General Approximation Problem Husgam L. Saad

s a normed linear space over a field R with respect to operations addition and standard

multiplication which is defined as follows:

(1) (#1,22,...,28) + (Y1, Y2, .., YN) = (X1 + V1, T2 + ¥2,. .., ZN + yn) for all

(xlj‘xzj' & "J:’EN)] (yljyz)" 'JyN) € ]R’N'

(2) r(xy,20,...,25) = (rE, 72, ...,72N) for allr € R and for all (x1,25,...,25) €
B
Proof. HW. L]

1.2 The Problem of Best Approximation

Let F be a normed linear space over the field R and let || f|| denote the norm of
f. Let V be a subset of IF, then the general problem of best approximation may be

defined in the following terms.

Definition 1.6. Given a point f and a subset V' in a normed linear space F. A best

approximation to f from V' is an element h* € V' of minimum distance from f.

te., given f €, f &V, find h* €V such that
If =< |f—Rl|YVReV

We call h* a best approximation to [ with respect to V' and norm | - ||.

F
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Most of the approximation problems that we consider, and which are of particular

interest in practice are of two cases.
(1) Continuous approximation where f and V are in C|a,b].
(2) Discrete approximation where f and V are in RV,

Remark 1.4. The Chebyshev norm provides the foundaiion of much of the approxi-
mation theory, the next theorem shows that, if h € V approximates | € IF such that
| Elloo is small, where E = f—h, then | E|); and || E||2 are small too (at least for b —a

not too large).

Theorem 1.3. For all E in Cla,b| the inequalities

1

1E]ls < (b — a)?

Ellz < {6 —0)| Bl
hold.

Proof.
b b
Bl = [ 1B@ldz = [ 1Bz
b ir b %
2 {/ |12d:c} {/ |E(;r;)2d:c] (By Cauchy-Schwartz inequality)

1
< (b~ )| Bl

Hence

1
1B < (b —a)z| £ (1.3)

| B(z)| < max [E(z)] = || E] .

aszsh

2= | 5|E<x>2dxr
<[/ bEnzod:c}

< [|Efloo(b — a)2.

[SI
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Hence
(b—a)z[|Ellz < (b —a)| E|eo- (1.4)

from the equations (1.3} and (1.4) we get
1Bl < (0 —a)?[[El2 < (b - a) | Blle-
]

Remark 1.5. The converse statement may not be true. i.c., it is not always possible

to reduce the | E||o by making || E|y or ||E||2 small, as we see in the following example.
Example 1.3. Let f(z) =1, h(z) = 2", X is a positive parameter, 0 < z < 1.

I

Solution. E=f—h=1—x2"

b 1
|1E|lL = |E(;r;)d:c:f \1—:13)‘\d:c.
a 0
0<z<1l = 0<2'<1 = 0z —2'>-1 = 0<1—2"<1.

Hence
1
A

|

1
HE1/X1—ﬁmxx—
0

. X+1

b 1 1 1
E||§/ E($)|2d$/ l—x)‘zdx/ (1—x“\)2dx/ (1 —22* + 2*M)dx
a 0 0 0
1
i 2 1
= =(1— — (Dol el
I W] M U I T W A
A+DERA+D) —2@22+ 1)+ (A+1) 222 +3x4+1—-4x=2+2+1
A+ 1D)@A+1) B A+ 122+ 1)

ZEA+1 2241

=

222
O+ DA+ 1)
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Hence

237
G+ D+ 1) ”Eh:[

— v _— A —
1Bl = max |E(z)| = max |1 — 2% =1

922 3
1B = ]

A+ DA+ 1)

if A — 0, then |E||; = 0 and |E|s — 0, but | E||e remains 1.
Theorem 1.4. For all E in RV the inequalities

|l < N%[|Ell2 € N[ E]los
hold.

Proof. HW. [

Many question of mathematical interest arise in a natural way from the general
best approximation problem (Definition 1.6). For example we may ask the following

questions:
(1) Does a best approximation exists?
(2) Is a best approximation unique?
(3) How can a best approximation be characterized?
(4) How can a best approximation be computed?

While we shall refer to these questions, in this lectures the attention will be re-

stricted to the Chebyshev norm as a measure of error.

1.3 Existence

We can investigate an example with regard to question (1).
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