF patients or in embryo culture medium could be related to the ovarian hormone
status and embryo quality, respectively, and be used as a non-invasive biomarker of IVF outcome.

conclusions: The profiling of circulating nucleic acids, such as miRNAs and cfDNA, opens new perspectives for the diagnosis/prognosis of
ovarian disorders and for the prediction of IVF outcomes, namely (embryo quality and pregnancy).
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Introduction
MicroRNAs (miRNAs) are small (19–25 nucleotides), single-stranded,
non-coding RNA molecules that bind specifically to, and post-
transcriptionally regulate, several messenger RNAs (mRNAs) (Thomas
et al., 2010). miRNAs play important physiological roles and miRNA dys-
regulation can lead to pathologies. In fertility, miRNAs are associated
with the functional regulation of gonadal somatic cells [Leydig and
Sertoli cells in testis, and granulosa and cumulus cells (CCs) in the
ovary] involved in steroid synthesis. For example, in male mice, deletion
of Dicer (a protein essential for miRNA maturation) in Sertoli cells leads
to infertility due to the complete absence of spermatozoa and progres-
sive testicular degeneration (Hossain et al., 2012). In female mice, Dicer
inactivation leads to infertility due to multiple defects in ovarian functions,
including abnormal cycles and an abnormal response to gonadotrophin
(Follicle-stimulating hormone), leading to ovulation problem (Nagaraja
et al., 2008).

During follicular development, oocytes are in close contact with the
surrounding CCs to form the cumulus–oocyte complex (COC). The
crosstalk between oocytes and CCs occurs through gap junctions
(Albertini et al., 2001). This paracrine signaling is crucial for the acquisi-
tion of developmental competence in oocytes and CCs (Gilchrist
et al., 2008). These reciprocal regulations are carefully modulated by
some key genes that are themselves regulated by miRNAs (Assou
et al., 2013a). Some miRNAs are found in body fluids and as they are con-
tained in exosomes, they are highly stable because they are protected
from RNases. The potential use of these circulating miRNAs as novel,
non-invasive diagnostic/prognostic biomarkers is the focus of many
investigations (Mitchell et al., 2008) and they are already used as biomar-
kers for the diagnosis and prognosis of several gynecological and preg-
nancy disorders (Carletti and Christenson, 2009).

Similarly, cell-free DNA (cfDNA) molecules, which are released
mostly by apoptotic or necrotic cells, are also found in body fluids and
can be used as biomarkers of pathological conditions (Schwarzenbach
et al., 2011). Indeed, cfDNA has been detected in human semen
(Chou et al., 2004). This cell-free seminal DNA contains DNA epigenetic
information that is essential for proper spermatogenesis (Wu et al.,
2013a). Circulating cfDNA in the bloodstream is also being used to
detect gynecological abnormalities, whereas fetal cfDNA in maternal
blood constitutes a non-invasive biomarker for fetal aneuploidy (Lo
et al., 1999; Bischoff et al., 2002, 2005; Bauer et al., 2006; Lo and Chiu,
2008; Wright and Burton, 2009; Lambert-Messerlian et al., 2014).

In this review, we describe first the biogenesis of circulating cell-free
miRNAs and DNA. Then, we present an analysis of the available data
on circulating nucleic acids in gynecological diseases and in pregnancy
and discuss their potential role in the ‘oocyte–niche’ crosstalk and in
the hormonal regulation of folliculogenesis. Finally, we discuss the evi-
dence suggesting that cell-free nucleic acids could be used as non-invasive
biomarkers of IVF outcomes.

Methods
A summary of the general knowledge on cellular and circulating miRNAs was
compiled based on seminal articles in this research field. A systematic review
of the current literature in the English language on cellular and circulating
nucleic acids (miRNAs and DNA) in relation to mammalian, including
human, reproduction was performed. All the selected articles were searched

in journal databases, such as PubMed (http://www.ncbi.nlm.nih.gov/sites/
entrez), using key words, including ‘miRNA’, ‘circulating miRNA’, ‘cell-free
DNA’, ‘oocyte’, ‘cumulus cells’, ‘embryo’, ‘pregnancy’ and ‘biomarkers’.
The search retrieved c.10 000 articles; of which, 284 were included in this
review.

Results

MicroRNAs
General considerations on cellular miRNAs
miRNAs belong to the ‘small RNA’ family and are evolutionarily con-
served from invertebrates to vertebrates (Lagos-Quintana et al.,
2001). miRNAs were first identified in Caenorhabditis elegans at the be-
ginning of the 1990s (Lee et al., 1993). They are non-coding single-
stranded RNA molecules of 19–25 nucleotides in length that arise
from inter- or intragenic genomic regions. In mammals, miRNAs are
usually complementary to a small region in the 3′ untranslated region
(UTR) of mRNAs.

miRNAs are derived from primary transcripts (called pri-miRNAs)
that are folded into hairpins and are synthesized via the classical transcrip-
tion process using polymerase II (Lee et al., 2004; Rodriguez et al., 2004).
Pri-miRNAs are then cleaved by a protein complex formed by Drosha
(an enzyme of the RNase III complex) and its partner, the nuclear
protein DiGeorge critical region 8 (DGCR8). This cleavage leads to
�70 nucleotide-long pre-miRNAs that are exported by Exportin 5 to
the cytoplasm (Yi et al., 2003). Pre-miRNAs are then cleaved by Dicer,
another protein of the RNase III complex, to eliminate the terminal
loop and release double-stranded miRNAs of �22 nucleotides
(Hutvagner et al., 2001). Only one strand of each mature miRNA is
then incorporated in the miRNA-induced silencing complex (miRISC),
which includes either AGO1 or AGO2 proteins from the Argonaute
family. In the miRISC complex, single-stranded miRNAs can interact
with and silence their target mRNAs in two different ways. If the
miRISC complex contains AGO2, the targeted mRNA is degraded.
On the other hand, the presence of AGO1 in the RISC complex pro-
motes translation repression (Hutvagner and Simard, 2008). Thus,
miRNAs can regulate protein levels by promoting mRNA degradation
and also by attenuating protein translation.

miRNAs are predicted to be involved in the silencing of more than half
of mammalian genes (Friedman et al., 2009). Based on sequence hom-
ology, one single miRNA could regulate at least 200 mRNAs and conse-
quently the expression of the corresponding proteins (Esquela-Kerscher
and Slack, 2006). Some miRNAs are tissue-specific, while others are
expressed in more than one tissue (Reedyet al., 2009). It is nowacknowl-
edged that miRNAs play a crucial role in the physiological regulation of
many cellular processes. Moreover, miRNA expression must be very
tightly and dynamically regulated to allow the specific modulation of dif-
ferent mRNAs, for instance during embryo development, cell transitions
or cell environmental changes. In 2002, it was reported, for the first time,
that deletion and down-regulation of specific miRNAs could be impli-
cated in cancer (Calin et al., 2002). Further studies have demonstrated
that miRNA mutations, biogenesis defects or deregulation can affect
miRNA-mediated gene silencing, and this may result in serious diseases,
such as cancers (Calin and Croce, 2006, Esquela-Kerscher and Slack,
2006), cardiovascular diseases (Latronico et al., 2007; van Rooij and
Olson, 2007), neurological disorders (Esau and Monia, 2007; Fiore and
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Schratt, 2007; Hansen et al., 2007; Perkins et al., 2007), ischemia (Silvestri
et al., 2009), heart failure (Adachi et al., 2010; Ai et al., 2010; Tijsen et al.,
2010; Wang et al., 2010b), hepatitis (Wang et al., 2012c), Crohn’s disease,
sepsis (Wang et al., 2010c), tuberculosis (Singh et al., 2013), diabetes (Farr
et al., 2013; Roberts and Porter, 2013) and obesity (Weiler et al., 2006).

Circulating miRNAs in gynecological disorders and pregnancy
Most miRNAs are localized inside the cell; however, a significant number
of miRNAs have been detected also in extracellular body fluids, such as
serum, plasma, urine, spinal fluid, saliva and follicular fluid (Wang et al.,
2010b; Weber et al., 2010; Zubakov et al., 2010; Zen and Zhang,
2012; Sang et al., 2013). These circulating miRNAs could be used as bio-
markers of specific conditions, because they are relatively abundant (es-
pecially in blood) and quite stable due to their confinement within
vesicles where they are protected from RNases. Both serum and
plasma are suitable for the analysis of miRNAs (Mitchell et al., 2008).
miRNAs are selectively and actively secreted from cells and packaged
into appropriate carriers. They are then transported to targeted or
receptor-specific recipient cells where they recognize and repress
mRNA targets within recipient cells (Boon and Vickers, 2013). miRNA
intercellular transport is performed by different subclasses of miRNAs
carriers, such as membrane-derived vesicles (exosomes and microparti-
cules), lipoproteins and ribonucleoprotein complexes (Valadi et al.,
2007; Zhang et al., 2010; Vickers et al., 2011). Exosomes (small vesicles
of 40–100 nm in diameter) and microparticles (100–4000 nm in diam-
eter) have different biogenesis and secretory mechanisms (Thery, 2011).
During apoptosis, cells can release even larger microparticles or apop-
totic bodies to transport specific miRNAs (Zernecke et al., 2009). Extra-
cellular miRNAs can be transported also by high-density lipoproteins
(HDLs) and low-density lipoproteins (LDLs), abundant in plasma
(Vickers et al., 2011). Biophysical studies have also shown that
miRNAs can associate also with protein complexes, including AGO2,
the main functional component of the cytoplasmic miRNA ribonucleo-
protein complex (Arroyo et al., 2011; Turchinovich et al., 2011). Many
observations suggest that miRNA export mechanisms are selective
and regulated (Wang et al., 2010d). For example, the miRNA profiles
of extracellular vesicles are not representative of their parent cell type,
but of specific sets of miRNAs. Indeed, the exosomal-, HDL- and
LDL-miRNA signatures are distinct, although some miRNAs can be
found in all carrier subclasses (Vickers et al., 2011). Furthermore, specific
miRNA profiles are consistent among individuals and each biological fluid
has its own physiological miRNA signature (Valadi et al., 2007; Vickers
et al., 2011). This suggests that a specific miRNA profile in serum or
plasma could be associated with some pathological conditions. Since
Lawrie et al. (2008) showed that the serum level of specific miRNAs
was higher in patients with lymphoma than in healthy controls, cell-free
miRNAs have been assessed in many different pathological conditions,
including gynecological and pregnancy disorders, in order to identify
tissue-specific miRNAs that may constitute non-invasive diagnostic
tools. Moreover, as the amount of specific circulating miRNAs has
been associated with tumor development and malignant progression
(Schwarzenbach et al., 2011), circulating cell-free nucleic acids are now
used not only as diagnostic biomarkers, but also as prognostic tools.

Table I lists the circulating miRNAs used as biomarkers in gyneco-
logical disorders. For example, miR-205 expression is significantly up-
regulated and let-7f significantly lower in plasma samples from patients
with epithelial ovarian cancer (EOC), especially in patients with Stage I

EOC, compared with healthy controls (Zheng et al., 2013). Likewise,
miR-483-5p plasma level is higher in patients with Stage III and IV EOC
than in those with Stage I and II EOC, consistent with its expression
pattern in tumor tissues (Zheng et al., 2013). miR-200a, miR-200b,
miR-200c and miR-103 are significantly overexpressed in serum
samples from patients with serous EOC compared with controls
(Kan et al., 2012). Moreover, circulating miR-92 is overexpressed in
serum samples from patients with EOC compared with healthy controls
(Guo et al., 2013). Altogether, these findings suggest that, in the case of
EOC, the concomitant evaluation of different circulating miRNAs might
be used not only for early tumor detection, but also for its staging and
prognosis.

In breast tumors, many miRNAs aredifferentially expressed in patients
versus healthy women (Table I; Wang et al., 2010a; Wu et al., 2011; van
Schooneveld et al., 2012; Cuk et al., 2013a,b). However, only seven are
concomitantly overexpressed in the tumor and in serum. Among them,
miR-1, miR-92a, miR-133a and miR-133b have been validated as the
most important diagnostic markers for breast cancer (Chan et al.,
2013). Another study showed that also the serum level of miR-182 is sig-
nificantly higher in patients with breast cancer compared with controls
(Wang et al., 2013a). In addition, miR-182 serum levels were consider-
ably lower in patients with estrogen receptor- or progesterone receptor-
positive breast tumors than in those with estrogen receptor- or proges-
terone receptor-negative cancers (Wang et al., 2013a). All these data
suggest thatcirculating miRNAs might also be used as biomarkers to diag-
nose and identify breast cancer type.

Recently, abnormal miRNA expression in the bloodstream has been
associated also with several metabolic disorders, including obesity, dia-
betes and gynecological pathologies, such as polycystic ovary syndrome
(PCOS), premature ovarian failure (POF) and endometriosis
(Fernandez-Valverde et al., 2011; Hulsmans et al., 2011; Gilabert-Estelles
et al., 2012; Rottiers and Naar, 2012; Chen et al., 2013). Indeed, miRNAs
playacrucial role in metabolism regulation (Rottiers and Naar, 2012). For
example, miR-33a and miR-33b, which are located within the sterol regu-
latory element-binding protein 1 and 2 (SREBP 1 and 2) genes, regulate
cholesterol and lipid metabolism in concert with their host genes
(Gerin et al., 2010; Horie et al., 2010; Marquart et al., 2010;
Najafi-Shoushtari et al., 2010; Davalos et al., 2011). Moreover,
miR-103 and miR-107 are involved in controlling insulin and glucose
homeostasis, and miR-34a is a key regulator of hepatic lipid homeostasis
(Wilfred et al., 2007; Takanabe et al., 2008; Xie et al., 2009; Trajkovski
et al., 2011). Therefore, circulating miRNAs may act as endocrine signal-
ing molecules and could be used as potential biomarkers of metabolic
diseases. For instance, it has been shown recently that miR-138,
miR-15b and miR-376a might constitute reliable predictive biomarkers
in obesity (Pescador et al., 2013). Specifically, miR-138 and miR-376a
could be used as a powerful predictive tool to differentiate obese patients
from diabetic patients, obese diabetic patients and healthy controls.
Moreover, miR-138 and miR-503 can differentiate between diabetic
and obese diabetic patients (Pescador et al., 2013).

PCOS is one of the most common endocrine disorders among
women of reproductive age and is considered one of the leading
causes of female infertility (Azziz et al., 2004). The main features of
PCOS are dysovulation (resulting in irregular menstrual cycles or amen-
orrhea and thus ovulation-related infertility), excessive levels of andro-
genic hormones (resulting in hirsutism) and insulin resistance, often
associated with obesity, Type 2 diabetes and high cholesterol levels.
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A recent study showed that miR-21, miR-27b, miR-103 and miR-155
levels are decreased in the bloodstream of obese men and women,
whereas they are increased in women with PCOS compared with
healthy controls (Murri et al., 2013). These data suggest that the con-
comitant evaluation of different miRNAs might be used as biomarker
to differentiate real obesity from obesity associated with PCOS.

Some miRNAs are differentially expressed in the plasma of women
with POF compared with normal responder women (Table I). Some of
these miRNAs may regulate granulosa cell proliferation and apoptosis
by affecting different signaling pathways. For example, miR-23a may regu-
late apoptosis by decreasing XIAP expression in human granulosa cells
(Yang et al., 2012).

Moreover, miR-30b and miR-30d are significantly up-regulated in re-
ceptive endometrium, whereas miR-494 and miR-923 are down-
regulated (Altmae et al., 2013). In some endometrial disorders, endo-
metrium receptivity can be altered and several studies have focused on
the identification of miRNAs that may be deregulated in these diseases.
Twenty-seven miRNAs were shown to be differentially expressed in
women suffering from endometriosis in comparison with healthy con-
trols (Jia et al., 2013). miR-17-5p, miR-20a and miR-22 in particular
were dramatically decreased in the plasma from patients with endomet-
riosis compared with controls (Jia et al., 2013). Moreover, the serum
levels of miR-199a and miR-122 were higher in patients with endometri-
osis compared with controls, whereas miR-145, miR-141, miR-542-3p
and miR-9 were lower (Wang et al., 2013b). Finally, the relative

expression of miR-199a and miR-122 has been used to discriminate
between severe and mild endometriosis and thus constitutes a reliable
biomarker to follow endometriosis progression (Wang et al., 2013b).

The discovery of fetal miRNAs in the maternal bloodstream has paved
the way to their possible use for non-invasive prenatal diagnosis. Specif-
ically, placental miR-141, miR-149, miR-299-5p and miR-135b can be
easily detected in maternal plasma during pregnancy and after delivery
their plasma concentration significantly decreases (Chim et al., 2008).
In particular, miR-141 plasma level increases as pregnancy progresses
into the third trimester. This promising new fetal biomarker appears to
be more reliable for pregnancy monitoring than the currently used chori-
onic somatomammotropin hormone 1 mRNA level, because it is more
stable in maternal plasma (Chim et al., 2008).

Pre-eclampsia is one of the leading causes of maternal and fetal/
neonatal mortality (Sibai et al., 2005). One study showed that miR-210
level is up-regulated, whereas miR-152 is down-regulated in serum
samples from patients with pre-eclampsia (Gunel et al., 2011). Thus,
miR-210 quantification in maternal serum could be used to improve pre-
eclampsia diagnosis using non-invasive methods. Another study showed
that miR-24, miR-26a, miR-103, miR-130b, miR-181a, miR-342-3p and
miR-574-5p are significantly increased in plasma from pregnant women
with severe pre-eclampsia (Wu et al., 2012). The study of their target
genes suggests that these miRNAs could be involved in many different
functions, such as the regulation of metabolic processes, control of cell
cycle and signaling pathways, including the mitogen-activated protein

............................................................................................... .........................................................

.............................................................................................................................................................................................

Table I Cell-free miRNA in human gynecological pathologies.

Gynecological
pathology

Increased Decreased

miRNAs References miRNAs References

Ovarian cancer miR-205
miR-483-5p (Stages III and IV)
miR-92
miR-221
miR-200a/b/c and miR-103

Zheng et al. (2013)
Zheng et al. (2013)
Guo et al. (2013)
Hong et al. (2013)
Kan et al. (2012)

let-7f
miR-145

Zheng et al. (2013)
Wu et al. (2013b)

Breast cancer miR-1, miR-92a, miR-133a and miR-133b
miR-182
miR-148b, miR-376c, miR-409-3p and miR-801
miR-21 and miR-146a
miR-34a, miR-93 and miR-373
miR-155
miR-10b, miR-21, miR-125b, miR-145, miR-155,
miR-191 and miR-382
miR-16, miR-21, miR-451
miR-155
miR-21
miR-20a and miR-21
13 miRs including miR-202
miR-195
miR-103

Chan et al. (2013)
Wang et al. (2010a)
Cuk et al. (2013a)
Kumar et al. (2013)
Eichelser et al. (2013)
Liu et al. (2013)
Mar-Aguilar et al. (2013)
Ng et al. (2013)
Sun et al. (2013)
Si et al. (2013) and Asaga et al.
(2011)
Schwarzenbach et al. (2012)
Schrauder et al. (2012)
Heneghan et al. (2010)
Wang et al. (2012a)

miR-205
miR-145
miR-92a
miR-30a
46 miRs
miR-181a

Liu et al. (2013)
Ng et al. (2013)
Si et al. (2013)
Zeng et al. (2013)
Schrauder et al.
(2012)
Guo and Zhang
(2012)

Endometriosis miR-199a and miR-122 Wang et al. (2013b) miR-17-5p, miR-20a and
miR-22
miR-141, miR-145 and
miR-542-3p

Jia et al. (2013)
Wang et al. (2013b)

PCOS miR-21, miR-27b, miR-103 and miR-155 Murri et al. (2013) miR-132 and miR-320a Sang et al. (2013)

POF miR-146a, miR-23a, miR-27a and miR-126 Yang et al. (2012) let-7c and miR-144 Yang et al. (2012)

PCOS, polycystic ovary syndrome; POF, premature ovarian failure.
aIn follicular fluid.
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kinase and the transforming growth factor-b (TGF-b signaling pathways),
or pathways involved in cancer metastasis. In addition, they could also
play important roles in pre-eclampsia development and its severity and
might constitute potential biomarkers for this disease (Wu et al.,
2012). Moreover, some miRNAs, particularly miR-323-3p, could
improve the accuracy of ectopic pregnancy detection in association
with plasma hCG and progesterone levels (Zhao et al., 2012).

In conclusion, due to their accessibility and stability (miRNAs circulate
confined within exosomes), different circulating miRNAs could be used,
alone or in combination, as non-invasive biomarkers of gynecological
cancers and gynecological disorders.

Role of miRNAs in the oocyte–niche relationship and in the hormonal
regulation of folliculogenesis
During the early stages of follicular development, a specific crosstalk
between the oocyte and follicular cells is established. At the pre-antral
secondary stage, follicular cells differentiate into two types: granulosa
cells that cover the follicle and CCs that are directly in contact with the
oocyte. Then, the COC is formed and the oocyte–CC dialog is orga-
nized via tight junctions. Oocyte secreting factors participate in CC differ-
entiation and proliferation. Reciprocally, CCs provide nutrients for the
oocyte development and maturation (Mori et al., 2000; Eppig, 2005;
Sugiura et al., 2005; Gilchrist et al., 2008). These mutual regulations
are mainly controlled by the growth differentiation factor-9 (GDF9)
and the bone morphogenetic protein 15 (BMP15) genes that belong to
the TGF-b family and are expressed in the oocyte. GDF9 induces the ex-
pression of many genes in CCs, including genes implicated in oocyte mat-
uration and quality, such as Hyaluronic Acid Synthase 2 (HAS2), and
genes involved in fertilization and embryo development, such as
Cyclo-Oxygenase 2 (COX-2) and Gremlin 1 reviewed in Gilchrist et al.
(2008) and Assou et al. (2010). Therefore, oocyte quality and its ability
to contribute to the formation of a ‘competent’ embryo with a strong po-
tential to implant in the endometrium and lead to a successful pregnancy
can be predicted by using indirect CC markers. miRNAs have been iden-
tified in human oocytes (Xu et al., 2011b; Assou et al., 2013a). In mouse,
oocyte miRNAs are not essential for meiosis (Suh et al., 2010). Indeed,
Dgcr8 is required only for miRNA processing, whereas Dicer is also
implicated in small interfering RNA (siRNA) processing. Dicer loss in
mouse oocytes results in meiotic arrest and severe spindle and chromo-
somal segregation defects, whereas Dgcr8 loss showed no phenotype
(Murchison et al., 2007; Tang et al., 2007; Suh et al., 2010). This suggests
that siRNAs rather than miRNAs are involved in oocyte meiosis. On the
other hand, miRNAs also could have a major role in the regulation of fol-
licular cell functions, such as steroidogenesis, apoptosis, luteinization as
well as in ovulation process (Hawkins and Matzuk, 2010). For example,
treatment of mouse mural granulosa cells with LH leads to the deregula-
tion of a set of miRNAs (particularly miR-132 and miR-212 overexpres-
sion) that are possibly important for the control of ovarian functions
(Fiedler et al., 2008). Overexpression of miR-93 could disturb ovary de-
velopment. Indeed, miR-93 targets the mRNA encoding LHX8, a protein
that contains a Lim homeodomain required for the transition from prim-
ordial to primary follicle (Pangas et al., 2006).

Table II lists the miRNAs found in the COC, granulosa cells, the follicu-
lar fluid and the corpus luteum. Table III summarizes the miRNAs
involved in folliculogenesis and Table IV the miRNAs involved in hormo-
nal regulations.

Many studies have shown that hormones from the hypothalamic–
pituitary–gonadal axis, which are essential for sexual maturation and re-
productive function in mammals, are also involved in the regulation of
some miRNAs. Gonadotropin-releasing hormone (GnRH) stimulates
the synthesis and the secretion of the pituitary gonadotrophins Lutei-
nizing hormone (LH) and Follicle-stimulating hormone (FSH) that then
regulate the production of gonadal steroids and gametogenesis (Conn
and Crowley, 1994; Kaiser et al., 1997). GnRH also induces the expres-
sion of multiple miRNAs, particularly miR-132 and miR-212, which are
encoded by the same gene that is induced by GnRH (AK006051)
(Godoy et al., 2011). LH acts on ovarian granulosa cells to induce ovula-
tion and luteinization, resumption of oocyte meiosis and CC expansion
that are crucial steps for ovulation. Moreover, LH acts as a survival factor
by preventing apoptosis of granulosa cells (Robker and Richards, 1998;
Chaffin et al., 2001). Interestingly, LH also up-regulates miR-132,
miR-212 and miR-21 in mural granulosa cells (Fiedler et al., 2008).
miR-21 is overexpressed in many tumors, including breast, pancreatic,
colorectal and esophageal cancer, and thus is considered as an onco-
miRNA (Cho, 2007; Dillhoff et al., 2008; Verghese et al., 2008).
miR-21 depletion induces caspase-dependent apoptosis of mouse granu-
losacells in vitroand in vivo (Carlettietal., 2010),highlighting the physiologic-
al anti-apoptotic roleof miR-21 in normal tissues. miR-200b and miR-429
depletion inhibits LH synthesis by repressing transcription of the gene en-
coding the b subunit of LH. This results in a lower serum LH concentra-
tion and the absence of the LH surge, leading to ovulation failure (Hasuwa
et al., 2013). Thus, the hypothalamic–pituitary–ovarian axis requires
miR-200b and miR-429 to ensure ovulation. Finally, miR-122 is involved
in the down-regulation of LH receptor expression by increasing the ex-
pression of LH receptor mRNA-binding protein via activation of
SREBPs (Azhar, 2013; Menon et al., 2013).

FSH has a crucial role in both follicle development and granulosa cell
proliferation and differentiation. Several miRNAs, including miR-143,
miR-125b, miR-21 and the let-7 family, are involved in follicular develop-
ment in the mouse (Yao et al., 2009). The expression of these RNAs is
very low in primordial follicles, but they become readily detectable in
granulosa cells of primary, secondary and antral follicles. miR-143,
let-7a and miR-15b are negatively regulated by FSH (Yao et al., 2009).
Moreover, miR-133b is involved in FSH-induced estrogen production,
by binding to the 3′ UTR of Foxl2 and thus reducing FOXL2 protein
level in granulosa cells (Dai et al., 2013). FOXL2 is expressed in the
ovaries and is necessary for granulosa cell function (Schmidt et al.,
2004), particularly through regulation of steroidogenesis genes, including
StAR and CYP19A1 thatareessential for promoting estradiol production
(Pisarska et al., 2011; Caburet et al., 2012).

The involvement of miRNAs in the hormonal regulation during fol-
liculogenesis and in the oocyte–niche crosstalk could be exploited for
identifying new non-invasive biomarkers of fertility. Moreover, the devel-
opment of therapies that block the expression or mimic the functions of
specific miRNAs may represent a new therapeutic strategy for many
gynecological disorders.

Circulating cell-free DNA
Biology of circulating cfDNA
DNA fragments are found in the blood circulation. Circulating cfDNA
are double-stranded molecules with low molecular weight than
genomic DNA, in the form of short fragments (between 70 and 200
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Table II miRNAs expressed in the COC, GCs, FF or CL.

miRNAs Expression Species Regulation Target genes Functions References

COC

miR-205, miR-150,
miR-122, miR-96,
miR-146a and
miR-146b-5p

Oocyte Bovine – – Oocyte maturation
Dynamic degradation during
oocyte bovine maturation

Abd El Naby
et al. (2013)

let-7b and let-7i
miR-106a

COC Bovine – MYC
WEE1A

Oogenesis Miles et al.
(2012)

let-7b, let-7c,
miR-27a and
miR-322

CC (IVM) Mouse – IGFBP-2 Oocyte meiotic competence Kim et al.
(2013)

miR-335-5p Oocyte Mouse – Actin nucleator Daam1
ERK1/2
Mitogen-activated
protein kinase pathway

Oocyte meiosis
Cytoskeleton dynamics
Spindle formation

Cui et al.
(2013)

Dicer1
miR-103, miR-16,
miR-30b, miR-30c
and let-7d

Oocyte (Dicer
depletion)

Mouse – – Oogenesis
Meiosis: meiotic spindle
organization and chromosome
congression
Oocyte meiotic maturation

Murchison
et al. (2007)
Tang et al.
(2007)
Choi et al.
(2007b)

32 miRs including
miR-23

CCs Human – BCL2
CYP19A1

Apoptosis
Steroidogenesis

Assou et al.
(2013a)

miR-184
miR-10A
miR-100

Oocyte Human – NCOR2
HOXA1
SMARCA5

Transcriptional repression
activity of nuclear receptors
Regulation of oocyte-specific
gene expression
Oocyte reprogramming

Assou et al.
(2013a)

miR-15a and
miR-20a

Oocyte Human FSH? BCL-2 family members
and CDC25A

Oocyte maturation Xu et al.
(2011b)

GC

30 miRs including
miR-409a and
miR-355
35 miRs including
miR-183 cluster

GC in dominant
follicles
GC in
subordinate
follicles

Bovine –
–

Targets of miR-409a:
BCL2L11, BIRC5,
PTEN, Wnt, MAPK,
TGF-b signaling

Apoptosis, cell proliferation,
migration and differentiation
Follicular development and
atresia

Gebremedhn
et al. (2013)

miR-26b GC Pig – ATM Pro-apoptotic role
Follicular atresia

Lin et al. (2012)

miR-23b, miR-29a
and miR-30d

GC Rat Regulation by FSH Targets of miR-29a:
COL4A1 and BMF
Targets of miR-30d:
RNF2 and EED

– Yao et al.
(2010a)

miR-181a GC Mouse – ACVRIIA Supression of GC proliferation Zhang et al.
(2013c)

miR-145 GC Mouse – ACVRIB, CCND2 Supression of GC proliferation Yan et al.
(2012)

miR-224 Pre-antral GC Mouse Up-regulation by
TGF-b1/SMAD
pathway

SMAD4 GC proliferation
Ovarian estrogen release
(CYP19A1)

Yao et al.
(2010b)

miR-21 Mural GC Mouse Up-regulation by
hCG

PDCD4, PTEN,
tropomyosin-1 and
sprouty homolog 2

Anti-apoptotic role Carletti et al.
(2010)
Fiedler et al.
(2008)

Continued
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Table II Continued

miRNAs Expression Species Regulation Target genes Functions References

miR-503 GC Mouse
(Amhr2-Dicer1)

Stimulation by
gonadotrophins

Down-regulation of
ACVR2a (ActRIIa),
ACVR2b (ActRIIb),
FSHR, BCL2 and
CCND2

Ovarian development
Proliferation during
folliculogenesis
(down-regulation during early
follicular development, increase
during later stage before
ovulation and decline during
luteinization)

Lei et al. (2010)
Nagaraja et al.
(2008)

miR-132 and
miR-212

Mural GC Mouse Up-regulation by
hCG

77 mRNA, CTBP1
protein synthesis

Ovarian function of CTBP1
unknown

Fiedler et al.
(2008)

miR-23a GC Human – XIAP
Caspase-3

Pro-apoptotic role Yang et al.
(2012)

miR-21 GC lines (KGN) Human – COL4A1 mRNA Basement membrane
surrounding the GC layer and
granulosa-embedded
extracellular structure

Mase et al.
(2012)

Pre-miR-10a,
miR-105 and
miR-182
miR-15a

GC Human – CyclinB1
TdT, caspase-3
PCNA

Apoptosis and cell proliferation Sirotkin et al.
(2010)

FF

miR-654-5p
miR-640
miR-526b
miR-373

GC transfected
with exosomes

Bovine – ITGA3
SOCS4
MAP3K1
BRMS1L
ZNFX1
CD44
VEGFA

Tumor progression (melanoma)
Apoptosis and cell proliferation
(retinal development)
Ovarian primordial follicle
activation
Neonatal development
Early endometrial response to
pregnancy
Network of matrices in COC
extracellular space
Neovascularization and vascular
permeability during pre-antral
follicle development

Sohel et al.
(2013)

miR-181A,
miR-375 and
miR-513a-3p

FF Equine – TGF-b signaling (24
genes)

Follicle development and growth
Oocyte maturation

Da Silveira et al.
(2012)

miR-222, miR-193b
and miR-520c3p
miR-191,
miR-483-5p,
miR-146a,
miR-320, miR-24,
miR-574-3p,
miR-1290 and
miR-518a
miR-132, miR-24
and miR-320
miR-24
miR-132, miR-320
and miR-520-3p
miR-222, miR-24,
miR-193b and
miR-483-5p

FF
FF

Human
Human

–
–

PTEN, ESR1
IL-1A, IL-10, IL-12B,
IL-37, IL-8
TGF-b1
PDK3
HMGA2, RAB5B
TGF-b1

Tumor suppressor, negative
regulation of insulin signaling and
glucose metabolism in adipose
tissue
Steroidogenesis process
Immune system
Reproductive aging, cell
proliferation, metabolic diseases
Regulation of glucose
metabolism
PCOS (Shi et al. (2012)
Steroidogenesis

Sang et al.
(2013)

Continued
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base pairs in length) or long fragments up to 21 kb. Two different
mechanisms (not mutually exclusive) could explain the presence of
cfDNA in the blood circulation. The first one is a passive mechanism
due to the release of nuclear and mitochondrial DNA during the destruc-
tion of apoptotic and necrotic cells (Schwarzenbach et al., 2011). In
normal conditions, cell debris is phagocytozed by macrophages and
thus the cfDNA level in blood remains low in healthy individuals (Pisetsky
and Fairhurst, 2007). However, after phagocytosis of necrotic cells, DNA
might be partially released into the bloodstream inside nucleosomes
where it is protected from enzymatic degradation (Holdenrieder et al.,
2001a,b). This mechanism occurs in both healthy individuals and patients
with benign diseases. The second mechanism is an active one probably
through cell secretion (Gahan et al., 2008). Many studies have reported
high concentrations of cfDNA in plasma or serum of patients with cancer
or other severe diseases (Laktionov et al., 2004). Moreover, recent
studies using genome-wide sequencing of plasma DNA have revealed
that circulating tumor DNA represents the tumor genome and reflects
the clonal genomic evolution of cancers (Murtaza et al., 2013). Circulat-
ing cfDNA should be rapidly degraded by nucleases, and it has been
shown that mutated cfDNA is degraded more rapidly than non-mutated
cfDNA (Diehl et al., 2005).

Circulating cfDNA for the non-invasive diagnosis of gynecological
and pregnancy disorders
Changes in the levels of circulating DNA have been associated with
several diseases, including gynecological and fetal disorders (Table V).

cfDNA could be used for the early detection and monitoring of gyne-
cological malignancies. For example, circulating cfDNA can be measured
to detect EOC at early stages (Zhang et al., 2013b). The total cfDNA
concentration in blood samples from patients with ovarian cancer is
higher, particularly at advanced stages of the disease, than in healthy con-
trols (Kamat et al., 2006b). Very high pre-operative plasma levels of
cfDNA are significantly associated with decreased patients’ survival
and constitute an independent predictor of death from ovarian cancer
(Kamat et al., 2010; No et al., 2012). EOC is rarely detected early and
it is not easy to determine whether an adnexal mass is malignant or
benign. Interestingly, patients with EOC or endometriosis have

significantly different levels of circulating cell-free mitochondrial DNA,
but not of circulating cell-free nuclear DNA (Zachariah et al., 2008).
cfDNA originating from promotors can be methylated. The methylation
profile of this cfDNA could also be used to differentiate between some
benign and malignant tumors (Liggett et al., 2011a,b). The level of tumor-
specific DNA in plasma increases progressively with the tumor burden.
On the other hand, it can decrease following chemotherapy. Indeed,
tumor-specific plasma DNA levels were significantly higher in mice
without treatment compared with animals treated with a combination
of cytotoxic chemotherapy and anti-angiogenic agents against ovarian
carcinoma (Kamat et al., 2006a). Thus, tumor-specific cfDNA may be
a useful biomarker of therapeutic response as well. This was confirmed
by a recent paper showing that exome-wide analysis of circulating tumor
DNA could complement the current invasive biopsyapproaches to iden-
tify mutations associated with acquired drug resistance in advanced
cancer (Murtaza et al., 2013).

In the case of endometrial cancer, measurement of cfDNA is not
useful for the detection of this malignancy. However, changes in
cfDNA levels in a given patient after surgery/drug treatment may be a
prognostic biomarker (Tanaka et al., 2012).

DNA isolated from maternal blood is a mixture of fetal and maternal
DNA in proportions that change during pregnancy progression.
Although it is called fetal DNA, it derives from apoptotic placental cells
(Huppertz and Kingdom, 2004; Hahn et al., 2005).

Maternal obesity is associated with increased circulating total cfDNA,
but not with fetal cfDNA. This could be due to less efficient clearance of
cfDNA in obese women (Vora et al., 2012). However, it is more likely to
be the result of increased production of total cfDNA because decreased
clearance would also lead to an increase in fetal cfDNA. In obese preg-
nant women, active remodeling of adipose tissue via adipocyte necrosis
and/or apoptosis of the stromal vascular fraction results in higher release
of cfDNA of maternal origin in the circulation (Haghiac et al., 2012). In
addition, the total cfDNA level is correlated with the maternal BMI
and the gestational weigh gain (Lapaire et al., 2009; Haghiac et al., 2012).

Circulating cfDNA levels are higher in pregnant women with pre-
eclampsia or abnormal placental invasion, as reported by different
studies using real-time quantitative PCR for the male-specific SRY (sex-

.............................................................................................................................................................................................

Table II Continued

miRNAs Expression Species Regulation Target genes Functions References

CL

miR-378 Non-regressed
and regressed CL

Bovine – IFNGR1 Luteal cell apoptosis (increase
during luteal development and
decrease during luteal
regression)

Ma et al. (2011)

miR-125b
miR-145
miR-199a-3p
miR-503

Theca cells and
CL

Sheep LIF
CDKN1A
PTGS2
–

Luteinization (decrease in
luteinization during the
follicular– luteal transition)
Decrease in per-ovulatory
follicles and increase in CL

McBride et al.
(2012)

Let-7b and
miR-17-5p

CL Mouse (mutant
with Dicer1
hypomorphic
allele)

– TIMP 1 CL formation and function
Maintain pregnancy
Angiogenesis

Otsuka et al.
(2008)

IVM, in vitro maturation; COC, cumulus–oocyte complex; GC, granulosa cell; FF, follicular fluid; CL, corpus luteum.
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determining region of Y chromosome) or DYS 14 loci (Y chromosome-
specific DNA sequence 14) (Zhong et al., 2001; Sekizawa et al., 2004).
Levine et al. (1997, 2004), using blood samples from 120 women who
developed pre-eclampsia and from 120 controls with normal pregnancy,
showed a significant increase of fetal cfDNA levels, starting from Week
17 of gestation, in women who subsequently developed eclampsia com-
pared with gestational age-matched controls. Several other studies con-
firmed that circulating fetal cfDNA levels are significantly elevated in
pregnancies complicated by pre-eclampsia (Leung et al., 2001; Zhong
et al., 2002; Azziz et al., 2004; Levine et al., 2004; Lazar et al., 2009, 2010).

Fetal cfDNA is detectable in the plasma of pregnant women up to few
hours after birth and could thus be used for non-invasive prenatal testing
to detect chromosomal abnormalities (Hui and Bianchi, 2013). Indeed,
fetal cfDNA is considered a reliable non-invasive biomarker of fetal
aneuploidy (Bischoff et al., 2002, 2005; Azziz et al, 2004; Bauer et al.,
2006; Wright and Burton, 2009; Abd El Naby et al., 2013; Canick

et al., 2013). First, the presence of fetal cfDNA in the amniotic fluid
was explored as a non-invasive method for the early detection of fetal
chromosomal abnormalities. Then, it was demonstrated that specific
fetal aneuploidies, such as trisomy 13, 18 or 21, can be detected in
fetal cfDNA from maternal serum samples (Dan et al., 2012; Norton
et al., 2012; Palomaki et al., 2012; Sparks et al., 2012; Zimmermann
et al., 2012; Fairbrother et al., 2013; Nicolaides et al., 2014). Moreover,
fetal cfDNA in maternal plasma is also used to detect pathogenic copy
number variations using target region capture sequencing, for instance
in the case of family history of thalassemia (Ge et al., 2013). Fetal
cfDNA is used also for fetal sex determination in pregnant women
who are carriers of X-linked genetic disorders in order to avoid invasive
chorionic villus sampling, generally performed at 11–13 week of gesta-
tion (Miura et al., 2011; Abd El Naby et al., 2013).

Fetal cfDNA enrichment in amniotic fluid and in the maternal blood-
stream, detected by using the improved new technologies, will contribute

.............................................................................................................................................................................................

Table III miRNAs implicated in folliculogenesis.

miRNAs Expression Species Regulation Target genes Functions References

miR-143 Ovary Mouse – Genes related to the cell cycle Primordial follicle formation
Suppression of
pre-granulosa cell
proliferation

Zhang et al.
(2013a)

miR-145 Neonatal ovary Mouse – Tgfbr2
SMAD signaling

Initiation of primordial follicle
development and
maintenance of primordial
follicle quiescence

Yang et al.
(2013)

Dicer-1 Oviductal, uterine
mesenchyme, granulosa
cells from pre-antral and
small antral follicles

Mouse
(Amhr2-Dicer1)

– Follicle development-related
genes such as Amh, Inhba,
Cyp17a1, Cyp 19a1, Zps, Gdf9,
Bmp15

Reproductive tract
abnormalities (primary
oviductal defect leading to
infertility)
Follicle cell proliferation,
differentiation and apoptosis
Follicle development and
atresia
(accelerated early follicle
recruitment and reduction in
the number of pre-ovulatory
follicles)
Oocyte maturation
Estrous cycle: reduction in
the number of natural or
induced ovulations

Lei et al. (2010)
Gonzalez and
Behringer
(2009)
Pastorelli et al.
(2009)
Hong et al.
(2008)
Nagaraja et al.
(2008)

miR-125b
miR-21
let-7
family
let-7a
miR-143
miR-15b

Granulosa cells Mouse –
Negative
control
by FSH

– Follicular development:
low expression in primordial
follicles and increased
expression in primary,
secondary and antral follicles

Yao et al. (2009)

miR-709 Ovary Newborn
mouse

– Nobox Folliculogenesis (transition
from primordial to primary
follicle stage)
Oogenesis

Choi et al.
(2007b)

miR-93 Ovary Mammalian – Lhx8 Folliculogenesis (transition
from primordial to primary
follicle stage)
Oogenesis

Zhao and
Rajkovic (2008)
Pangas et al.
(2006)
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to more sensitive and accurate prenatal diagnosis in the near future and
might greatly extend the scope of non-invasive prenatal diagnosis.

Nucleic acids as emerging non-invasive
diagnostic biomarkers of female infertility
Circulating miRNAs and ovarian function
Several studies have shown that miRNAs are involved in intercellular
signaling (Valadi et al., 2007). In order to identify the miRNAs that
are implicated in the CC–oocyte crosstalk and that regulate key

genes implicated in folliculogenesis and ovarian function, we analyzed
by deep sequencing the miRNAs present in mature metaphase II
oocytes and in the associated CCs (Assou et al., 2013a). Only 3
miRNAs were found to be expressed in oocytes (miR-184, miR-100
and miR-10a) and 32 in CCs.

Among themiRNAsexpressed in the COC (Assou et al., 2013a), some
of them were found also in the plasma(Rekkeret al., 2013) (Fig. 1). It could
be interesting to select some of these miRNAs, based on their possible
involvement in folliculogenesis, and investigate whether their blood
level could be used as a marker of IVF outcome. Moreover, the possible

.............................................................................................................................................................................................

Table IV miRNAs implicated in hormonal regulation.

miRNAs Expression Species Regulation Target genes Functions References

miR-378 GC (in antral
follicle growth)

Pig Aromatase (identification of
two binding sites in the 3′ UTR
of the aromatase coding
sequence)

Inhibition of CYP19A1
(post-transcriptional
down-regulation of aromatase
expression)
Estradiol production in vitro

Xu et al. (2011a)

miR-122 Ovary Rat Up-regulation by hCG
(activation of CAMP/
PKA/ERK)

LHR mRNA-binding protein – Menon et al.
(2013)
Azhar (2013)

miR-133b GC Mouse – Foxl2 Inhibition of Foxl2-mediated
transcriptional repression of
StAR and CYP19A1
Stimulation of estradiol
production

Dai et al. (2013)

miR-200b and
miR-429

Pituitary gland Mouse – Zeb1 Support ovulation Hasuwa et al.
(2013)

miR-383 GC (culture in
vitro) and oocyte

Mouse Down-regulation by
TGF-b1 in pre-antral
follicles
Up-regulation by
gonadotrophins in
antral follicles
Decrease before
ovulation
transcriptional
activation by SF-1

Rbms1 (DNA-binding
protein that activates MYC)

Stimulation of CYP19A1 and
estradiol levels

Yin et al. (2012)
Parker and
Schimmer
(1997)

miR-224 Pre-antral GC Mouse Up-regulation by
TGF-b1/
SMAD pathway

Smad4 GC proliferation
CYP19A1 stimulation
Ovarian estrogen release

Yao et al.
(2010a)

miR-24
miR-132,
miR-320 and
miR-520-3p
miR-222,
miR-24,
miR-193b and
miR-483-5p

FF Human – TGF-b1
–
–

Decrease in estradiol secretion
Stimulation of estradiol
secretion
Decrease in progesterone
secretion

Sang et al. (2013)

51 miRs
36 or 57 miRs
10 miRs
miR-15a and
miR-188
miR-107

GC (culture in
vitro)

Human – – Suppression of estradiol
production
Inhibition of progesterone
release
Stimulation of progesterone
release
Induction of progesterone
output
Increase in progesterone
output

Sirotkin et al.
(2009)
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relationship between hormonal markers of ovarian reserve/function, at
Day 3 of the cycle and circulating miRNA expression could also be
assessed. Interestingly, miR-30d expression is found altered in rat granu-
losa cells in culture after incubation with FSH (Yao et al., 2010b). More-
over, miR-320a was reported to be decreased in follicular fluid from
patients with PCOS (Sang et al., 2013). It could be important to determine
whether this decrease is correlated with LH or anti-Müllerian hormone
(AMH) levels, which are higher in patients with PCOS. AMH is expressed
by granulosa cells and controls the development of antral follicles by inhi-
biting excessive follicular recruitment by FSH (Weenen et al., 2004). AMH
is a marker of ovarian reserve and of associated pathologies, such as
PCOS and POF (Visser et al., 2006) and is commonly used to predict
the ovarian response before IVF procedures (Broer et al., 2013). Further-
more, some patients’ characteristics, such as BMI, could also be com-
pared with circulating miRNA levels since they can have an influence on
hormonal regulation. Indeed, high BMI is considered as an indicator of
female infertility and the deregulation of some miRNAs has been impli-
cated in obesity (Hulsmans and Holvoet, 2013).

More generally, circulating miRNAs might represent an as yet unex-
plored tool for the diagnosis/monitoring of infertility/ovarian response.

cfDNA as a biomarker of ovarian function
cfDNA is released into the circulation following physiological and
pathological cell necrosis and apoptosis. Based on the finding that
the abundance of cfDNA can change in abnormal situations, we

hypothesized that variations, particularly an increase, in circulating
cfDNA might reflect ovarian reserve disorders. cfDNA is easily quantifi-
able in serum, and in women undergoing IVF it would be interesting to
compare cfDNA concentration with FSH, LH, AMH and estradiol
levels at Day 3 of the cycle, patient characteristics and IVF outcome.
Recently, it was reported that increased plasma cfDNA levels are asso-
ciated with low pregnancy rates in IVF programmes (Czamanski-Cohen
et al., 2013). However, the only correlation was between cfDNA and
pregnancy outcome, once the patient was pregnant. The same group
also reported a reduction in the higher than normal plasma cfDNA
levels in a group of women undergoing IVF procedures following the
practice of stress-reduction techniques, suggesting that these techniques
may facilitate physiological changes leading to a reduction in plasma
cfDNA levels and ultimately an improved IVF outcome (Czamanski-
Cohen et al., 2014).

miRNA and cfDNA in embryo culture medium
miRNAs are involved in the regulation of mammalian embryo develop-
ment (Foshay and Gallicano, 2009; Medeiros et al., 2011). Global
miRNA expression profiling suggests that miRNA synthesis and degrad-
ation dynamically coexist during preimplantation embryo development
(Yang et al., 2008). In addition, intracellular miRNAs might modulate
the transition of human embryonic stem cells (hESCs) to the dif-
ferentiated cells that form the early germ layers (Wong et al., 2012).
Many miRNAs are expressed in developing mammalian embryos and

.............................................................................................................................................................................................

Table V cfDNA in gynecological pathologies and fetal cfDNA in the maternal circulation.

Pathologies References

cfDNA Ovarian cancer Zhang et al. (2013b); Kamat et al. (2010); Liggett et al. (2011a); Dobrzycka et al. (2011); Kamat et al.
(2006a, b)

Endometrial cancer Tanaka et al. (2012); Dobrzycka et al. (2010)
Maternal obesity Vora et al. (2012); Haghiac et al. (2012); Lapaire et al. (2009)
Pre-eclampsia/HELLP syndrome Miranda et al. (2013); Lazar et al. (2010); Lazar et al. (2009); Swinkels et al. (2002)

Fetal cfDNA Pre-eclampsia/HELLP syndrome Hahn et al. (2011); Lazar et al. (2010); Lazar et al. (2009); Levine et al. (2004); Bianchi (2004); Cotter
et al. (2004); Zhong et al. (2002); Hahn and Holzgreve (2002); Swinkels et al. (2002); Zhong et al.
(2001); Leung et al. (2001); Lo et al. (1999)

Abnormal placental invasion Sekizawa et al. (2002)
Pre-term delivery Leung et al. (1998)
Aneuploidy
Trisomy (13, 18, 21)

Horsting et al. (2014); Nicolaides et al. (2014); Russo and Blakemore (2014); Robinson et al. (2014);
Bianchi and Wilkins-Haug (2014); Gorzelnik et al. (2013); Verweij et al. (2013); Benn et al. (2013);
Walsh and Goldberg (2013); Canicket al. (2013); Langlois et al. (2013); Shea et al. (2013); Webb and
Murphy (2012); Hou et al. (2012); Wang et al. (2012a); Dan et al. (2012); Lazar et al. (2012); Wright
and Burton (2009); Lo and Chiu (2008); Zimmermann et al. (2008); Montagnana et al. (2007); Deng
and Li (2007); Bischoff et al. (2005); Bianchi (2004); Wataganara and Bianchi (2004); Spencer et al.
(2003); Farina et al. (2003); Wataganara et al. (2003); Lee et al. (2002); Bischoff et al. (2002); Ohashi
et al. (2001); Zhong et al. (2000); Lo et al. (1999)

Fetal sex determination
(X-linked genetic disorders)

Khorram Khorshid et al. (2013); Wright et al. (2012); Hou et al. (2012); Hill et al. (2012); Miura et al.
(2011); Zimmermann et al. (2008); Deng and Li (2007); Montagnana et al. (2007); Lo (2005); Chen
et al. (2004); Honda et al. (2002); Costa et al. (2002); Sekizawa and Saito (2001); Costa et al. (2001)

a-Thalassemia
b-Thalassemia
Achondroplasia
Myotonic dystrophy
Cystic fibrosis
Huntington’s disease
Congenital adrenal hyperplasia

Ge et al. (2013); Sirichotiyakul et al. (2012)
Li et al. (2011); Chen et al. (2008); Lo (2005); Chiu et al. (2002b)
Lim et al. (2011); Saito et al. (2000)
Amicucci et al. (2000)
Gonzalez-Gonzalez et al. (2005); Gonzalez-Gonzalez et al. (2002)
Gonzalez-Gonzalez et al. (2003)
Rijnders et al. (2001); Chiu et al. (2002a)

Hemolytic disease of fetus and newborn Illanes and Soothill (2009)

cfNDA, cell-free DNA; HELLP: hemolysis, elevated liver enzymes, low platelets.
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hESCs, including miR-320, miR-92a, let-7a and miR-146b (Yang et al.,
2008; McCallie et al., 2010; Merkerova et al., 2010). Recent reports indi-
cate that deregulated miRNA expression in the embryo is associated
with human infertility (McCallie et al., 2010) and the embryo miRNA
expression profile varies according to its chromosomal make-up and
sex (Tzur et al., 2008; Rosenbluth et al., 2013).

As miRNAs have been detected in the culture medium following
release by cells grown in culture (Hergenreider et al., 2012), it would
be possible to quantify the embryonic miRNAs released in the
medium in order to monitor embryo health during preimplantation
in vitro culture. Currently, human embryo selection for transfer into the
uterus is based mainly on morphology (Sakkas et al., 2001; Fenwick
et al., 2002). The culture medium could routinely be discarded at each
step of the in vitro embryo development. Thus, the CC gene expression
profiling, together with miRNA quantification in culture medium, could
improve the monitoring of preimplantation embryo health, and
provide a non-invasive approach to predict oocyte competence and
pregnancy outcome (Assou et al., 2008, 2011, 2013b). Changes in me-
tabolite (pyruvate, glucose or amino acids) levels in the embryo

culture medium might reflect embryo viability, and these metabolites
have been assessed as potential biomarkers of embryo quality (Seli
et al., 2007, 2010, 2011). Different methods (visual inspection, CC
gene profiling, metabolite and miRNA quantification in the embryo
culture medium) could thus be applied to improve embryo selection
and ultimately IVF outcome.

Recently, it has been reported that the presence of cfDNA released
into embryo culture medium from mitochondria is associated with
poor embryo quality during cleavage (Stigliani et al., 2013). Thus, as for
miRNAs, the analysis of cfDNA released into the culture medium by
embryos might offer the possibility to develop a non-invasive test for
the selection of the embryos with the highest implantation potential.

Conclusions and further
perspectives
In recent years, our understanding of the biology of circulating nucleic
acids has greatly progressed and powerful technologies for their analysis

Figure 1 miRNAs expressed in human CCs and oocytes that are also present in human plasma. The Venn diagram has been generated crossing the
miRNAs identified in the COC by Assou et al. (2013a), and the miRNAs present in plasma as described in Reeker et al. (2013). CC, cumulus cell.
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have been developed. Consequently, cell-free nucleic acids, such as
cfDNA and miRNAs, will play an increasing role as non-invasive tools
for the detection/prognosis of ovarian disorders and the monitoring of
human preimplantation embryo health during in vitro culture. Indeed,
blood and spent embryo culture medium are easily accessible and are
therefore ideal materials for assessing ovarian and embryo health
(Fig. 2). For example, the evaluation of cfDNA and miRNAs in the
serum of infertile women might allow an assessment of ovarian
reserve. Similarly, the quantification of cfDNA and miRNAs in micro-
drops of embryo culture medium at Day 3 and Day 5/6 post-fertilization
could help in the monitoring of embryo development and pregnancy
outcome. Ultimately, specific embryonic miRNAs secreted into the
culture medium might be attractive candidate biomarkers to predict
embryo quality and pregnancy outcomes.
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