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Abstract 

The analysis of continuous beams and frames to determine the 

bending moments and shear is an essential step in the design 

process of these members. Furthermore, the evaluation of the 

maximum deflection is a mandatory step in checking the 

adequacy of the design. There are many computer programs 

available to perform these tasks. However, a hand spot checks 

for moments at selected points still necessary. Also, a quick 

determination of moments, even they are approximate, is 

usually required for simple structures and preliminary 

evaluation of complicated ones. The aim of the present work, 

is to develope a simple and reasonably accurate method to 

determine moments and deflection for continuous beams. The 

slope-deflection method and a beam analysis code are 

implemented to analyze a large number of continuous beams of 

equal spans length. Beams of various span numbers and loading 

distribution are investigated. The method of superposition is 

used to represent a continuous beam by the appropriate single-

span beams (each span by two propped cantilevers and one 

simply supported beam). Simple expressions are presented to 

determine the equivalent load on each of the substituent beams. 

From which, the bending moment, shear force and deflection at 

any location can be calculated by the method of superposition. 

The validity of the suggesetd method are examined by applying 

it to several cases of contionuous beams. 

The presented method is found to give exact values for beams 

of two and three spans. While for the purpose of simplicity and 

getting compact expressions, approximate results with errors 

less than 0.5% are obtained for beams of four and more spans. 

Keywords: Continuous beams, closed-form solution, 

structural analysis, equivalent single span beams, approximate 

bending moment. 

 

INTRODUCTION 

In both of the analysis and design processes of continuous 

beams, it is of significant importance to find the bending 

moment and deflection. Therefore, different methods are 

developed to achieve this aim. Some of these methods yield 

exact values, but they usually involve extended mathematical 

operations.   On the other hand, others use simple formulas, but 

approximate values are obtained. The current practice of 

structural engineering uses the computer-aided analysis codes 

including finite element method to analyze complicated 

statically indeterminate structures, which when skillfully used, 

can give almost exact results. However, the use of simple 

approximate methods still necessary in many cases as a spot 

check tool for checking the results of computer codes and for 

obtaining approximate values of the member forces, which are 

necessary for the preliminary analysis, used to estimate the 

initial member sizes to be used in rigorous extensive analysis. 

More explanations about the reasons of the importance of the 

approximate methods of structural analysis are explained by 

McCormack [1].   

Benscoter [2] developed an iterative method to determine the 

bending moments at internal supports of the continuous beams. 

His method started at first by representing each span by a single 

span simply supported beam. Then the end slopes at the simple 

supports together with the flexibility of each span are 

determined. The next step is to determine the rotation 

dislocation, which is the difference between the end slopes of 

the adjacent spans at their common supports. The bending 

moment at each internal support of the continuous beam is 

proportional to the value of the angular dislocation at that 

support and the stiffness values of the two spans on its both 

sides. The value of the bending moment at the internal support 

of each span is then modified due to the carryover moment from 

the bending moment of the other internal support of the same 

span. The final step is to continue in iterations like that used in 

the Hardy Cross moment distribution method [3]. Zuraski [4] 

developed a closed form analysis to determine the support 

bending moments for symmetric continuous beams. His 

analysis adopted the conjugate beam method to derive 

expressions for the span end moments, which depends on the 

ratio of the length of the loaded span to that of the considered 

span and the number of spans between them. The method was 

mainly devoted to the analysis of continuous highway bridge 

beams. In his paper, Harrison [5] presented a simplified finite 

element program that can be executed on a microcomputers to 

analyze plane frames and continuous beams.  The software can 

implimented to determine the bending moments, deflection, 

and draw the influence lines. The continuous beam can be of 

variable cross-section and subjected to point or trapezoidal 

distributed load.. Jasim and Karim [6] used moment 

distribution method to derive closed-form expressions to 

determine the exact values of member end moments of 

continuous beams and frames. The method is based on the 

series solution of the moment distribution terms obtained from 

the successive iterations. The final expressions need no 

iteration and can be used irrespective of the type of loading. 

Dowell [7] suggested a method that can be used as a spot-check 

tool to determine the exact member-end-moments for 

continuous beams and bridge structures. The method is also 

based on the series solution of the distributed moments and 

carry over factors. Dowell and Johnson [8] extend the closed 

from solution of continuous beams and bridge frames to include 

deep beams to take into consideration the effect of shear 

deformation. Series and multiple products expressions were 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 2 (2018) pp. 922-928 

© Research India Publications.  http://www.ripublication.com 

923 

used to find exact results as those obtained by stiffness method. 

Adam et al [9] used the method of moment distribution to 

analyze continuous beams of various number of spans and 

different span lengths subjected to a uniformly distributed load 

on all spans. They determined the values of negative bending 

moments and the results were filtered and presented in tables 

and charts giving the values of coefficients for the negative 

moments. The discrepancy of the results from the exact values 

may be up to about 9%. In other work, Adam [10] summarizes 

the bending moment values at supports of continuous beams in 

a form of charts. Beams of up to four spans with a uniformly 

distributed load and different length of spans were considered. 

There are also many other attempts to formulate closed-form 

solutions for the analysis of cases of continuous beams 

subjected to vibration, beams stiffened with FRP, and skew 

curved beam. [11, 12, 13] 

The present work is an attempt to make use of the results of the 

exact methods of analysis to derive formulas, although 

approximate, but simple to be used for preliminary analysis and 

design purposes. For this aim, the method of superposition of 

Jasim and Atalla [14], which was originally developed, for 

continuous composite beams is generalized to include any 

continuous beam. In this method, each span of the continuous 

beam is substituted by three single-span beams, namely; 

propped cantilever having right end fixed (RP), propped 

cantilever having left end fixed (LP), and simply supported 

beam (SS). Each of these substituted single span beams, has the 

same length as that of the actual considered span, as described 

in Fig.(1). The load on the substituent two propped cantilever 

beams are determined such that the bending moments at the 

fixed ends of RP and LP equal to the bending moment at the 

right and left supports of the considered span, respectively. 

Since the bending moments at the two supports of any span in 

a continuous beam are functions of the loads on all spans, thus, 

the loads on the propped cantilevers are also functions of the 

loads on all spans of the continuous beam and not only of the 

considered span alone. The load on the third substituent beam, 

i.e. the simply supported beam is determined such that the sum 

of the loads on the three substituent beams equals the load on 

the actual considered span.  

It is worth to note that for any continuous beam, the bending 

moment at the fixed end of RP for any span must equal the 

bending moment at the fixed of LP of the next adjacent right 

span. This is because that the bending moments in their fixed 

supports must equal the bending moment in the actual common 

support between the considered spans of the continuous beam. 

Furthermore, it is obvious that the bending moment in LP for 

the first left span as well as the bending moment in RP for the 

last right span must be zero, since the moments at the exterior 

supports are zero. 

 

Figure 1: The considered span of a continuous beam and its 

substituents single span beams. 

 

METHOD OF ANALYSIS 

The following steps can summarize the method of analysis: 

1. For the beam shown in Fig. (1), the load on the first 

span only is considered (assuming the other spans 

temporarily unloaded), and the classical methods is 

then used to determine the moment at each support. 

For each span, the equivalent load on RP is found such 

that the bending moment at the fixed end of the RP 

equals the bending moment at the right support of that 

span. 

2. The same steps are repeated for the loads on the other 

spans, each considered separately. 

3. The total equivalent load on the RP for each span due 

to loads on all loaded spans is the sum of loads on RP 

for each separate case, i.e. 

𝐿 (𝑅𝑃)𝑚 = ∑ 𝐿(𝑅𝑃)𝑚𝑘
𝑛

𝑘=1
   (1)  

where 𝐿 (𝑅𝑃)𝑚: is the total load on RP of span m 

due to load on all spans. 

𝐿(𝑅𝑃)𝑚𝑘: the total load on RP of span m due to load 

on span k only. 

n: the number of spans in the continuous beam.    

4. Recall that the bending moment in the fixed end of LP 

at any span must equal the bending moment in the 

fixed end of the left adjacent RP. This leads to the 

conclusion that the total equivalent load on LP for 

each span is  

                𝐿 (𝐿𝑃)𝑚 = 𝐿 (𝑅𝑃)𝑚−1   (2) 

5. The total equivalent load on SS for each span is 

determined such that the sum of loads on the three 

substituent single span beams equals the load on the 

considered span of the continuous beam. Thus, 

𝐿 (𝑆𝑆)𝑚 =  𝐿𝑚 −  [𝐿(𝑅𝑃)𝑚 + 𝐿(𝐿𝑃)𝑚] (3) 

where  Lm is the actual load on span m of the 

continuous beam.    

6. Since the moments at the external supports are zero, 

this leads to 

𝐿(𝐿𝑃)1 =  𝐿(𝑅𝑃)𝑛 = 0        (4) 
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DERIVATION OF LOAD EXPRESSIONS: 

To find the expressions of the load for each substituent beam 

for the various cases of continuous beams, the above method of 

analysis is applied to the various cases of continuous beams of 

various spans number and loading distributions. For each case, 

the total equivalent load on each of the single-span substituent 

beams is determined. The procedure can illustrated by 

considering the case of two spans beam, shown in figure (2). 

The first step is to consider the load on the first span, i.e., span 

abalone. From which bending moment (B.M.) at support B can 

prove to be (- ω1L2/16). For this span, the toads on substituent 

beams for span ab is first considered. 

The load on RP is determined such that the B.M. at its fixed 

end equals the B.M. at support B. Hence, 

- (L(RP)11) × L2 / 8 = - ω1L2/16 

which yields, L(RP)11 = 0.5 ω1   (5-a) 

From equation (4), the load on LP is zero, i.e. 

L(LP)11 = 0     (5-b) 

The load on SS is determined from eq.(3) as, 

L(SS)11 = ω1 – 0.5 ω1 – 0 

L(SS)11 = 0.5 ω1     (5-c) 

The loads on the substituent beams for span bc due to load on 

span ab is determined using the same procedure to obtain. 

 

 

Figure 2: Derivation of load expressions for the case of two 

spans continuous beam 

 

L(RP)21 = 0     (5-d) 

L(LP)21 = 0.5 ω1     (5-e) 

L(SS)11 = – 0.5ω1     (5-f) 

 

Since span bc is not loaded, the above expressions represents 

the total loads on the substituent spans for the two spans beam 

shown in figure (2). 

In general, the loads of the substituent single span beams for 

continuous beams of various span number and loads on their 

various spans can be in determined by a similar procedure. The 

results are summarized as follows: 

 

FOR CASE OF TWO SPANS BEAM: 

   L(RP)1 = 0.5 L1 + 0.5 L2      (6-a) 

 L(RP)2 = 0 from Eq. (4)  

 

FOR CASE OF THREE SPANS BEAM: 

L(RP)1 =    8/15 L1 +  6/15 L2 – 2/15 L3  (6-c) 

   L(RP)2 =   – 2/15 L1 + 6/15 L2 + 8/15 L3  (6-d) 

 L(RP)3 = 0 from Eq. (4)  

 

FOR THE CASE OF FOUR AND MORE SPANS BEAM: 

The values of bending moments for a continuous beam of more 

than three spans when the load is applied on one of its spans are 

found to be slightly affected by the number of spans of that 

beam.  This means that, for example, when the load is on the 

first span of a continuous beam  (of four or more spans), the 

bending moments at first, second, and other interior supports 

are approximately the same irrespective of the number of spans 

of that beam. This finding can be exploited to subtend the 

continuous beams of four and more spans in one case. For the 

purpose of determining the equivalent loads on RPs, a 

continuous beam of ten spans is taken as a representative case. 

In the present case, the development of simple approximate 

expressions is found to be more beneficial than exact 

complicated one. 

By using a procedure similar to that used in the preceding cases, 

the load is considered to be applied on one span only, with the 

other spans are free of loads. The bending moments at the 

interior supports are then determined by any of the classical 

methods of analysis of continuous beams. In this work, the free 

version of DTBeams program is utilized [16]. The equations of 

moments at the interior supports number m, i.e. Mm as ratios of 

the moment at the right support of the loaded span k, i.e. Mk for 

the various cases of location of the loaded span are detailed in 

the following: 

when the load is on span 1 ( k = 1): 

Mm,1 = M1 × ( - 0.268)( m – 1) 

 

when the load is on span 2 ( k = 2): 

Mm,2 = M2 × ( - 0.268)(m -2)  for m ≥ 2 

Mm,2 ≈ M2    for m = 1 
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when the load is on span 3 ( k = 3): 

Mm,3 = M2 × ( - 0.268)(m -3)  for m ≥ 3 

Mm,3 = M2 × ( - 0.268)( 2 – m )  for m = 2,1 

 

when the load is on span 4 ( k = 4): 

Mm,4 = M2 × ( - 0.268)(m -4)  for m ≥ 4 

Mm,4 = M2 × ( - 0.268)( 3 – m )  for m = 3,2,1 

In general, the moment in right support of span m due to the 

load on span k can be determined by using the general equation 

below: 

Mm,k = Mk × ( - 0.268) T    (7-a) 

where: 

Mm, k : the bending moment at the right support of span m due 

to load on span k. 

Mk    : the bending moment at the right support of span k due to 

load on that span. 

and  T = m – k   for m ≥ k  (7-b) 

       or  T =  k – m – 1  for m < k (7-c) 

 

It is worth to mention that values very close to the factor (0.268) 

in the above equations can be determined by using the 

deformations compatibility relations. In fact, the value of this 

factor abruptly reduces to 0.25 when determining the moment 

in the last internal support away from the loaded span. These 

findings are in general agreement with the results of equations 

developed by Zuraski [5]. The discrepancy in the values of 

moments due to the difference between the used value of the 

factor in eq.(7-a) which is 0.268 with the actual value at the last 

internal support  which is 0.250, is obviously of minor 

importance since the value of the bending moment at the that 

support will be very small and of negligible effect. So that, for 

simplicity, the factor is fixed at a single value of 0.268 for all 

spans. 

The other task is to determine the bending moment at the right 

support of the loaded span, Mk which would be used to 

determine the equivalent load on the right fixed end propped 

cantilevers RP that substitute the loaded and other spans. As 

mentioned above for the case of continuous beams of more than 

three spans, the development of approximate yet simple 

expressions rather than exact complicated ones is more useful. 

In this context, to simplify the derivation, the load is assumed 

as uniformly distributed. The expressions of bending moment 

at the right support of the loaded span, i.e., Mk are as following: 

When the load is on span 1 ( k=1): 

M1 = - 0.067 𝑤1  ×  (𝐿1)2    (7-d) 

 

When the load is on any of the other spans ( k > 1): 

Mk = - 0.053 𝑤𝑘  ×  (𝐿𝑘)2    (7-e) 

 

 

Substituting equations (7-d and e) in equations (7- a), yields 

a. For k = 1 

Mm, 1 = − 0.067 𝑤1  ×  (𝐿1)2× ( - 0.268) T  (7-f) 

 

b. For k > 1 

Mm, k =  − 0.053 𝑤𝑘  ×  (𝐿𝑘)2× ( - 0.268) T  (7-g) 

 

The final step is to determine the equivalent load on RP 

substituent beam for each span by equating the bending 

moment at the right support of that span with the bending 

moment at the fixed end of RP beam. Thus, the value of the 

equivalent load on RP for span number 𝑚 when only the load 

on span number 𝑘 is active is 

a. For k = 1 

L(RP)m, 1 = 0.536 × (− 0.268) T   (7-h) 

 

b. For k > 1 

L(RP)m, k =  0.424 × (− 0.268) T   (7-i) 

 

The total equivalent load L(RP)m for span number m due to all 

loads is determined from eq.(1). The other loads, i.e.  L(LP)m 

and L(SS)m are determined from eqs. (2 and 3). 

Although the preceding derivation considers the case when the 

load is uniformly distributed, in fact the same equations result 

if another case of the load is considered. The applications will 

examine different loading types to prove the validity of these 

equations. 

 

APPLICATIONS: 

In the following article, the suggested equations are applied to 

three examples of continuous beams to verify their accuracy. 

 

CASE STUDY 1: Two – spans continuous beam 

In the first application of the proposed method a case of two-

spans continuous beam shown in Fig.(3) is considered. The 

analysis is started by replacement of each span by the three 

single span substituent beams, i.e RP, LP, and SS. By using the 

expressions derived above, the load on each of the substituent 

beams is determined.  

From eq. (6-a), L(RP)1 = 0.5L1 + 0.5 L2  

thus,  L(RP)1 = 0.5 w + 0.5 P 

From eq. (4), L(LP)1 = 0 

From eq.(3), L(SS)1 = L1 – [L(RP)1+ L(LP)1 ] 

thus, L(SS)1 = w – [w/2 + P/2] = w/2 – P/2 

 

Using the same equations, the loads on substituent beams for 

the second span can be determined, to be 
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Figure 3: Continuous beam of two spans 

 

L(RP)2 = 0 

L(LP)2 = LRP1= w/2 + P/2, and 

L(SS)2 = P – {w/2 + P/2} = P/2 – w/2 

 

The accuracy of the method is examined by determining some 

values of bending moment and deflection at selected locations 

by using the equations for loads and moments developed in the 

current work and compare them with those determined by exact 

methods. In this work, the moment at a certain location is 

determined by the method of superposition for the 

corresponding values determined for each of the substituent 

beams. By similar principle, the deflection at any point in one 

of the spans of the continuous beam is determined by the sum 

of deflection values at the same point for the three substituent 

beams of that span. For this purpose, the bending moment at 

middle support (Mb) and the deflection at midpoint (yd) of the 

left span are considered.  

The bending moment (Mb) equals the bending moment at fixed 

end of RP1, since the bending moment at the right supports of 

LP1 and SS1 are zero. The bending moment at fixed the end of  

RP1  is the sum of moments of propped cantilever loaded with 

a distributed load and propped cantilever loaded with a point 

load at mid-point, thus 

Mb= - (0.5w)L2/8 – 3(0.5P)L/16 = - wL2/16 – 3PL/48 

This value exactly equals the value of moment at mid-support 

of a continuous beam loaded as the beam shown in 

Fig.(3).[15] 

Now, the moment at midpoint of the left span, Md, is to be 

determined which is the sum of bending moments at midspans 

of RP1, LP1, and SS1, which are M(RP1)d , M(LP1)d , and 

M(SS1)d ,respectively. Thus 

Md = M(RP1)d + M(LP1)d + M(SS1)d 

Md = [ (0.5w)L2/16 + 5(0.5P)L/32] + [0] + [ (0.5w)L2/8  

                                                                  + (-0.5P)L/4] 

Md = 3wL2/32 – 3PL/64  

Again, this value exactly equals the value determined by the 

analytic methods [15].  

The third test, is the deflection at the midpoint of the left span 

Yd. 

Yd = Y(RP1)d + Y(LP1)d + Y(SS1)d 

Yd = [ (0.5w)L4/192EI + 7(0.5P)L3/768EI] + [0]  

                                  + [5(0.5w)L4/384EI + (-0.5P)L3/48EI] 

Y(L/2) = 7wL4/768EI – 9PL3/1536EI 

Which is identical to the exact value. 

 

CASE STUDY 2: Three – spans continuous beam 

In this second case the three-spans beam shown in Fig.(4) is 

considered. 

 

Figure 4: Continuous beam of three spans 

 

By using the equations derived in section 4 for the case of 

three spans, the loads on the substituent beams can be 

determined to be: 

L(RP)1=8/15 w – 2/15 P,  L(RP)2= -2/15w + 8/15 P,   

L(RP)3= 0 
 

L(LP)1 = 0 , L(LP)2= 8/15w – 2/15 P ,  L(LP)3  

            = -2/15 w +8/15 P 
 

L(SS)1=7/15 w 2/15 P ,  L(SS)2= -6/15 w- 6/15 P, L(SS)3= 

2/15 w + 7/15 P 

The bending moment at point d is to be checked. 

Mb = M(RP1)b + M(LP1)b + M(SS1)b 

Mb =  (8/15 w) L2/8 +  3(-2/15 P) L/16 = wL2/15 – PL/40 

  The deflection at point e is to be checked. 

   Ye = Y(RP1)e + Y(LP1)e + Y(SS1)e 

Ye = [(8/15 w) L4/192EI + (-2/15 P) 7L3/768EI ] + [0] 

                         + [(7/15 w) 5L4/384EI+(2/15P) L3/48]  

Ye = (51 wL4 + 9PL3)/5760EI 

The above results are identical to the exact values. [15] 
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CASE STUDY 3: Six – spans continuous beam 

The six spans continuous beam shown in Fig.(5) is considered 

as an example for the case continuous beam of four or more 

spans. The beam is loaded as shown and each span is of 4m 

length. 

 

 

Figure 5: Continuous beam of six spans 

 

In this case, the bending moment at points c and d and the 

deflection at the point h will be determined. One advantage of 

the present method is that, when deflection, moment, or shear 

at certain span are required, there will no necessity to analyze 

the whole beam, and instead, that span is only analyzed.  So 

that, the calculations for the loads on the substituent beams for 

third span are only conducted.  

The load on RP for the third span, i.e. L(RP)3, is determined 

using eq.(1), thus 

L(RP)3= 


6

1k

L(RP)3k 

From eq. (7-h), 

L(RP)31= [0.536(-0.268)3-1] x 20 = +0.77 kN/m,    

From eq. (7-i) and eq. (7-b), 

L(RP)32=[0.424(-0.268)3-2] x 50 = -5.68 kN 

L(RP)33= [0.424(-0.268)3-3] x70 = +29.68 kN 

From eq. (7-i) and eq. (7-c), 

L(RP)34= [0.424(-0.268)4-3-1] x 10 = +4.24 kN/m 

L(RP)35= [0.424(-0.268)5-3-1] x 10 = -1.14 kN/m 

L(RP)36= [0.424(-0.268)6-3-1] x 40 =+1.22 kN 

Thus, L(RP)3= + 3.87 kN/m + 25.22 kN 

The loads on RP of the third span, i.e. L(LP)3 is determined 

using eq. (2), hence 

L(LP)3 = L(RP)2 

Using similar procedure similar to that used in calculating 

L(RP)3 

L(RP)21= - 2.87 kN/m 

L(RP)22= + 21.2 kN 

L(RP)23=  + 29.68 kN 

L(RP)24= - 1.14 kN/m 

L(RP)25= + 0.30 kN/m 

L(RP)26=  - 0.33 kN 

 

L(LP)3 = L(RP)2= 


6

1k

L(RP)2k = - 3.71 kN/m + 50.55 kN 

Finally, the load on SS for the third span, i.e. L(SS)3 is 

determined using eq. (3), 

L(SS)3 = 70 kN - [ ( + 3.87 kN/m + 25.22 kN) + (- 3.71 kN/m 

+ 50.55 kN)] 

L(SS)3 = - 0.16 kN/m – 5.77 kN 

The bending moment at point c is first determined. This 

moment equal the bending moment at the fixed end of LP3, 

which in turn equals the moment comes from the distributed 

load 𝑤 and the point load 𝑃. Thus, 

𝑀𝑐 = − 
𝑤 𝐿2

8
−  

3 𝑃 𝐿

16
 

𝑀𝑐 = − 
(−3.71)  × 42

8
− 

3 (+50.55) ×  4

16
 

𝑀𝑐 =  −30.49 𝑘𝑁. 𝑚 

The exact value computed using DTBeam continuous beam 

analysis code [16], is 

 (𝑀𝑐 )exact = - 30.54 kN.m, 

The error in the calculated value using the suggested method is 

0.16 %. 

Now, the bending moment at point d is checked, which in this 

case equals the bending moment at the fixed end of RP3. 

𝑀𝑑 = − 
(+3.87)  × 42

8
−  

3 (+25.22) ×  4

16
 

𝑀𝑑 =  −26.66 𝑘𝑁. 𝑚 

The exact value is (𝑀𝑑)exact = - 26.73 kN.m 

The error is 0.26% 

The deflection at point h is examined, which equals the sum of 

deflections of the three single span beams substituted the third 

span. Each of them comes from the effects of the distributed 

and point loads. Thus, 

𝑦ℎ = 𝑦(𝐿𝑃3)𝐿/2 +  𝑦(𝑅𝑃3)𝐿/2 +   𝑦(𝑆𝑆3)𝐿/2 

In which 𝑦ℎ is the deflection of the continuous beam at point h, 

𝑦(𝐿𝑃3)𝐿/2, 𝑦(𝑅𝑃3)𝐿/2, 𝑎𝑛𝑑  𝑦(𝑆𝑆3)𝐿/2 are the deflection of LP, 

RP, and SS beams of the third span at their midponts. 

𝑦(𝐿𝑃3)𝐿/2 =  
𝑤 𝐿4

192𝐸𝐼
+ 

7 𝑃 𝐿3

768𝐸𝐼
 

𝑦(𝐿𝑃3)𝐿/2 =
24.341

𝐸𝐼
 (𝑚) 

Similarly, 

𝑦(𝑅𝑃3)𝐿/2 =  
+19.872

𝐸𝐼
 (𝑚) 

and 

𝑦(𝑆𝑆3)𝐿/2 =  
5𝑤 𝐿4

384𝐸𝐼
+  

𝑃 𝐿3

48𝐸𝐼
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𝑦(𝑆𝑆3)𝐿/2 =  
− 8.227

𝐸𝐼
 (𝑚) 

The deflection at point h is the sum of the above three values, 

i.e. 

𝑦ℎ =  
+ 35.986

𝐸𝐼
 (𝑚) 

The exact value is  

(𝑦ℎ)𝑒𝑥𝑎𝑐𝑡 =  
+ 36.064

𝐸𝐼
 (𝑚) 

The error is 0.22%          

The above results show that the error in results using the 

suggested method are less than 0.5% for moment and deflection 

calculations.  

  

CONCLUSIONS 

An elastic analysis of continuous beams of equal spans is 

conducted to determine the bending moment and deflection at 

various locations.  Three single span beams are suggested to 

substitute each span of the continuous beam and the load on 

each of them is determined by equations developed for this 

purpose. The equations are simple to be applied to various 

loading and number of spans. These equations together with the 

substituent single span beams can be used to determine the 

bending moment, shear force and deflection at any location in 

the continuous beam without the need to analyze the whole 

beam.  

The application of the method on selected typical cases of 

continuous beams shows that the errors in the calculated values 

of bending moment and deflection are less than 0.5%.  The 

method can be considered as a spot check tool for the results 

from other method and can be used in the preliminary analysis 

to estimate member dimensions that would be used in the 

rigorous analysis. 
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