Study of some serum biochemical changes of experimental diabetes mellitus in Donkey

A. H. FadhilR. K. MuhsenA. O. IsmaelColl. of Vet. Med./ Univ.
of KarbalaColl. of Vet .Med./Univ. of
BasraColl. of Vet. Med./ Univ.
of Karbala

Abstract

This study was conducted to induce experimental diabetes in donkeys and assess some serum biochemical changes in diabetes mellitus.Fifteen donkeys were used in this experiment and divided into two groups:

A. Treatment group which include (11) donkeys . Diabetic group. denoted by Dm.

B. Control group which includes (4) donkeys denoted by Cm.

Animals were housed in field .The animals were left tow weeks for adaptation. Diabetes mellitus was induced by i.v injection of alloxan monohydrate at dose rate 100 mg/kg dissolved in 25 ml of normal saline, while the control groups were injected with 25 ml of normal saline. Blood was collected before injection of alloxan monohydrate and after that (10,20.30,40)days to check fasting and random serum glucose.The laboratory tests including serum glucose, serum urea, serum creatinine, serum cholesterol, serum lactate dehydrogenase , We found out the following result according to the periods of the experiments: Serum glucose level was elevated starting from the 1st 10 days period after induction of diabetes mellitus. It reached its peak levels on day(20,30,40). Serum urea, serum creatinine, serum cholesterol, serum cholesterol, serum lactate dehydrogenase were elevated in diabetic donkeys, in control groups, but there were no significant difference.

Keywords: Diabetes mellitus, donkeys

Introduction

Diabetes mellitus is a group of characterized metabolic diseases by hyperglycemia resulting from defects in insulin secretion, insulin action, or both (1). The chronic hyperglycemia of diabetes is associated with long-term damage, dysfunction, and failure of various organs, especially the eyes, kidneys, nerves, heart, and blood vessels (2). Diabetes as defined in a general term refers to disorders characterized by excessive urine excretion (Polyurea) and derived from the Greek word meaning a siphon. In lay terms diabetes, when used alone, refers to diabetes mellitus. Clinically, diabetes may refer to either diabetes mellitus or diabetes insipidus. (3). Chronic hyperglycemia is associated with micro vascular cardiovascular and complications that increase risk of morbidity and mortality (4). Diabetes is a chronic illness that requires continuing medical care and patient self-management education to prevent acute complications and to reduce the risk of long-term complications (5)Four

major types of diabetes have been defined: type-1(insulin-dependent diabetes mellitus IDDM), type-2 (non-insulin-dependent gestational diabetes mellitus NIDDM), mellitus (GDM) and diabetes diabetes secondary to other conditions. Type-1 characteristically presents with prominent symptoms diabetes and extreme hyperglycemia. Type II diabetes, which results of insulin resistance, is the most prevalent form of diabetes today. Of individuals diagnosed with diabetes, 90-95% suffers from type II diabetes mellitus. The key objectives in the management of diabetes are optimizing metabolic control, preventing complications acute and chronic and improving quality of life (6). Type1-2 can be diagnosed by the presence of the classical signs and symptoms of diabetes together with unequivocally elevated blood glucose levels; by fasting plasma glucose (FPG) 90 mg/dl Aims of study induce of diabetes mellitus in and Measurement donkey of some biochemical parameters

No./1

Vol./12

2013

No./1

Material and Method

Fifteen donkeys were collected in the field, and divided into two groups after two weeks.

Group A:-

This group include (11) donkeys aged from (3-7)) months, weight was calculated for each animal in order to calculate dose of alloxan for required for the induction of diabetes (DM)

Group B:-

This group includes four as control group After calculating the live weight of each animal the dose of alloxan were calculated which is given intravenously 100

Table (1) show blood glucose concentration.At zero time there was no significant differences in the means of serum glucose concentration in fasting (71 $.3 \pm 1.9$ VS 80.45±3.6) and random (121.1±9.7VS 144.0±13.1)fore treatment and control groups respectively P>0.05. After 10 days experimental the serum glucose concentration was increased in treatment group of fasting blood sample (104.909±1.9 VS 79.79 \pm 4.5)there was highly significant differences between two group (p<0.01) on ether hand there was no significant differences in blood glucose concentration of random blood sample (146.9±5.37 VS 158.25 ± 8.58) for treatment and control group respectively P>0.05.After 20 days experimental diabetes mellitus there was highly significant increased serum glucose concentration of fasting blood sample in the treatment group (125.4±1.3 VS 85.25 ± 1.43) for treatment and control group respectively (p<0.01) on ether hand there

mg per kg of body eight dose is sufficient for the development of diabetes Alloxan was dissolve material, according to the appropriate dose for each animal, 25 ml of normal saline was injected all test animals, which were numbered from the number (1-11). normal saline were numbered animal (15-19). blood samples were collected from (0'10'20'30'40) day from each animal treatment and control group to estimate the biochemical serum (glucose, urea. creatinine, cholesterol, Lactate dehydrogense LDH).

Results

was no significant increased blood glucose concentration of random blood sample treatment group (167.56±7.64 VS 131.75 ± 16.94) for treatment and control respectively P<0.05.After 30 days of experimental there was highly significant increased in the serum glucose concentration in the treatment group for fasting (138.4 ± 5.77 VS 84.97 ± 3.5) for treatment and control group respectively(p<0.010) on ether hand there was significant increased in the blood glucose concentration for random blood sample in the treatment group (190.2±22.88VS 148.0±12.73) for treatment and control group respectively(P<0.05). After 40 days of experimental there was highly significant increased in the serum glucose concentration for both fasting and random (167.0 ±6.19 VS 84.825±2.65) for treatment and control group respectively in the fasting blood sample (236.875±13.65VS 144.0±6.1) for treatment and control group respectively random blood sample (p<0.01). of

Table(1) Results of serum biochemical values of study dolkeys			
Glucose parameters/fasting		Р	Mean± SD
Zero day	Treatment	p>0.05	71.3±1.9
	Control		80.45 ± 3.9
10 day	Treatment	P<0.01	104.909±1.9
10 duy	Control		79.79±4.5
20 day	Treatment	P<0.01	125.4 ± 13.66
	Control		85.25 ± 1.436
30 day	Treatment	P<0.01	138.4 ± 5.77
	Control		84.97± 3.5
40 day	Treatment	P<0.01	167.00 ± 6.19
	Control		84.825 ± 2.6

Table(1):- Results of serum biochemical values of study donkeys

Glucose para	neters/Random	Р	Mean± SD
	Treatment	m> 0.05	121.1±9.7
Zero day	Control	p>0.05	144.000 ± 13.1
	Treatment	P>0.05	146.9±5.37
10 day	Control	P>0.03	158.25 ± 8.58
	Treatment	P<0.05	167.56± 7.64
20 day	Control	P<0.03	131.75 ± 16.94
	Treatment	P<0.05	190.2 ± 22.88
30 day	Control	P<0.03	148.0± 12.73
	Treatment	P<0.01	236.875±13.65
40 day	Control	r<0.01	144.00 ± 6.1

Table(2) show blood urea concentration. At zero,10,and 20 days there was no significant differences in the means of serum urea concentration in blood sample (51.95 ±1.8VS 54.37±3.2)(57.64 ± 2.64 VS 56.05±3.37)(62.1700± 1.9 VS 57.00±3.02) for treatment and control groups respectively p>0.05.After 30 days experimental diabetes mellitus the serum urea concentration was increased in treatment group blood sample $(67.36\pm2.07 \text{ VS } 57.375\pm2.99)$ there was significant differences between two group (p<0.05).After 40 days experimental the serum urea concentration there was highly significant increased in treatment group blood sample (70.48±1.93 VS 55.73± 3.975) for treatment group (p < 0.01).

Table(2):- Results of serum biochemical values of study donkeys			
urea parameters		р	Mean± sd
Zana dari	Treatment	p>0.05	51.95±1.8
Zero day	Control		54.37 ± 3.2
10 day	Treatment	p>0.05	57.64±2.64
10 day	Control		56.05 ± 3.37
20 day	Treatment	p>0.05	62.17 ± 1.9
	Control		57.0± 3.02
30 day	Treatment	p>0.05	67.36 ± 2.07
	Control		57.375 ± 2.99
40 day	Treatment	P<0.01	70.48± 1.93
	Control		55.73± 3.975

Table(3) show blood creatinine concentration .At zero and 10 days there was no significant differences in the means of serum creatinine concentration in blood sample $(1.83 \pm 0.06 \text{ VS } 1.96 \pm 0.024)(2.41 \pm 0.155 \text{ VS } 2.04 \pm 0.037)$ for treatment and control groups respectively p>0.05.After 20,

30,and 40 days experimental diabetes mellitus the serum creatinine concentration was increased in treatment group blood sample $(2.68\pm0.06 \text{ VS } 2.1\pm 0.057)$ $(3.16\pm0.11 \text{ VS } 2.05\pm 0.04)$ $(3.81\pm0.24 \text{ VS } 2.085\pm 0.06)$ there was highly significant differences between two group (p<0.01).

creatinine parameters		р	Mean± sd
	Treatment	n>0.05	1.836 ± 0.06
Zero day	Control	p>0.05	1.96 ± 0.024
	Treatment	p>0.05	2.41±0.155
10 day	Control	p>0.03	2.04 ± 0.037
	Treatment	P<0.01	2.68 ± 0.06
20 day	Control	P<0.01	2.1 ± 0.057
	Treatment	P<0.01	3.16 ± 0.11
30 day	Control	P<0.01	2.05 ± 0.04
	Treatment	P<0.01	3.81 ± 0.24
40 day	Control	F<0.01	2.085 ± 0.06

Table(3):- Results of serum biochemical values of study donkeys

Table(4) show blood cholesterol concentration .At zero time there was no significant differences in the means of serum cholesterol concentration in blood sample $(96.18 \pm 4.18 \text{ VS } 80.5 \pm 3.9)$ for treatment and control groups respectively p>0.05.After 10 days experimental the serum cholesterol concentration was increased in treatment group blood sample (116.1±9.6 VS 74.00± 3.11)there was significant differences between two group (p<0.05). After 20 days experimental the serum cholesterol concentration there was highly significant increased in treatment group blood sample (124.4±9.66 VS 75.78± 2.71) for treatment group (p<0.01). After 30 days experimental the serum cholesterol concentration there was highly significant increased in treatment group blood sample (131.467±4.7 2.9) for treatment group VS 75.5± (p<0.01).After 40 days experimental the serum cholesterol concentration there was highly significant increased in treatment group sample blood (144.94±4.65VS 78.375 ± 2.87) for treatment group (p<0.01).

Cholesterol	nonomatana		Mean± SD
Cholesterol	parameters	p	Mean± SD
	Treatment	p>0.05	96.18±4.18
Zero day	Control	p>0.03	80.5 ± 3.9
	Treatment	P<0.05	116.1±9.6
10 day	Control	r<0.03	74.00± 3.11
	Treatment	P<0.01	124.4 ± 9.66
20 day	Control	r<0.01	73.78 ± 2.71
	Treatment	P<0.01	131.467 ± 4.7
30 day	Control	r<0.01	75.5±2.9
	Treatment	P<0.01	144.94 ± 4.65
40 day	Control		78.375 ± 2.87

Table(4):- Results of serum biochemical values of study donkeys

Table(5) show blood lactate dehydrogense (LDH) concentration. At zero ,10,20, and 30 days there was no significant differences in the means of serum LDH concentration in blood sample (222.27 ± 19.4 VS 250.5 ± 5.9)(251.9 ± 19.2 VS 258.25 ± 4.0) 256.3 ± 17.5 VS 252.5 ± 1.5) for

treatment and control groups respectively p>0.05. After 40 days experimental diabetes mellitus the serum LDH concentration was increased in treatment group blood sample (319.00 ± 18.68 VS 258.75 ± 2.36) there was significant differences between two group (p<0.05).

Lactate de parameters	hydrogenase(ldh)	р	Mean± sd
	Treatment	m> 0.05	222.27±19.4
Zero day	Control	p>0.05	$250.5{\pm}~5.9$
	Treatment	p>0.05	251.9±19.2
10 day	Control	p>0.03	258.25 ± 40
	Treatment	p>0.05	256.3 ± 17.51
20 day	Control	p>0.03	252.5 ± 1.5
	Treatment	n>0.05	282.5 ± 18.26
30 day	Control	p>0.05	248.250 ± 4.8
	Treatment	P<0.05	319.00± 18.68
40 day	Control	r<0.03	$258.75{\pm}2.36$

Table(5): Results of serum biochemical values of study donkeys

Discussion

Alloxan induced diabetes mellitus is characterized by a state of hyperglycemia and related clinical signs such as thirst, polyphagia poly urea.Alloxan & (as monohydrate) was used for the induced experimental of diabetes in animals has been use in mouse(7), spiny mouse (8), Rat (9), rabbits(10), feline (11), dogs(12), swine(13), sheep (14,15) and cattle (16.17) to induce diabetes mellitus in rabbits. The dose used in this experiment (100 mg /kg) was clinically effective and led to induced hyperglycemia within three days. The results revealed significant differences between diabetic groups and control groups, which consistent are with (18);(19): (20);(21);(22);(23);(24);and(25).The study revealed a significant difference in serum glucose concentrations between the periods of the experiment as there was progressive increase in the serum glucose levels; this is similar to the results of (26;and27). Alloxan acts on the insulin- producing pancreatic ßcells within islets of Langerhans which are

selectively destroyed by oxidant the production (28).In The present study diabetic hyperglycemia induces elevation of plasma levels of urea and creatinine which are considered as significant markers of renal dysfunction (29). Significant increase in the level of plasma urea and creatinine in the diabetic . These results indicated that diabetes could be lead to renal dysfunction.In this study there was an elevation in the levels of the cholesterol that may be due to insulin lack in diabetic animals, which is consistent with the results of (30).On the other hand, a decrease in hepatic triglyceride lipase activity was found in rabbits with diabetes induced by alloxan (31). The behavior of the enzyme is similar to that of adipose tissue lipoprotein lipase, which is under the insulin hormonal regulation (32). Overproduction of very low-density lipoproteins (VLDL) was found to be the main cause of elevated triglyceride levels in type II diabetes

mellitus (33). The results of the present study indicated that plasma LDH levels in rabbits with diabetes mellitus were significantly higher when compared with the controls. To date, no study examining plasma enzyme in diabetes mellitus has been reported in rabbits. Therefore, we were not able to compare our results with others. Although a number of studies about LDH and GOT levels in diabetes mellitus have been carried out, the results are mostly in conflict. (34), (35) and (36) did not observe

- 1. Noonan, W.T. & Banks, R.O. (2000). Renal Function and Glucose Transport in Male and female Mice with Diet induced Type II- Diabetes Mellitus. P.S.E.B.M. 225: 221-230.
- American Diabetic Association [ADA]. (2004). Elevation in markers of liver Injury & Risk of Type 2 Diabetes. Diabetes, 53(10): 2623-2632.
- Janssen, H. (2002). Diabetes Mellitus: Alterations of Renal Function. Curriculum of Training in Endocrinology, 2:222-227.
- 4. American Diabetic Association [ADA]. (2003). Hyperglycemic Crises in Patients with Diabetes Mellitus. Diabetic Care, 26(1): s109-s117.
- 5. American Diabetic Association [ADA]. (2007). Standards of Medical Care in Diabetes. Diabetes Care, 30:S4-S41.
- Miller,R.; Brindle, E.; Holman,D.; Shofer, J.; Klein, N.; Soules, M. & Oconnor, K.(2004). Comparison of Specific Gravity & Creatinin for Normalizing urinary Reproductive Hormone concentrations. Clinical Chemistry, 50(5):924-932
- 7. Neubauer N, Kulkarni RN. (2006). Molecular approaches to study control of glucose homeostasis. ILAR J 47:199-211.
- 8. Shafrir E, Ziv E, Kalman R.(2006). Nutritionally induced diabetes in

any increases in LDH between diabetes and controls; consequently their results are not in accordance with ours. (37), (38), (39), (40), (41), (42) and (43) indicated that LDH levels were higher in patients with diabetes mellitus than those in normal subjects .Consequently, these reports are in accordance with our findings. On the other hand, (44) and (45) observed decreases in LDH in diabetic subjects. These results are in contradiction with our findings and those of other studies. In addition, (46).

References

desert rodents as models of type 2 diabetes: Acomys cahirinus (spiny mice) and Psammomys obesus (desert gerbil). ILAR J 47:212-224.

- 9. Movassat J, Saulnier C, Serradas P, Portha B. 1997. Impaired development of pancreatic betacell mass is a primary event during the progression to diabetes in the GK rat. Diabetologia 40:916-925.
- A.Breen, G. Mc Redmond, P. Dockery, T. O'Brien, and A. Pandit.(2008). Assessment of wound healing in the alloxan-induced diabetic rabbit ear model," Journal of Investigative Surgery, vol. 21, no. 5, pp. 261– 269.
- Henson MS, O'Brien TD.(2006). Feline models of type 2 diabetes. ILAR. J 47:234-242.
- 12. Black HE, Rosenblum IY & Capen CC. (1980). Chemically
- 13. induced (streptozotocin-alloxan) diabetes mellitus in the dog. American Journal of Pathology 98, 295-305
- 14. Larsen MO, Rolin B.(2004). Use of the Göttingen minipig as a model of diabetes, with special focus on type 1 diabetes research. ILAR J 45: 303-313.
- 15. J.P.Lips,H.w.Jongsma and T.K.A.B. Eskes. (2011). alloxan –induced diabetes mellitus in pregnant sheep

and chronic fetal catheterization .october.45(4).

- Jackson, H. D., Van Dewark, S. D. & Van Vleet, J. F. (1970). Blood chemical and pancreatic histologic alterations in alloxan-diabetic ewes and their fetuses. American Journal of Veterinary Research 31, 1577-1587.
- 17. Kaneko JJ , Rhode EA. , (1964). Diabetes mellitus in a cow, J Am Vet Med Assoc 144:367-373.
- Go uld AC.(1981): Diabetes mellitus in cattle. Vet Rec 109:539.
- Bhimji, S.; Godin, D.; &Mcnein, J. (1985). Biochemical and Functional changes in hearts from rabbits with diabetes. Diabetologia, 28(7):452-457.
- Babu, B.V.; Moorti, R.; Pagazhenthi, S.; Prabhu, K.M. & Murthy, P.S. (1988). Alloxan Recovered rabbits as Animal Model for Screening for Hypoglycemic Activity of Compounds. Indian Journal of Biochemistery & Biophysics, 25: 714-718.
- AL-Aumar, L.W.K. (1994). The effect Of Garlic on Blood Glucose and Cholesterol Level in Normal and Diabetic Rabbits. M.Sc thesis/ College of veterinary medicine/ University of Baghdad. [Arabic].
- AL-Khafajy, F.J.M. (1996). The Effect of Garlic on Serum proteins and its Metabolism in experimentally Diabetic rabbits. M.Sc thesis/ College of veterinary medicine / University of Baghdad. [Arabic].
- 23. AL-Jourani, E.A. (2000). The Effect of the Extract of Zizyphus spinachrista On the Levels of Blood Glucose and Cholesterol in Normal and Experimentally Diabetic Rabbits. M.Sc thesis/College of Veterinary Medicine/ University of Baghdad. [Arabic].

24. Celik, I.; Yegin, E. & Odabasoglu, F. (2002). Effect of Experimental Diabetes Mellitus on Plasma Lactate Dehydrogenase and Glutamic Oxaloacetic Transaminase Level in Rabbits. Turk J Bio. 26:151-154.

No./1

- 25. Kim, D.; Sands, J. & Klein, J. (2002). Changes in renal medullary transport proteins during uncontrolled diabetes mellitus in rats. Am J Physiol Renal Physiol. 285:F303-309.
- 26. Adams, M. (2005). White flour Contains Diabetes- causing Contaminant alloxan. http://www.newstarget.com/008191 .html.
- 27. AL-Egeely, S.A.A. (1996). Effect of Experimental diabetes Mellitus on Severity of Acute Pneumonia Induced by Klebsiela pneumonia in Adult Rabbits. M.Sc. thesis/ College of veterinary medicine/ University of Baghdad. [Arabic].
- 28. AL-Mashhaddany, H.A.J. (1999). The Effect of Eucalyptus camaludensis Leaves extract on serum Glucose and Protein in Induced Diabetic Rabbits Experimentally. M.Sc thesis/ College of Veterinary medicine / University of Baghdad. [Arabic].
- 29. Silva-Sousa, Y.T.C.; Peres, L.C. & Foss, M.C. (2003). Enamel hypoplasia in a litter of rats with alloxan- induced diabetes mellitus. Braz. Dent. J. 14(2):65-69.
- Almdal, T.P., Vilstrup, H., (1988). Strict insulin treatment normalizes the organic nitrogen contents and the capacity of urea–N synthesis in experimental diabetes in rats. Diabetologica 31, 114–118.
- Miroslava, Z.; Katarina, L.; Natasa, R. and Mirjana, D. (2005). Oxidized LDL and other lipids as risk factors for cardiovascular disease in the

patients with metabolic syndrome. J. ugosolv Med. Biohem., 24: 99-106.

- 32. AL-Aumar, L.W.K. (1994). The Effect of Garlic on Blood Glucose and Cholesterol Level in Normal and Diabetic Rabbits. M.Sc thesis/ College of veterinary medicine/ University of Baghdad. [Arabic].
- 33. American Diabetes Association (1977). Diabetes. 26:158-160.
- 34. Snow, V.; Aronson, M; Hornbake, R.; Motturpilson, C. and Weiss, K. (2004). Lipid control in the management of type 2 diabetes mellitus: a clinical practice guideline from the American College of Physicians. Ann. Intern Med., 140: 644-650.
- Oliver, R.C., Tervonen, T., Flynn, D.G., Keenan, K.M. Enzyme.(1993). activity in crevicular fluid in relation to metabolic control of diabetes and other periodontal risk factors. J. Periodontal. 91(5):423-6.
- Tanaka, T., Nanbara, S., Tanaka, T. Koide, H., Hayashi, T.(1988). Aminotransferase activity in liver of diabetic mice. Diabetes Res.Clin. Pract, 19: 71-5.
- Margiavichene, L.E., Gribausckas, P.S., Norkus, A.V., GribauskeneR.A., Masalskene, V.V.(1986). Lipid metabolism and the activity of cardiospecific enzymes in diabetes mellitus. Probl. Endokrinol(Mosk), 32(5): 28-32,.
- Melinkeri, R.R., Sontakke, A.N., Kulkarni, A.M.(1990). Serum zinc and zinc containing enzymes in diabetes mellitus. Indian J. Med. Sci,44(7): 173-7.
- Awaji, Y., Hastimoto, H., Matsui, Y., Kawaguchi, K., Okumura, K.,Ito, T., Stake, T.(1990). Isoenzyme profiles of creatine kinase, lactate dehydrogenase and aspartate

aminotransferase in diabetic heart:comparison with herditary and catecholamine cardiomyopathies. Cardivasc Res, 24(7): 547-54.

40. Nikolaeva, L.F., Azmukhanbetova, A.Z., Titov, V.N., Perelygina, A.A.(1988). Value of determining serum enzyme activity during the exercise test in evaluating the functional condition of patients with ischemic heart disease and concomitant diabetes mellitus. Kardiologiia, 28(11): 85-90.

No./1

- 41. Jones, R.G., Grant, P.G., Brown, D., Stickland, M., Wiles, P.G. A(1988). rise in the plasma activites of hepatic enzymes is not a common consequence of hypoglycaemia. Diabetes Med, 5(3): 253-5.
- 42. Cheshchevik A.B.(1985). Energy metabolism in the kidney cortex of ratswith alloxan diabetes. Vopr. Med. Khim, 31(1): 52-54.
- 43. Zappacosta, B., De Sole, P., Rossi, C., Marra, G., Ghirlanda, G.,Giardina, B.(1995). Lactate dehydrogenase activity of platelets in diabetes mellitus. Eur. J. Clin Chem. Biochem, 33 (8): 487-9.
- 44. Goldberg, D.M., Martin, J.V., Knight, A.H.(1977). Elevation of serum alkaline phosphate activity and related enzymes in diabetes mellitus, Clin. Biochem, 10(1): 8-11, 1977.
- 45. Cai, F.(1989). Studies of enzymes histochemistry and ultrastructure of myocardium in rats with streptozotocin -induced diabetes. Zhonghua Yi Xue Za Zhi, 69(5): 276-8.
- 46. Ryder, E., Campos, G., Morales-Villalobos, L.M. Enzymatic.(1987). changes in polymorphonuclear cells isolated from type II diabetics. Biochem. Med. Metab. Biol, 37(2): 205-12.

دراسة لبعض التغيرات للصفات الكيموحيوية لمرض السكري المستحدث في الحمير

Vol./12

رحمن كاظم محسن	علي حسين فاضل
كلية الطب البيطري /جامعة	كلية الطّب البيطري /جامعة
البصرة	كربلاء
الخلاصة	
	كلية الطب البيطري /جامعة البصرة