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Chaotic Sine-Cosine Optimization Algorithms

Dunia 8. Tahir and Ramzy S. Ali
Department of Electrical Engineering, University of Basrah, Basrah, Iraq

Abstract: A Sine-Cosine Algorithm (SCA) is a new metaheuristic optimization algorithm. Sine-Cosine Algorithm
(SCA) is inspired from the sine and cosine mathematical functions. The standard Sine-Cosine Algorithm (SCA)
has some problems, like any of the other techniques such as slow convergence and falling mnto local solutions.
To overcome these problems, this study suggested four different chaotic Sine-Cosine Algorithms (CSCAs)
methods. The random parameters in the standard Sine-Cosine Algorithm (SCA) are replaced with the chaotic
sequences to improve the performance of the standard algorithm. Five one dimensional various chaotic maps
are implemented. The proposed chaotic Sine-Cosine Algorithms (CSCAs) methods are benchmarked on ten test
benchmark functions. The statistical results showed that all chaotic Sine-Cosine Algorithms (CSCAs) methods
can be outperformed the standard Sine-Cosine Algorithm (SCA) for these benchmark functions and the
intermittency and circle maps are the best maps for boosting the performance of the first and fowrth chaotic
CSCAs. While the Gauss map 1s the most suitable variant for the second and third chaotic CSCAs methods,
respectively. Additionally, the results proved that the fourth proposed algorithm with the circle map
significantly overtook on the other proposed algorithms. The effectiveness of all chactic Sine-Cosine
Algorithms (CSCAs) methods are proved by comparing their results with the well-known metaheuristic methods
such as the standard Sme-Cosme Algorithm (SCA), Genetic Algonithm (GA), Particle Swarm Optimization (PSO)
and Differential Evolution (DE).

Key words: Chaos, sine-cosine optimization algorithm, chaotic sine-cosine optimization algorithms, differential,

benchmarked, evelutional

INTRODUCTION

Through the amazing laws of nature, scholars have
optimization
algorithms to solve complex problems in different
scientific fields and technological such as mathematics,
engeering, medicine and economics which were difficult
to solve by the classical optimization methods. The
reason behind the discovery of dozens of metaheuristic
optimization algorithms is “No-Free Lunch Theorem”.
(Wolpert and Macready, 1997; Yang, 2014). This theorem
confirms that there 1s no absolute metaheuristic algorithm
for solving all optimization problems. This prompted
scholars to discover and develop different algorithms
such as Genetic Algorithm (GA) (Holland, 1975), Ant
Colony Algorithm (ACO) (Dorigo et al. , 1996), Particle
Swarm Optimization (PSO) (Kennedy and Eberhart,
1995), Differential Evolution (DE) (Storn and Price, 1997),
Harmony Search (HS) (Greem et al., 2001), Biogeography-
Based optimization(BBO) (Sumon, 2008), Firefly Algorithm
(FA) (Yang, 2014), Gravitation Search Algorithm (GSA)
(Rashedi et a., 2009), Cuckoo Search (CS) (Yang and Deb,
2009), Bat Algorithm (BA) (Yang, 2010), Teaching
Learmng-Based Optimization (TLBO) (Rao ef af., 2011),

been mspired various metaheuristic

Krnll Herd (KH) (Gandomi and Alavi, 2012), Water Cycle
Algorithm (WCA) (HEskandar et «al, 2012), Flower
Pollination Algorithm (FPA ) (Ang, 2012), Grey Wolf
Optimizer (GWO) (Mirjalili ef al., 2014), Social Spider
Algorithm (SSA) (Zheng, 2015), Dragonfly Algorithm
(DA) (Migalili, 2015), Water Wave Optimization
(WWQ) (Zheng, 2015), Multi-Verse Optimizer (MOV)
(Mirjalili et al, 2016), Sine-Cosine Algonthm (SCA)
(Mirjalili, 2016), Whale Optimization Algorithm (WOA)
(Mirjalili and Lewis, 201 6), Crow Search Algorithm (CSA)
(Askarzadeh, 2016), Jaya Algorithm (JA) (Rao, 2016),
Human Mental Search (HMS) (Seyed and Hossem,
2017), Grasshopper Optimization Algorithm (GOA)
(Saremi et al., 2017), Kidney-Inspired Algorithm (KIA)
(Jaaddi and Abdullah, 2017), Most Valuable Player
Algorithm (MVPA) (Bouchekara, 2017) and Salp Swarm
Algonithm (SSA) (Migalili ef al, 2017).

A Sine-Cosine Algorithm (SCA) is a new robust and
simple metaheuristic strategy proposed by Mirjalili (201 6).
The main 1dea of the SCA algorithm 1s inspired from the
mathematical form of the sine and cosmne functions.
Hitherto, SCA algorithm has been used in various kinds
of optimization problems to resolve diverse optimization
problems like feature selections (Sindhu et af., 2017,
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Hafez et al., 2016), image processing (Elattah et al.,
2016), power system economics, shell and tube
evaporator design problem (Turgut, 2017), energy
applications (Kumar et al, 2017) and power system
security (Mahdad and Srairi, 2018).

In recent times, chaos theory has produced a new
branch of the metaheuristic optimization algorithms 1s
called Chaotic Optimization Algorithm (COA). COA
represents a promising method for solving complex
engineering problems. The chaotic algorithms have
advantages of short implementation tume, easy to
perform and high reliability of absconding from the
local optima. Chaotic optimization algorithm employs
chaotic variables rather than random variables. Chaos
has three important dynamic properties: ergodicity,
regularity and Semi-stochastic property (Mousavirad and
Ebrahimpour-Komleh, 2017). Chaotic maps are able to
effectively improve the performance of metaheuristic
algorithms by fine-tuning parameters of these
algorithms.

Saremi et al. (2014) employed a chaos-based
technique for Biogeography-based optimization (Simon,
2008) to resolve unconstrained problems. Several chaotic
algorithms are developed depending on replacing the
selection, emigration and mutation probabilities with the
maps. The offered that the
employment of Gauss map instead of the selection,
emigration and/or mutation probabilities are enhanced the
adjustment of the BBO algorithm.

Bingol and Alatas (2016) suggested six various
Chaotic League Championship Algorithms (CLCAs). The
results showed that the Chaotic League Championship
Algorithms (CLCAs) increased the convergence speed
and prevented of falling mto the local solution.

Heidari et al. (2017) used different chactic variants to
boost the performance of Water cycle Algorithm (WCA)
(Eskander et al., 2012). Three different Chaotic Water
Cycle Algorithms (CWCAs) are suggested CWCA 1,
CWCA 2 and 3 to solve unconstrained and constrained
problems. The comparison of the success rate results
showed that the CWCA 1 with Tterative map, CWCA 2
and CWCA 3 with sinusocidal map outperformed the basic
Water Cycle Algorithm (WCA).

Miralili and Gandomi (2017) embedded ten chaotic
maps into the Gravitational Search Algorithm (GSA). They
proved that the Chaotic Gravitational Search Algorithm
(CGSA) 1s able to outperform the basic version of
Gravitational Search Algorithm (GSA) and other
well-known algorithms.

Seyed et al (2017) and Ewees et al. (2017) proposed
feature selection techniques based on the Chaotic Crow
Search Algorithm (CCSA) and Chaotic Multi-Verse

chaotic simulations
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Optimizer (CMVO), respectively. They revealed from the
experimental results that the Chaotic Crow Search
Algorithm (CCSA) and Chaotic Multi-Verse Optimizer
(CMVO) are able to enhance the crow search algorithm
and multi-verse optimizer in the terms of classification
performance, mumber of selected features, convergence
speed and stability quality. Tharwat and Hassamen (2017)
proposed an efficient classification strategy (CALO-SVM)
based on a Chactic Ant Lion Algorithm (CALO). The
simulations proved that (CALO-SVM) algorithm is
outperformed PSO, GA and SEOCA.

Up to now, chaotic variants have been embedded
with different metaheuristic algorithms such as
chaos-genetic algorithm (Liao and Tsao, 2006), chaos
enhanced accelerated particle swarm  algorithm
(Gandomi ef al, 2013a, b), chaotic harmony search
algorithm (Yi et al, 2016), chaotic Cuckoo algorithm
(Wang and Zhong, 2015) and (Feng et al., 2017), chactic
Bean Optimization Algorithm (CBOA) (Zhang and Feng,
2018), chaotic 1mperialist competitive algorithm
(Talathari et al, 2012), chaotic fire algorithm
(Gandomi et al, 2013a, b), chaotic bat optimization
(Gandomi and Yang, 2014), chaotic bat swarm
optimization (Jordeln, 2015a, b), chaotic Krill Herd
algorithm (Wang et al., 2014), chaotic fruit fly algorithm
(Mitic et al., 2015), chaoctic seeker algorithm (Jordehi,
2015), chaotic teaching-learning based optimization
(He et al., 2016), chaotic symbiotic organisms algorithm
(Saha and Mukhherjee, 2018) and chaotic butterfly
algorithm (Arora and Singh, 2017).

In this study, SCA has been embedded with different
chaos maps. These chaotic maps have been employed
instead of random parameters to increase the performance
of the standard SCA m terms of convergence rate and
quality solutions. Four chaotic sine cosine algorithm
(CSCAs) have been proposed m this study. The
performance of these algorithms is tested on several
unimodal and multimodal benchmark functions. The initial
value 0.7 has been used as the default value. Fmally, all
proposed chaotic (CSCAs) methods have been compared
with the standard SCA and other well-lcnown optimization
algorithms.

MATERIALS AND METHODS
Sine-cosine algorithm: Sine-Cosine Algorithm (SCA)

which was first proposed by Mirjalili (2016a, b) 18 inspired
from the sine and cosine mathematical functions. Like

other metaheuristic optimization algorithms, the
optimization process of the SCA contains two
mechamsms: exploitation  versus exploration,

intensification (local search) examines about the existent
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preferable solutions and takes the preferable one while
diversification (global search) permits for the
metaheuristic algorithms to investigate more efficiently in
the search space (Yang, 2014). To accentuate these two
phases, two position updating equations have been
modeled. Equation 1 and 2 are shown as:

Y, = Y, +A*sin(B)*|C*Pos,-Y,| (D

1+1
Yk

Y, +A*cos(B)*|C*Pos, -, |
Where:
v = The position of the current solution in
Kith dimension and Ith iteration
A, Band C = The random numbers
Pos The position of the target point in kth
dimension

These two equations can be rearranged as follows:

Y, + A*sin(B)*

|C* Pos, -Y| D<0.5
T =
Y, +A*cos(B)*
|C*Pos, -Y,| D>05

where, D 13 a random number implemented by the
standard umiform distribution. Sine-Cosme Algorithm
(SCA) contains four parameters.

A is decided the dimension of the movement of the
next solution which might be either in the space between
the solution and target or outside it. The range of sine and
cosine functions 18 changing dynamically to achieve
balance between the diversification and intensification
properties of the Sine Cosine Optimization (SCA) by the
tfollowing Eq. 4:

A =z-itera * [ #} (4)
Max itera
Where:
itera = The current iteration
Max-itera = The maximum number of iterations
z = A constant term

B is decided the amplitude of the movement in the
search space

C 1s decided the effective of the target point on the
course of iterations which represents a random
welght

D s used to control the balance between
diversification and intensification phases by
switching between sine and cosine functions

To exploit the solution space, the repeated pattern of
the sine and cosine functions make a solution to turn
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| Stochastically initialize a set of solutions (search agents) |

|
h 4

| Caloulate sach solution by the fitness fimetion |

v

|Regenerﬁte the location of the best solution gained up to now (pos) |

v

| Regenerate the parameters A, B, C and It |

v

| Regenerate the solutions (scarch agents) using Eq. 3 |

No

Record the best solution as the global optimum

Fig. 1: Flowchart of Sine Cosme Algorithm (SCA)

around another solution. A more detailed can be found by
Mirjalili (2016a, b). The flowchart of a representation
Sine-Cosine Algorithm (SCA) s shown in Fig. 1.

Chaotic sine cosine algorithms: In this section, different
chaotic maps have been presented and four various
chaotic Sine Cosine Algorithm (CSCAs) methods have
been proposed. Chactic maps have been used instead of
random parameters to boost the performance of the
standard Sine Cosine Algorithm (SCA).

Chaotic maps: Chaos is a theory of expecting the
unexpected things. Tt deals with the non-linear systems
that are impossible to control or predict its behavior such
as the states of brain, weather, turbulence and so on. The
powerful mechamsms of chaos are ergodicity,
randomness, regularity and sensitivity to the initial
conditions. These mechanisms are transformed to
different equations which are named chaotic maps. The
optimization algorithms that are used these chaotic
sequences instead of the random variables which are
called Chaotic Optimization Algorithm (COA). The main
concessions for chaotic optimization algorithms are high
convergence rate and their ability for avoiding the local
optima. These concessions have been made it suitable for
improving the performance of algorithms (Seyed ef al.,
2017). In this study, 5 different one dimensional, non-
invertible sequences are used to constitute four chaotic
sine cosine algorithms. The features of chaotic sequences
are described in Table 1.



Int. J. Soft Comput., 13 (3): 108-122, 2018

Table 1: Chactic sequences

Symbol Name Chaotic sequence Range
CM1 Chebyshe.v (Saleh and Haeri, 2007) W, :Cos(jmsrl (W,- ) (-1,1)
CM2 Circle (Hilborn et ., 2009) al . al =0.5and a2 =10.2(0,1)
Wiy =mod wj+a2- Z—Jsm(ZIrwj),l
b
CM3 Gauss (He et af., 2001) 1w, =0 0,1)
Wi Tl otherwise
mod(wj,l)
CM4 Intermittency (Forg et ¢f., 2017) ehw, + dwl 0wy e n=2and £=0.490,1)
= _le-c
VTl cew <l d= o
mod(w],l) !
CM35 Tterative (Zhenyu et «f.,2006; Ott, 2002) ar a=07(-1,1)
Wiy =sin| —
Wi
Chaotic map utilization in SCA: The original SCA has RESULTS AND DISCUSSION

three random parameters: B-D. This subsection 13 used
the chaotic maps m four various methods to produce
different variants of the chaotic Sine Cosine Algorithms
(CSCAs) methods. Chaotic (CSCAs) methods with chaotic
variants can be categorized and clarified briefly as follows:

CSCA-1: B parameter of Eq. 1-3 18 exchanged with the
chaotic map

CSCA-2: C parameter of Eq. 1-3 18 exchanged with the
chaotic map

CSCA-3: D parameter of Eq. 3 1s exchanged with the
chaotic map

CSCA-4: B, C and D parameters of Eq. 1-3 are
exchanged with the chaotic maps

The remarks below shown how the chaotic maps are
theoretically efficient, either mdividual manner or
collectively:

The chaotic maps for B or C random parameter help
the chaotic (CSCAs) methods to select the direction
of movement chaotically which improves exploration
phase

The chaotic maps for D random parameter makes the
chaotic (CSCAs) methods to exploit the search space
better than the standard SCA

The chaotic maps for B-D random parameters provide
various 1ntensification and diversification patterns
for the chaotic (CSCAs) methods during the
optinization problems

Because of the messy motions that are provided by
the mess patterns, the proposed chaotic (CSCAs)
methods can confirm either intensification or
diversification phases

Different chaotic operators assist the chaotic
(CSCAs) methods to avoid the local optima

In status of diversifying a desired area (s) of solution
space, the chaotic (CSCAs) methods are improved
the exploitation phase m order to diversify the better
solutions
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In this study, ten benchmark functions are used to
appraise the performance of the proposed chaotic

(CSCAs) strategies (Jamil and Yang, 2013). Ten
standard  benchmark  functions are wused at 30
dimensions. These functions are classified mto two

categories: the first five functions are unimodal while the
other five functions are multimodal. The first category 1s
used for benchmarking intensification while the second
kind 15 used to evaluate exploration.

Table 2 tabulates the benchmark functions are used
in this study where LB and UB show upper and lower
bounds of these functions. The global minimum value is
zero for all functions. For all methods used in this study,
the results are found over 30 independent runs. The
population size and maximum iteration are assigned to 50
and 1000, respectively.

Firstly, various statistical criteria are used such as
success rate and average rank to evaluate the
performance of the proposed algorithms. The initial value
0.7 has been used as the default value for the chaotic
CSCAs methods.

The best, worst, mean, standard deviation and
average time of execution are used to venty the
performance of the proposed chaotic CSCAs methods.
Best represents the minimum result obtained of the total
runs. While the worst shows the maximum result obtained
of the total runs. Moreover, the proposed chaotic CSCAs
are compared with other well-known algorithms. The
Wilcoxon’s rank sum test at 5% significance level 1s
employed to show significance between two algorithms.
Finally, the convergence graphs which are represented
the convergence curves of each algorithm for the best
result of the benchmark functions within the maximum
number of iterations.

Evaluating the performance of the chaotic CSCAs
methods according to the criteria of success rate and
average rank: According to Mitic et al. (2015), success
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Table 2: Benchmark functions

FNNo.  Name LB Up Equation
1 Brown -1 4 b
F(x)=2[(x Jact H+(xy )7 +1]
i=1
2 Powell -4 5 A
F(X) = 2[()(41,3"'10){41,2 )2 +5 (X41,1'X41 )2 +(X4|,2 2%y )+10(X4173 Ky )4}
=1
3 Schwefell 2.22 -10 10 n n
r(x)= S/ T
4 Sphere 512 512 &,
5 Quartic without noise ~ -1.28 1.28 F(x)= thl
6 Ackley -32 32 1
F(x)= -20¢™* nz X e— 2 cos(27x; ) +20+e
7 Griewank -600 600
F X = — X cOos
09 s Tleof )
8 Rastrigin -5.12 5.12
F(x) = IOHE[X?-IOCOS(QT[XI)]
i=1
9 Wavy =T b 1
x) = 1-— ¥ cos(kx, Je
n 1=1
where k= 10. The number of local minima is kn and (k+1)n for odd and even k, respectively
10 Csendes -1 1

n
— ]
-2
1=1

2

+sin—

3

X

rate criterion can apply for evaluating the performance of
algorithms. The success rate variant SR is defned as
(Gandomi et al., 2013a, b):

SR{E}GOO
Te

The number of executions that can discover the
optimal solution

“4)

Where:
(Se)

(Te) The total number of executions

The
calculated as follows:

criteria for a successful rn can  be

| <(Up,-Lo,)xB (3)
Where:
(Eebty = The global best value by the new
algorithms
(X*) = The best solution
(Upb) and (T.ob) = The upper and lower bounds,
respectively

p = The value 10-14

The success rates of the standard SCA and all
proposed algorithms on ten benchmark functions are
mtroduced m Table 3-6. For accurate comparisons, the
total success rates of the chaotic (CSCAs) methods are
i Table 7 which s

expressed represented  the
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summation of total success rates at p = 10-14. From
Table 7, some important points need to be clarified as
follows:

The performance of CSCA-4 is significantly more
advanced to the other chaotic techmques. According to
the results of the success rates; Circle, Intermittency and
Iterative maps are appropriate maps for the CSCA-4
method. For the CSCA-2, Chebyshev, Circle, Gauss and
Tterative maps are the most suitable map to boost the
efficiency of the standard SCA.

Based on the success rate results, there are more
than one chaotic maps are the most efficacious maps for
CSCA-1 and CSCA-3. For CSCA-1 the most appropriate
maps are Circle, Intermittency and Iterative maps,
respectively. While CSCA-3 the best maps are chebyshev,
circle, gauss, intermittency and iterative, maps,
respectively.

Some of chaotic maps have failed for improving
the performance of the chaotic (CSCAs) methods

such as Gauss and Intermittency maps at the
CSCA-1  and Gauss map for the CSCA-4,
respectively.

According to the success rate tests, CSCA-4 method
represented the best algorithm by owming it the highest
success rate but there are more than one of the chaotic
maps that have the same value. To override this problem,
average rarks test 1s used as a second test to distinguish
the best chaotic map for each proposed chaotic (CSCAs)
methods.
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Table 3: Success rate of CSCA-1 with different chaotic maps for benchmark functions with § = 10-4

Chaatic map name N1 FN2 FN3 FM4 FN5 FNé FN7 FN8 FN9 FN10 Tatal
Chebyshev 100 100 100 100 100 86 100 100 100 100 986
Circle 100 100 100 100 100 100 100 100 100 100 1000
Gauss/mouse 0 0 0 0 0 0 0 0 0 0 0
Tntermittency 100 100 100 100 100 100 100 100 100 100 1000
Tterative 100 100 100 100 100 100 100 100 100 100 1000
Standard SCA 0 0 0 0 0 0 0 0 0 16 16
Table 4: Success rate of CSCA-2 with different chaotic maps for benchmark functions with 3 =10'¢

Chaotic map name FN1 FN2 FN3 N4 FNS FN6 FN7 FN8 FNO FN10 Total
Chebyshev 100 100 100 100 100 100 100 100 100 100 1000
Clircle 100 100 100 100 100 100 100 100 100 100 1000
Gauss/mouse 100 100 100 100 100 100 100 100 100 100 1000
Intermittency 100 100 100 100 100 100 66 100 100 100 966
Tterative 100 100 100 100 100 100 100 100 100 100 1000
Standard SCA 0 0 0 0 0 0 0 0 0 16 16
Table 5: Success rate of CSCA-III with different chaotic maps for benchmark functions with =104

Chaotic map name FN1 FN2 FN3 N4 FN5 FN6 FN7 FN8 FN9 FN10 Total
Chebyshev 100 100 100 100 100 100 100 100 100 100 1000
Clircle 100 100 100 100 100 100 100 100 100 100 1000
Gauss/mouse 100 100 100 100 100 100 100 100 100 100 1000
Intermittency 100 100 100 100 100 100 100 100 100 100 1000
Iterative 100 100 100 100 100 100 100 100 100 100 1000
Standard SCA 0 0 0 0 0 0 0 0 0 16 16
Table 6: Success rate of CSCA-IV with different chaotic maps for benchmark functions with p =104

Chaotic map name FN1 FN2 FN3 N4 FN5 FN6 FN7 FN8 FN9 FN10 Total
Chebyshev 100 100 100 100 100 96 100 93 80 100 869
Clircle 100 100 100 100 100 100 100 100 100 100 1000
Gauss/mouse 0 0 0 0 0 0 0 0 0 0 0
Intermittency 100 100 100 100 100 100 100 100 100 100 1000
Iterative 100 100 100 100 100 100 100 100 100 100 1000
Standard SCA 0 0 0 0 0 0 0 0 0 16 16

Table 7: Comparison of the total success rates for all benchmark finctions

Chaotic map name C8CA-T C8CAI CSCA-III  CSCA-TIV
Chebyshev 936 1000* 1000* 869
Circle 1000¢ 1000* 1000* 1000
Gauss/mouse 0 1000 1000 0
Intermittency 1000¢ 966 1000+ 1000
Iterative 1000¢ 1000% 1000* 1000

The best maps (total success rate of the original algorithm is 16)

Table 8-11 show the average ranks of the chaotic
CSCAs strategies for ten benchmark functions. The best
(min) results are indicated n the bold type. From these
tables, the following notes have been concluded:

Intermittency map represents the best chaotic map
for the CSCA-1 algorithm

For the CSCA-2 and A-3, the most efficient map 1s
the Gauss chaotic map

Finally, Circle map appears as the most efficacious
map for the CSCA-4 algorithm

According to assessments of the success rates and
average ranks, circle map is selected as the best chaotic
variant and the CSCA-4 algorithm 1s the best chaotic SCA

algorithm. Chactic SCA-4 with circle map can detect the
high-quality solutions and avoid falling into local
solutions.

Generally, the experiment results of the chaotic
on ten benchmark functions show that the
chaotic maps can be arranged for each of the four

variants

proposed algorithms from the best (min) to the worst
(max) as follows:

» For CSCA-1: Intermittency<Circle<Iterative
<Chebyshev<Gauss

» For CSCA-2: Gauss<Circle<Iterative<Chebyshev<
Intermittency

s For CSCA-3: Gauss<Intermittency<Circle<
Chebyshev<Iterative

¢ For CSCA-4  Circle<Intermittency<Tterative<
Chebyshev<Gauss

It can deduce from the above results that the
Intermittency map represents the best (min) results

whereas the Gauss map provides the worst (max) results
for the CSCA-I method.
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Table 8: Average rank of CSCA-T and SCA algorithms on the test functions

Benchmark functions
Algorithms FN1 N2 FN3 FN4 FN3 N6 N7 FN8 FNG FN10 Tatal average rank
SCA 5 5 5 5 5 5 5.0 5.0 5.0 5 5.00
CSCA-I-CM1 4 4 4 4 4 4 2.5 2.5 2.5 4 3.55
CSCA-I-CM2 2 1 2 1 2 3 2.5 2.5 2.5 1 1.95
CSCA-I-CM3 3] 6 6 4] 3] 6 6.0 6.0 6.0 6 6.00
CSCA-I-CM4 1 2 1 2 1 1 2.5 2.5 2.5 2 1.75
CSCA-I-CMS5 3 3 3 3 3 2 2.5 2.5 2.5 3 2.75
Table 9: Average rank of CSCA-II and SCA algorithms on the test functions

BRenchmark functions
Algorithms FN1 FN2 FN3 FN4 FNS FNé6 FN7 FNS FN9 FN10 Total average rank
SCA 6 [ 6 6 6 [ [ 6 6 [ 6.0
CSCA-IT-CM1 4 4 4 4 4 4 3 3 3 4 37
CSCA-II-CM2 2 2 2 2 2 2 3 3 3 2 2.3
CSCA-II-CM3 1 1 1 1 1 1 3 3 3 1 1.6
CSCA-II-CM4 5 5 5 5 5 5 3 3 3 5 4.4
CSCA-II-CMS5 3 3 3 3 3 3 3 3 3 3 3.0
Table 10: Average rank of CSCA-III and SCA algorithms on the test functions

Benchmark finctions
Algorithms FNI1 FN2 FN3 FN4 FNS FNG FN7 FN8 FN9 FN10 Total average rank
SCA 3] 3] 6 3] 3] 6.0 6 3] 3] 6 6.00
CSCA-II-CM1 4 2 4 2 5 1.5 3 3 3 5 3.25
CSCA-II-CM2 2 1 3 5 4 4.0 3 3 3 2 3.00
CSCA-II-CM3 5 5 1 1 3 1.5 3 3 3 1 2.65
CSCA-II-CM4 1 4 2 3 1 4.0 3 3 3 3 2.70
CSCA-TI-CMS 3 3 5 4 2 4.0 3 3 3 4 3.40
Table 11: Average rank of CSCA-TV and SCA algorithms on the test functions

Benchmark functions
Algorithms N FN2 N3 FN4 FN3 N6 N7 FNS e FN10 Total average rank
SCA 5 5 5 5 5 5 5.0 5 5 5.0 5.000
CSCA-TV-CM1 4 4 4 4 4 4 2.5 4 4 2.5 3.700
CSCA-IV-CM2 1 1 1 1 1 2 2.5 2 2 2.5 1.600
CSCA-IV-CM3 3] 6 6 3] 3] 3] 6.0 6 3] 6.0 6.000
CSCA-TV-CM4 2 3 2 2 3 2 2.5 2 2 2.5 2.300
CSCA-IV-CMS 3 2 3 3 2 2 2.5 2 2 2.5 2413

For the CSCA-2 and A-3 methods, the best results
can be calculated by the Gauss map while the worst
results are provided using the Intermittency and Iterative
maps, respectively.

The Circle map can enhance the performance of the
CSCA-4 method by finding the mmimum solutions
whereas the Gauss map lead to obtain the worst solutions.

Evaluating the performance of chaotic CSCAs strategies
versus other algorithms: In this subsection, the
performance of chaos-based CSCAs methods are
compared with the conventional SCA and three
well-known metaheuristic optumization algorithms at
D = 30. These algorithms are Genetic Algorithm (GA),
Particle Swarm Optimization (PSO) algonthm and
Differential Evolution (DE) algorithm. Table 12 shows the
values of the essential parameters of these algorithms. All
algorithms are run with 30 independent runs, population
size 50 and maximum number of iterations 1000,

Table 12: Parameters of selecting algorithms
Algorithms
GA

Parameters

Selection: Roulette-wheel

Mutation: Uniform (p = 0.3)

Crossover: Single point (p =0.7)

Type: Real coded

Cognitive constant (¢1): 2

Social constant (¢2): 2

Tnertial weight (w): Linearly decreasing (0.9-0.3)
Crossover constant (CR): 0.9

Weight Factor (F): 0.8

PSO

DE

In Table 13, the statistical results obtained by the
proposed chaotic (CSCAs) methods, the conventional
SCA, GA, PSO and DE are submitted. Table 13 proves
that, on all statistical results and on ten benchmark
functions, the CSCA-4 performs better than the other
algorithms when searching for optima solutions. The
CSCA-2, CSCSA-1 and CSCA-3 are the second, third and
fourth most reliability algorithms, respectively. PSO, DE,
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Table 13: Comparison results of C8CA-1, CSCA-2, CSCA-3, CRCA-4, 8CA, GA, PRO and DE on ten selected benchmark fimctions at D = 30

FN No.
Results

C8CA-1

C8CA-2

C8CA-3

C8CA-4

SCA

GA

PO

DE

FN1
Best
Worst
Mean
Std.
T(s)
SR10M
Rank
FN2
Best
Worst
Mean
Std.
T(s)
SR10M
Rank
FN3
Best
Worst
Mean
Std.
T(s)
SR10%
Rank
FN4
Best
Worst
Mean
Std.
T(s)
SR10M
Rank
Best
FNS
Worst
Mean
Std.
Tis)
SR10M
Rank 3
FNG6
Best
Worst
Mean
Std.
T(s)
SR10%
Rank
FN7
Best
Worst
Mean
Std.
T(s)
SR10M
Rank
FN8
Best
Worst
Mean
Std.
Tis)
SR10M
Rank
FN9
Best

2.5902938e-61
1.5581116e-53
1.4042941e-54
3.963793%¢-54
1.27

100

3

1.5313952e-57
2.7685052¢-44
2.0408477e-45
6.52628%0e-45
1.27

100

3

1.3880638e-33
1.0419598e-29
9.2529464¢-31
2.0933106e-30
1.33

100

3

1.1463670e-59
5.0657515e-52
3.4131352e-53
1.0734473e-52
1.03

100

3
5.8602328e-114

1.1383977e-98
3.9297586e-100
2.0767836e-99
1.5

100

2

8.8817842e-16
4.4408921e-15
2.4276877e-15
1.7905923e-15
1.87

100

1.5559960e-83
2.6848115e-68
1.4125046e-69
5.3491452e-69
117

100

2

6.7085600e-76
3.2233276e-60
3.1245433e-67
8.3876767e-67
147

100

2

1.2314875e-41
5.6134617e-35
2.0966919¢-306
1.0254148e-35
137

100

2

5.1339684e-86
6.4160424e-67
3.3806838e-68
1.2726310e-67
143

100

2
8.6750265e-150

3.9740056e-129
2.3773101e-130
9.1103372e-130
2.07

100

4

8.8817842e-16
8.8817842¢-16
8.8817842¢-16
0

2.27

100

2.3671047e-39
8.0932456e-32
4.6561048e-33
1.5095228e-32
1.47

100

4

7.8505977e-306
4.4102110e-26
1.5981567e-27
8.0504404e-27
12

100

4

3.6313750e-22
8.3000188¢-18
5.3815235e-19
1.5308495¢-18
1.03

100

4

5.5588002¢-39
4.7824206e-32
5.5406137¢-33
1.2466693e-32
1.23

100

4
2.8291468e-70

6.5569495e-57
6.4682774e-58
1.5859222e-57
1.7

100

1

8.8817842e-16
4.4408921e-15
4.3224683e-15
6.486338le-16
177

100

(=Rl o i =

21
100

1.1157635e-241
7.963487%¢-241
5.0033067e-241
0

1.23

100

1

3.1171914e-245
1.0031262e-237
6.9716508e-239
0

117

100

1

1.3391716e-121
3.1760650e-119
9.1324938e-120
84274771e-120
11

100

1

1.8751241e-246
2.3160655e-240
2.1214015e-241
0

0.93

100

1

0

8.8817842e-16
8.8817842¢-16
8.8817842¢-16
0

2.03

100

2.2707575e-12
4.9400774e-05
2.5846085¢-06
9.2651029%¢-06
3.03

0

7

1.0804986e-03

1.9624383e+00
8.0586496e-02

3.5671987e-01

1.57

0

7

1.7914365e-08
8.1554783e-05
9.305896%¢-06
1.7976779e-05
21

0

7

1.1650222e-09
2.4377576e-05
2.6283098e-06
5.1339913e-06
1.77

0

y
1.3621276e-13

3.4914192¢-06
2.8637451e-07
6.6117212e-07
32

0

8

1.3621276e-13
3.4914192¢-06
2.8637451e-07
6.6117212e-07
32

0

5

1.0706630e-02

2.6324016e+00
9.9875281e-01

4.7398873e-01

3.83

0

8

3.8138069¢-08
9.7205937et+01
1.2950248e+01
2.1886133et+01
1.93

0

5

8.6605167e-12

7.068061 6e-28
1.0927036e+01
5.1905899¢-01
2.0088372e+00
6.1

33

8

2.0393697e-02
1.0139682e+03
3.8265654e+01
1.8485443e+02
4.03

0

8

5.161561 5e-19
9.5737642e-02
4.2154391e-03
1.8172208e-02
4.6

83

8

1.0948814e-27
3.6067250e-02
1.2102956e-03
6.5835661e-03
5.37

56

8
1.1141136e-15

5.9596469¢-01
4.4650268e-02
1.1777735e-01
4.77

10

6

5.3693005e-01
1.3788327e+00
9.2085553e-01
2.2535584e-01
6.03

0

7

0
4.5465133e+00
2.3771373e-01
8.5534608e-01
53
33

7

1.9619374e+01
7.4216656e+01
4.3457430e+01
1.5430151et01
5.23

0

7

1.4906787¢e-01

2.2935733e-13
3.0931716e-10
2.1127842e-11
5.6385824e-11
7.7

0

6

6.2649122e-04
5.4225157e-03
2.9428188e-03
1.0576308e-03
9.8

0

6

1.2657242e-07
7.5729690e-06
1.9943767e-06
2.0573994e-06
6.9

0

5

7.4548629e-13
9.3344414e-11
1.9335790e-11
2.5945881e-11
8.53

0

6
3.5586286e-19

3.0351699¢-16
4.3273148e-17
7.0359905e-17
7.67

100

5

4.5587695e-01
9.9316086e-01
6.3325208e-01
1.2843678e-01
8.53

0

6

7.6143181e-10
6.3860472¢-02
1.3369344e-02
1.4764550e-02
7.93

0

6

2.2884028e+01
6.9647023e+01
4.0959093e+01
9.9395539¢+00
8.03

0

6

1.3708617e-01

3.1815605e-15
6.3248615e-13
5.3346718e-14
1.1256724e-13
6.4

20

5

5.1982650e-04
1.8715089¢-03
1.1520618e-03
3.3387212e-04
5.53

0

5

6.6683604e-07
7.0572790e-06
2.4489242¢-06
1.6108759¢-06
6.1

0

6

1.0907517e-14
4.7585369¢-13
7.59925%6e-14
1.0760913e-13
833

0

5
1.2057814e-2411

8.5237312e-20
4.7465667e-21
1.6365150e-20
7.4
100

1.0885262e+00
1.6453036e+00
1.3897882e+00
1.2835836e-01
6.47

0

8

6.4122041e-12
1.7241032e-02
2.13496066e-03
5.0412958e-03
p
0
5

1.1705960e+02
2.0812405e+02
1.6703773e+02
2.3666387et+01
7.93

0

8

5.3940303¢-01
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Table 13: Continue

FN No.

Results  CSCA-1 C8CA-2 C8CA-3 C8CA-4 SCA GA PSO DE

Worst 0 0 0 0 1.3276471e-01  3.2859637e-01  4.6430734e-01 6.9537607e-01
Mean 0 0 0 0 1.1991135e-02  2.4854778e-01  2.8086648e-01 6.5108134e-01
Std. 0 0 0 0 2.8836541e-02  3.7059400e-02  6.3532021e-02 3.5955894e-02
T(s) 1.47 1.87 1.67 1.57 2.63 5.97 9.13 837

SR10 100 100 100 100 0 0 0 0

Rank 1 1 1 1 5 6 7 8

FN10

Best 1.1490905e-178 6.7837347e-235 3.8714686e-103 0 3.4337643e-21  3.5330725e-08  6.7525375e-23  6.7487857e-30
Worst  8.2376512e-145 6.7837347e-235 1.8764117e-86 0 8.6321310e-04  1.0328578e-02  2.1795243e-17 1.1410678e-07
Mean 4.7754237e-146 6.7837347e-235 81709735e-88 0 3.3554301e-05 5.6662283e-04  1.2982219e-18 4.0873754e-09
Std. 1.8386651e-145 6.7837347e-235 3.449185%-87 0 1.5885517e-04  2.0582404e-03  4.3481726e-18  2.0809814e-08
T(s) 2.4 33 2.67 2.9 2.5 6.63 9.73 9.07

SR10™ 100 100 100 100 16 0 100 86

Rank 3 2 4 1 7 8 5 6

Average Rank 2.4 1.6 31 1 6.5 7.5 59 a1
Total Rank 3 2 4 1 7 8 5 6

Table 14:  p-values of wilcoxon rank sum test for C8CA-1, SCA, GA, PRO
and DE on ten selected benchmark finctions at D = 30 and 30

nns
CSCA-L CSCA-L CSCA-L CSCA-L

FN No. vs. SCA vs. GA vs. PSO vs. DE

1 3.019-11 3.019-11 3.019-11 3.019e-11
2 3.019-11 3.019-11 3.019-11 3.019e-11
3 3.019-11 3.019-11 3.019-11 3.019e-11
4 3.019-11 3.019-11 3.019-1 3.019e-11
5 3.019-11 3.019-11 3.019-11 3.019e-11
6 1.40%e-11 1.40%e-11 1.40%e-11 1.405e-11
7 1.211e-12 1.701e-08 1.211e-12 1.211e-12
8 1.211e-12 1.211e-12 1.211e-12 1.211e-12
9 1.211e-12 1.211e-12 1.211e-12 1.211e-12
10 3.019%:-11 3.019%:-11 3.019%:-11 3.018e-11

Table 15: p-values of wilcoxon rank sum test for CSCA-IIL, SCA, GA, PSO
and DE on ten selected benchmark functions at D = 30 and 30

runs
CRCA-T CRCA-TT CRCA-T CRCA-TT

FN No. vs. SCA ve. GA vs. PSO vs. DE

1 3.01%e-11 3.019e-11 3.01%e-11 3.019e-11
2 3.019-11 3.019e-11 3.019-11 3.019e-11
3 3.019%-11 3.019e-11 3.019%-11 3.019e-11
4 3.019%-11 3.019e-11 3.019%-11 3.019e-11
5 3.01%e-11 3.019e-11 3.01%e-11 3.019e-11
6 1.211e-12 1.211e-12 1.211e-12 1.211e-12
7 1.211e-12 1.701e-08 1.211e-12 1.211e-12
8 1.211e-12 1.211e-12 1.211e-12 1.211e-12
9 1.211e-12 1.211e-12 1.211e-12 1.211e-12
10 3.01%-11 3.019e-11 3.01%-11 3.018e-11

Conventicnal SCA and GA are ranked as the fifth, sixth,

seventh and eighth most efficacious algorithms,
respectively.

The results on all functions confirm that the
CSCA-4  method with Cucle chaotic map
outperformed over the conventional SCA, GA, PSO
and DE algorithms. Table 14-17 show the p-values
between the CSCA-1 to 4 and other metaheuristic
optimization algorithms. The p=5% indicate that the

rank sum test rejects the null hypothesis and the

Table 16: p-values of wilcoxon rank sum test for CSCA- 3, SCA, GA,
P8O and DE on ten selected benchmark functions at D = 30 and

30 runs

CRCA-3 CS8CA-3 CS8CA-3 CRCA-3
FN No, vs. SCA vs. GA vs. PSO vs. DE
1 3.019e-11 3.019%:-11 3.019%:-11 3.019e-11
2 3.019e-11 3.019-11 3.019-11 3.019e-11
3 3.019e-11 2.66%-09 3.019%:-11 3.019e-11
4 3.019e-11 3.019-11 3.019-11 3.019e-11
5 3.019e-11 3.019%:-11 3.019%:-11 3.019e-11
3] 1.720e-12 1.720e-12 1.720e-12 1.720e-12
7 1.211e-12 1.701e-08 1.211e-12 1.211e-12
8 1.211e-12 1.211e-12 1.211e-12 1.211e-12
9 1.211e-12 1.211e-12 1.211e-12 1.211e-12
10 3.019e-11 3.019%:-11 3.019%:-11 3.018e-11

Table 17: p-values of wilcoxon rank sum test for CSCA- IV, SCA, GA,
PS80 and DE on ten selected benchmark fiunctions at D =30 and

30 runs

CSCA-TIV CSCA-IV CSCA-TV CSCA-TV
FN No. vs. SCA vs. GA vs. PSO vs. DE
1 3.019e-11 3.019e-11 3.019¢-11 3.019e-11
2 3.019e-11 3.019¢-11 3.019-11 3.01%9-11
3 3.019e-11 3.019-11 3.019-11 3.01%-11
4 3.019e-11 3.019¢-11 3.019-11 3.01%9-11
5 1.211e-12 1.211e-12 1.211e-12 1.211e-12
4] 1.211e-12 1.211e-12 1.211e-12 1.211e-12
7 1.211e-12 1.701e-08 1.211e-12 1.211e-12
8 1.211e-12 1.211e-12 1.211e-12 1.211e-12
9 1.211e-12 1.211e-12 1.211e-12 1.211e-12
10 1.211e-12 1.211e-12 1.211e-12 1.210e-12
differences between the proposed chaotic CSCAs
methods and other compared algorithms are
significant.

Generally, these results prove that the chaotic
CSCAs strategies are able to outperform the standard
SCA, GA, PSO and DE algorithms.

Figure 2 shows the convergence curves of the
CSCA-1 to 4 with the conventional SCA, GA, PSO and DE
algorithms for ten benchmark functions. As m this Fig. 2,
the chaotic CSCAs methods have a faster convergence
rate than other algorithms.
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Fig. 2. Convergence curves for CSCA-1, CSCA-2, CSCA-3 and CSCA-4 with standard SCA, GA, PSO and DE
alogorithms; FN1Brown function at D = 30 using CM4 for CSCA-1; FN1Brown function at D = 30 using CM4 for
CSCA-2; FN1Brown function at D = 30 using CM4 for CSCA-3; FN1Brown function at D = 30 using CM4 for
CSCA-4; Powell function at D = 30 using CM4 for CSCA-1; Powell function at D = 30 using CM4 for
CSCA-2;8chwefel function at D = 30 using CM3 for CSCA-3; Powell function at D = 30 using CM4 for CSCA-4;
Schwefel 2.22 function at D = 30 using CM4 for CSCA-1; Schwefel 2.22 function at D = 30 using CM4 for CSCA-2;
Sphere function at D = 30 using CM3 for CSCA-3,; Schwefel 2.22 function at D = 30 using CM4 for CSCA-4;
Sphere function at D = 30 using CM4 for CSCA-1; Sphere function at D = 30 using CM3 for CSCA-2;Powell
function at D = 30 using CM3 for CSCA-2; Sphere function at D = 30 using CM2 for CSCA-4; Quartic function
atD =30 using CM4 for CSCA-1; Quartic function at D = 30 using CM3 for CSCA-2; Quartic function at D =30
using CM3 for CSCA-3; Quartic function at D = 30 using CM2 for CSCA-4; Ackley fimction at D = 30 using CM4
for CSCA-1; Ackley function at D = 30 using CM3 for CSCA-2; Ackley fimction at D = 30 using CM3 for CSCA-3;
Ackley function at D = 30 using CM2 for CSCA-4; Griewank function at D = 30 using CM4 for CSCA-1; Griewank
finction at D = 30 usmg CM3 for CSCA-2; Griewank function at D = 30 using CM3 for CSCA-3; Griewank function
at D = 30 using CM2 for CSCA-4; Rastrigin function at D = 30 using CM4 for CSCA-1; Rastrigin function at D =
30 usmg CM3 for CSCA-2Z; Rastrigin fimction at D = 30 using CM3 for CSCA-3; Rastrigin function at D = 30 using
CM?2 for CSCA-4; Wavy function at D = 30 using CM4 for CSCA-1; Wavy function at D = 30 using CM3 for
CSCA-2; Wavy function at D = 30 using CM3 for CSCA-3; Wavy function at D = 30 using CM2 for CSCA-4;
Csendes function at D = 30 using CM4 for CSCA-1; Csendes function at D = 30 using CM3 for CSCA-2; Csendes
function at D = 30 using CM3 for CSCA-3; Csendes function at D = 30 usig CM?2 for CSCA-4

CONCLUSION Several statistical criteria were used like success rate
at different levels of stopping conditions and average
rank of mean solution. The final results for all these
criteria for various benchmark functions demonstrated

In this study, five chaotic variants were used to
improve the performance of standard SCA. Two kinds of

benchmark functions were employed: unimodal and
multimodal. The random parameters of the conventional
SCA were substituted with the chaotic varants to
mcrease the convergence rate and abscond from the
local solutions. Four chaotic CSCAs strategies were
suggested. These algorithms were called CSCA-1 to 4,
respectively.
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that CSCA-4 method with Circle map has a superior
performance compared to other CSCAs methods.
Additionally, the most effective chaotic map for the
CSCA-1 was the Intermittency map while the chaotic map
could boost the performance of the CSCA-2 and 3 was the
Gauss map. The initial value 0.7 has been used as the
default value for the proposed chaotic algorithms.
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The comparison test was provided for evaluating the
performance of the proposed algorithms with other
metaheuristic optimization algorithms such as the
standard SCA, GA, PSO and DE. Thus test was confirmed
the superiority of the chaotic proposed algorithms on the
others not only in terms of quality solutions but also took
execution time less than other algorithms.

RECOMMENDATIONS

There are many important trends that can be worked
out i the future. First, the CSCAs methods would be
assigned to resolve practical engineering problems.
Second, the CSCAs strategies could be combined with
other state-of-art algorithms to introduce new
hybridization algorithms. Last but not least, using other
chaotic variants and study the performance of the
proposed algorithms.
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