Lecture 2 by Prof. Dr. Dawood Salim Abid

A- **Diastereomers** are stereoisomers whose molecules are *not mirror images of each* other.

cis-1,2-Dimethylcyclopentane (C₇H₁₄)

trans-1,2-Dimethylcyclopentane (C₇H₁₄)

1. DIASTEREOMERS

- 1. Molecules have more than one stereogenic (chiral) center: diastereomers
- 2. **Diastereomers** are stereoisomers that are not mirror images of each other.

Relationships between four stereoisomeric threonines

Stereoisomer	Enantiomeric with	Diastereomeric with
2R,3R	2 <i>S</i> ,3 <i>S</i>	2R,3S and 2S,3R
2 <i>S</i> ,3 <i>S</i>	2R,3R	2R,3S and 2S,3R
2R,3S	2S,3R	2R,3R and 2S,3S
2S,3R	2R,3S	2R,3R and 2S,3S

 Enatiomers must have opposite (mirror-image) configurations at all stereogenic centers.

B- FISCHER PROJECTION (Emil Fischer, 1891)

- Convention: The carbon chain is drawn along the vertical line of the Fische projection, usually with the most highly oxidized end carbon atom at the top.
 - 1) Vertical lines: bonds going into the page.
 - 2) Horizontal lines: bonds coming out of the page

: C- ALLOWED MOTIONS FOR FISCHER PROJECTION:

1. **180° rotation** (not 90° or 270°):

$$\begin{array}{c|c} \hline COOH \\ \hline H \hline OH \\ CH_3 \end{array} \qquad \begin{array}{c} CH_3 \\ \hline HO \hline H \\ COOH \end{array}$$

- COOH and –CH₃ go into plane of paper in both projections;
 H and –OH come out of plane of paper in both projections.
- 2. 90° rotation: Rotation of a Fischer projection by 90° inverts its meaning.

COOH

H
OH
$$OH$$
 OH
 OH
 OH
 OH

-COOH and -CH₃ go into plane of paper in one projection but come out of plane of paper in other projection.

D- THE SYNTHESIS OF CHIRAL MOLECULES

RACEMIC FORMS

- 1. Optically active product(s) requires chiral reactants, reagents, and/or solvents:
 - In cases that chiral products are formed from achiral reactants, racemic mixtures
 of products will be produced in the absence of chiral influence (reagent, catalyst,
 or solvent).
- 2. Synthesis of 2-butanol by the nickel-catalyzed hydrogenation of 2-butanone:

3. Transition state of nickel-catalyzed hydrogenation of 2-butanone:

Addition of HBr to 1-butene:

4

(2R,4R)-2-Bromo-4-methylhexane

(2S,4R)-2-Bromo-4-methylhexane

3. Enzyme-catalyzed organic reactions:

1) Hydrolysis of esters:

- Hydrolysis, which means literally *cleavage (lysis) by water*, can be carried out in a variety of ways that do not involve the use of enzyme.
- Lipase catalyzes hydrolysis of esters:

- Use of lipase allows the hydrolysis to be used to prepare almost pure enantiomers.
- ii) The (R) enantiomer of the ester does not fit the active site of the enzyme and is, therefore, unaffected.
- iii) Only the (S) enantiomer of the ester fits the active site and undergoes hydrolysis.
- Dehydrogenase catalyzes enantioselective reduction of carbonyl groups.

5.14 RELATING CONFIGURATIONS THROUGH REACTIONS IN WHICH NO BONDS TO THE STEREOCENTER ARE BROKEN

- 1. Retention of configuration:
- If a reaction takes place with no bond to the stereocenter is broken, the product will have the same configuration of groups around the stereocenter as the reactant
- 2) The reaction proceeds with retention of configuration.
- 2. (S)-(-)-2-Methyl-1-butanol is heated with concentrated HCl:

(S)-(-)-2-Methyl-1-butanol
$$[\alpha]_D^{25} = -5.756^{\circ}$$

(S)-(+)-2-Methyl-1-butanol
$$[\alpha]_D^{25} = +1.64^{\circ}$$

- The product of the reaction must have the same configuration of groups around
 the stereocenter that the reactant had ⇒ comparable or identical groups in the
 two compounds occupy the same relative positions in space around the
 stereocenter.
- 2) While the (R-S) designation does not change [both reactant and product are (S)] the direction of optical rotation does change [the reactant is (-) and the product is (+)].
- 3. (R)-1-Bromo-2-butanol is reacted with Zn/H⁺:

E- STEREOISOMERISM OF CYCLIC COMPOUNDS

 1,2-Dimethylcyclopentane has two stereocenters and exists in three stereomeric forms 5, 6, and 7.

- 1) The trans compound exists as a pair of enantiomers 5 and 6.
- cis-1,2-Dimethylcyclopentane has a plane of symmetry that is perpendicular to the plane of the ring and is a meso compound.

F- CYCLOHEXANE DERIVATIVES

- 1,4-Dimethylcyclohexanes: two isolable stereoisomers
- Both cis- and trans-1,4-dimethylcyclohexanes have a symmetry plane ⇒ have no stereogenic centers ⇒ Neither cis nor trans form is chiral ⇒ neither is optically active.
- The cis and trans forms are diastereomers.

2. 1,3-Dimethylcyclohexanes: three isolable stereoisomers

- 1) 1,3-Dimethylcyclohexane has two stereocenters \Rightarrow 4 stereoisomers are possible.
- 2) cis-1,3-Dimethylcyclohexane has a plane of symmetry and is achiral.

- trans-1,3-Dimethylcyclohexane does not have a plane of symmetry and exists as a pair of enantiomers.
- i) They are not superposable on each other.
- ii) They are noninterconvertible by a ring-flip.

Meso cis-1,3-dimethylcyclohexane

3. 1,2-Dimethylcyclohexanes: three isolable stereoisomers

- 1) 1,2-Dimethylcyclohexane has two stereocenters \Rightarrow 4 stereoisomers are possible.
- trans-1,2-Dimethylcyclohexane has no plane of symmetry ⇒ exists as a pair of enantiomers.

3) cis-1,2-Dimethylcyclohexane:

5.16 COMPOUNDS WITH STEREOCENTERS OTHER THAN CARBON

- 1. Stereocenter: any tetrahedral atom with four different groups attached to it.
- Silicon and germanium compounds with four different groups are chiral and the enantiomers can, in principle, be separated.

- 2) Sulfoxides where one of the four groups is a nonbonding electron pair are chiral.
- Amines where one of the four groups is a nonbonding electron pair are achiral due to nitrogen inversion.

5.17 CHIRAL MOLECULES THAT DO NOT POSSES A TETRAHEDRAL ATOM WITH FOUR DIFFERENT GROUPS

1. Allenes:

$$C = C = C \qquad \qquad \begin{array}{c} R \\ R \\ R \end{array}$$

$$H = C = C = C \qquad \qquad \begin{array}{c} H \\ CI \end{array}$$

$$C = C = C \qquad \qquad \begin{array}{c} H \\ CI \end{array}$$

$$C = C = C \qquad \qquad \begin{array}{c} CI \\ CI \end{array}$$

$$Mirror \qquad \qquad \begin{array}{c} H \\ CI \end{array}$$

Figure 5.22 Enantiomeric forms of 1,3-dichloroallene. These two molecules are nonsuperposable mirror images of each other and are therefore chiral. They do not possess a tetrahedral atom with four different groups, however.

