Regulation of respiration:

Breathing is regulated by two mechanisms:

- Neural regulation
- Chemical regulation

Neural regulation of breathing:

I. Voluntary control.
II. Automatic control
III. Reflex control

Voluntary control:

- Respiration is a spontaneous process but it can be regulated by the motor cortex in the brain which send impulses to the respiratory motor neurons through corticospinal tract to the muscles of respiration → an individual can voluntarily change the pattern of breathing in talking, singing and can also stop breathing for a period of time.
- Voluntary control pathway bypasses the medullary respiratory center (automatic)
- Sometimes automatic control is damaged without loss of voluntary control (Ondine’s curse) which can be caused by a pathological conditions that affect the medullary center.

Automatic control:

Is done by groups of neurons located bilaterally in the medulla oblongata and pons called Respiratory center which can be classified into medullary and pontine center

A. Medullary center:
 ➢ it is the basic respiratory control. It contains the pre BÖtzinger complex which is a group of pacemaker cells situated in either side of the medulla. They discharge spontaneously and rhythmically. They have two types of receptors:
 - NK1 receptors which is stimulated by P substance (associated with pain)
• μ–opioid receptors: opioids inhibit respiration through these receptors → opioid drugs side effect → cause respiratory depression

➢ medullary center contains two other groups of neuron (dorsal respiratory group and ventral respiratory group). Impulses from these cells activate respiratory motor neurons in the spinal cord.

1) **Dorsal respiratory group:**
 • they contain I neurons (Inspiration)
 • they are active during quite inspiration and is controlled by pre Botzinger complex
 • they receive sensory signals which are transmitted through Vagus (CN 10) and glossopharyngeal nerve (CN 9) from Peripheral chemoreceptors, Baroreceptors and pulmonary receptors in the lung (ex: stretch receptors)
 • send impulses to **inspiratory** motor neuron.
 • **Inspiratory ramp signal**: is the pattern of the action potential produced by DRG to the inspiratory muscles. It begins weakly and increases gradually in a ramp like manner for 2 second then stops for 3 seconds → gradual increase in lung volume during inspiration rather than inspiratory gasps and allow the elastic recoil of the chest and the lung to cause expiration in between

2) **Ventral respiratory group:**
 • Has neurons for inspiration (type I neurons) and for expiration (type E neurons). → these neurons contribute to both inspiration and expiration
 • They are **inactive** during normal quiet respiration.
 • When the respiratory drive ↑→ respiratory signals pass to the ventral respiratory neurons → extra respiratory drive.
 • Send impulses to **inspiratory and expiratory** motor neuron
 • They are important in providing an overdrive mechanism
 When high levels of pulmonary ventilation are required (exercise).
B. Pontine center: modifies the activity of the medullary center:
1. Apneustic center 2. Pneumotaxic center

Apneustic center: (enhance inspiration)
- Locates in the lower pons.
- Send *excitatory impulses* to the dorsal neurons to increase depth of breathing

Pneumotaxic center: (limit inspiration)
- Locates dorsally in the upper portion of the pons
- *Transmits inhibitory* impulses to the dorsal respiratory group by inhibiting Apneustic center to → decrease depth of inspiration and secondary effect causes increase in the rate.
 - The apneustic and pnuemotaxic centers work against each other together to control the respiratory rate and depth of inspiration.

Effect of different brain stem and vagus nerve lesions on respiratory center activity:

A. Above the pons:
- Vagus intact → normal breathing (respiratory center is intact)
- After Vagatomy → loss of inhibitory impulse of lung stretching → ↑depth, ↓rate

B. Below pneumotaxic center (mid pons):
- Vagus intact: ↑ depth and ↓ rate
- After vagatomy: apneusis (prolong inspiratory spasm that resemble breath holding).

C. Pontomedullary junction: irregular breathing

D. Below medulla: stop breathing (Fatal)