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Abstract This paper presents a four-dimensional
(4D) autonomous chaotic system. The new system is
obtained by introducing the state feedback and a novel
n-well potential function to the third-order Duffing sys-
tem. The proposed potential function enables us to cre-
ate butterfly wing chaotic attractors. The new system
can generate n-scroll and 2n-butterfly wing chaotic
attractors. The basic dynamical behaviors and prop-
erties of this system are investigated, such as equilib-
riums, stability of equilibrium points, attractors, and
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Lyapunov exponents. The circuit realization and exper-
imental results are also presented.
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1 Introduction

Recently, there has been increasing interest in the
design and implementation of chaotic systems. It has
been found that chaos has a theoretical and practical
importance in many fields such as engineering, medi-
cine, secure communications, and so on [1–6]. This
has motivated an intense research that has led to the
discovery of many chaotic systems [7–10].

In particular, the theoretical design and circuit
implementation of various complex multiscroll chaotic
systems has been a central subject of the real-world
applications of various chaos-based technologies and
information systems [11–13]. For example, by using
a 2D chaotic sequence achieved from multi-scroll
chaotic attractors fingerprint images were encrypted
[14]. By considering the synchronization of Chua’s
circuits with multi-scroll attractor, Gamez-Guzman
et al. [15] transmitted encrypted audio and image
information successfully. Another example of appli-
cation is the work by Yalcin [16] who improved the
entropy of a random number generator by increas-
ing the number of scrolls in a generalized Jerk cir-
cuit. As a result, approaches to generate multiscroll
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chaotic attractors have been studied inmany researches
[11,17,18]. In addition, multiple-wing chaotic attrac-
tors can be constructed based on known chaotic sys-
tems [19–26]. Multiple-wing chaotic system has also
been used in chaos-based applications [27]. Finding
new chaotic systems which can generate both multi-
scroll and multiple-wing chaotic attractors is, despite
its potential interest, a topic not yet fully explored in
the literature.

The aim of this paper is to introduce a novel chaotic
system originating from the Duffing equations which
can generate n-scroll and 2n-butterfly wing chaotic
attractors. The rest of the paper is organized as follows.
The design of the new4DDuffing system-based chaotic
attractor is described in Sect. 2. The basic properties
of the chaotic system are investigated numerically in
Sect. 3. Amodular circuit is proposed for realizing var-
ious multi-butterfly wing chaotic attractors in Sect. 4.
Conclusions are given in Sect. 5.

2 Model of the new 4D chaotic Duffing system

In Ref. [28], a dynamical model of an autonomous
three-dimensional Duffing system described by the fol-
lowing equations

⎧
⎨

⎩

ẋ = y
ẏ = x − x3 + dy − βz
ż = r (y − z) ,

(1)

is reported. Here x , y, z are three independent dynami-
cal variables, while d , r and β are constant parameters.
The system is chaotic for a suitable choice of the para-
meters as detailed in [28].

Based on system (1), the new chaotic system is
generated by replacing the cubic nonlinearity in Eq.
(1) by a nonlinear function h(x) and introducing a
state feedback controller w to the second equation as
follows

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = y
ẏ = h (x) + dy − βz + bw
ż = r (y − z)
ẇ = −cxy − mw,

(2)

where d, β, b, r , c and m are the parameters of the
system. We adopt two different definitions for the non-
linear function h(x):

(i) To generate a 2n-butterfly wing chaotic attractor in
the y−w plane and a chaotic attractor with an even
number of scrolls in the x − y plane, the nonlinear
function h(x) is fixed as

h (x) = −x + a
N−1∑

k=−(N−1)

tanh
(
ax + sgn (k) a|k|+2

)

(3)

where a = 2 and N ≥ 1. In this case, the number
of wings in the y − w plane is 2n with n = 2N ,
while the number of scroll in the x − y plane is n.

(ii) To obtain a 2n-butterfly wing chaotic attractor in
the y −w plane and a chaotic attractor with an odd
number of scrolls in the x − y plane, the nonlinear
function h(x) is selected as:

h (x) = − (x + a)

+ a
N−1∑

k=−(N−2)

tanh
(
ax + sgn (k) a|k|+2

)

(4)

where a = 2 and N ≥ 2. In this case, the number
of wings in the y−w plane is 2n with n = 2N −1,
while the number of scroll in the x − y plane is n.

Our numerical simulations show that the new sys-
tem (2) for selected values of the parameters displays
sophisticated chaotic dynamical behaviors. The phase
portraits of the new system (2) are shown in Figs. 1
and 2, for an illustrative set of parameters: N = 1,
d = 0.35, b = 0.125, β = 1.95, r = 0.45, c = 0.45,
m = 15. The attractor is a two-scroll chaotic attractor
on the x−y plane (Fig. 1a). Interestingly, the attractor is
a four-wing chaotic attractor as it appears clearly from
the projection on the y − w plane (Fig. 2). In addition,
selecting N > 1, a new 2n-butterfly wing attractor, for
example with n = 3, or n = 6, can be obtained as
illustrated in Fig. 3.

3 Dynamical properties of the new chaotic system

In this Section, some basic properties and com-
plex dynamics of system (2) are illustrated, includ-
ing dissipativity, equilibrium points and Lyapunov
exponents.
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Fig. 1 Phase portrait of 4D chaotic system (2) for N = 1, d = 0.35, b = 0.125, β = 1.95, r = 0.45, c = 0.45, m = 15 in: a x − y
plane, b x − z plane, c x − w plane, d y − z plane, and e z − w plane
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Fig. 2 Chaotic 4-butterfly wing attractor in y − w plane. The
parameters are selected as in Fig. 1

3.1 Dissipativity

From system (2), one has

∇V = ∂ ẋ

∂x
+ ∂ ẏ

∂y
+ ∂ ż

∂z
+ ∂ẇ

∂w
= − (−d + r + m) .

(5)

For the chaotic system to become dissipative, it is
required that (−d + r + m) > 0. That is, a volume
element V0 is contracted by the flow into a volume ele-
ment V0e−(−d+m+r)t in time t . This means that each
volume containing the trajectory of dynamical system
(2) shrinks to zero as t → ∞ at exponential rate
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Fig. 3 Chaotic 2n-butterfly
wing attractors: a
6-butterfly wing (N = 2,
n = 3), b 12-butterfly wing
(N = 3, n = 6)
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Fig. 4 The nonlinear
function h(x) and its
characteristic regions when
generating: a 6-wing
attractor; b 8-wing attractor
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(−d + r + m). Numerical simulations confirm that,
when condition (5) is satisfied, system trajectories are
ultimately confined to an attractor.

3.2 Equilibrium and stability

The equilibrium points of system (2) can be easily
found by solving the following set of equations:

⎧
⎪⎪⎨

⎪⎪⎩

y = 0
h (x) + dy − βz + bw = 0
r (y − z) = 0
−cxy − mw = 0.

(6)

The equilibrium points ±xek (k = 0, 1, 2, . . . , N )

are located at the intersection of the nonlinear function
h(x) and the x-axis in the state space. Therefore, the
set of equilibrium points is given by

E = { (x; 0; 0; 0)|
x = −xeN ,−xeN−1, ...,−xe1, x

e
0, x

e
1, ..., x

e
N−1

}

(7)

For instance, Fig. 4a, b show the nonlinear functions
h(x) that correspond to chaotic attractors with 6 wings
(3 scrolls) and 8 wings (4 scrolls), respectively. In
Fig. 4a, b, the value of N has been fixed as N = 2.
For this choice of N , system (2) has five and seven
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equilibrium points, respectively. Here the characteris-
tic regions are denoted by ±Dk .

It is worth to note that the equilibrium points are
located on the x-axis. Its stability is determined by
the eigenvalues of the Jacobian matrix at equilibrium
points E(±xek , 0, 0, 0) (k = 0, 1, 2, . . . , N ) given by

J (E) =

⎡

⎢
⎢
⎢
⎢
⎣

0 1 0 0
∂hi (x)

∂x

∣
∣
∣
x=±xek

d −β b

0 r −r 0
−cy|y=0 −cx |x=±xek

0 −m

⎤

⎥
⎥
⎥
⎥
⎦

. (8)

For N = 1 and the parameters fixed as d = 0.35,
b = 0.125, β = 1.95, r = 0.45, c = 0.45, m =
15, then the Jacobian matrix around the zero equilib-
rium point E(0, 0, 0, 0) has four eigenvalues: λ1 =
1.7036, λ2 = −1.0458, λ3 = −0.7578, λ4 = −15
which implies that the zero equilibrium is unstable.
For the equilibrium points E(±2, 0, 0, 0), the eigen-
values are λ1,2 = 0.0738 ± j1.3233, λ3 = −0.2549,
λ4 = −14.9927 and λ1,2 = 0.0813 ± j1.3211,
λ3 = −0.2554, λ4 = −15.0073, which implies that
the equilibrium points are saddle with index 2 which
generate the scrolls. Similarly, for the other cases, we
can use the Jacobian matrix to study the stability of the
equilibriums with respect to selected parameters [29].

3.3 Lyapunov exponents

Lyapunov exponents measure the exponential rates of
the divergence and convergence of nearby trajecto-
ries in phase space of chaotic system [30]. As well
known, a system is chaotic when it has at least one
positive Lyapunov exponent. For convenience, we may
order the Lyapunov exponents in decreasing order. For
the parameters of Fig. 1, we obtain Lyapunov expo-
nents as λ1 = 0.1032, λ2 = 0, λ3 = −0.2004,
λ4 = −15.0003, respectively, which demonstrated that
the system shown in Fig. 1 is chaotic. The possibility
of generating hyperchaotic attractors of new system (2)
has been also investigated by exploring the parameter
space. However, hyperchaos has not been observed in
such 4D system with multiple-wing attractors.

Lyapunov exponents have been studied with respect
to the many parameters appearing in the system. We
have found largewindowsof chaotic behavior. InFig. 5,
we report, for instance, the Lyapunov exponents of sys-
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Fig. 5 Lyapunov exponents of system (2) with respect to d for
N = 1, b = 0.125, β = 1.95, r = 0.45, c = 0.45, m = 15

tem (2) when the parameter d is varied. Figure 5 shows
the onset of chaos for d > 0.32.

4 Circuit implementation and experimental results

In this Section, the circuit implementation of the math-
ematical model (2) is discussed. The circuit is based on
operational amplifiers, so that a rescaling is needed to
met the dynamical range of these devices. For this rea-
son, the state variable x of system (2) has been rescaled
down and the whole system rewritten as:
⎧
⎪⎪⎨

⎪⎪⎩

Ẋ = 0.5Y
Ẏ = hi (2X) + dY − βZ + bW
Ż = rY − r Z
Ẇ = −2cXY − mW,

(9)

where X = x
2 , Y = y, Z = z, and W = w. The

electronic circuit to realize (9) is presented in Fig. 6
and is governed by the following circuit equations
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dvC1
dt = 1

R1C1
vC2

dvC2
dt = 1

R2C2
h

(
2vC1

) + 1
R3C2

vC2

− 1
R4C2

vC3 + 1
R5C2

vC4
dvC3
dt = 1

R6C3
vC2 − 1

R7C3
vC3

dvC4
dt = − 1

10R8C4
vC1vC2 − 1

R9C4
vC4 ,

(10)

where vC1 , vC2 , vC3 and vC4 are voltages across the
capacitorsC1,C2,C3 andC4. Therefore, the state vari-
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Fig. 6 Circuit diagram implementing the new chaotic system
(9)

Fig. 7 Electrical scheme of the circuit realizing the nonlinearity
−hi (2X)

ables in Eq. (9), i.e., X , Y , Z , W are implemented as
the voltages across corresponding capacitors.

The circuit only consists of common off-the-shelf
discrete components such as resistors, capacitors, oper-
ational amplifiers and amultiplier (AD633). The power
supplies are fixed to ±15VDC, and TL084 operational
amplifiers are used.Eq. (10)matchEq. (2)withd = R

R3
,

b = R
R5
, β = R

R4
, r = R

R6
, c = R

20R8
, and m = R

R9
where R = R2. The nonlinear function −hi (2X) in
Fig. 6 is implemented by the circuitry of Fig. 7. The
nonlinearity is designed in a modular way so that it can
be changed by choosing the on–off switches. By adapt-
ing the nonlinearity, the circuit on Fig. 6 can generate
various 2n-butterfly wing attractors. Table 1 summa-
rizes the states of switches and the number of wings
in the attractors. As an example, we have considered a
6-wing chaotic attractor, obtained by using the circuit
of Fig. 6 with the switches set as S1 in ON state. In

Table 1 On–off switches, and the number of butterfly swings
(in vC2 –vC4 plane) of the designed circuit

K0 K1 Butterfly wings

Off Off 4

On On 6

Fig. 8 Experimental results: projection on the Y − W plane of
the attractor obtained by the circuit of Fig. 6. Horizontal axis 1
V/div. Vertical axis 100 mV/div

this case, the output of the circuit in Fig. 7 is written
as

hi (2X)=− R

Rh1
X − R

Rh2
E1

+ R

Rh3
Vsat tanh

(
Rh4

R

X

Vsat

)

+ R

Rh3
Vsat tanh

(
Rh4

R

X + E1

Vsat

)

, (11)

where Vsat is the saturation voltage of the opera-
tional amplifier. Eq. (11) match Eq. (4) with a =
R
Rh2

E1
1VDC

= R
Rh3

Vsat
1VDC

= Rh4
2R

1VDC
Vsat

. We choose the
components in the circuit to realize the reported para-
meter values. Therefore, the value of components is
selected as follows R1 = 20 k�, R2 = R = 10 k�,
R3 = 28.57 k�, R4 = 5.128 k�, R5 = 80 k�, R6 =
R7 = 22.22 k�, R8 = 1.111 k�, R9 = 0.666 k�,
C1 = C2 = C3 = C4 = 10nF , Rh1 = 5 k�,
Rh2 = R = 10 k�, Rh3 = 71.25 k�, Rh4 = 570 k�,
and E1 = 2VDC. The experimental attractor, corre-
sponding to this set of parameters, as observed on
the oscilloscope (projection on the Y − W plane), is
reported in Fig. 8.

5 Conclusion

In this paper, we have presented a novel fourth-order
chaotic system and its complex dynamics. Interest-
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ingly, the system has been constructed with the intro-
duction of a new potential function that is suitable
for the purpose of generating n-scroll and 2n-butterfly
wing chaotic attractors. Such new potential function
can be implemented easily because its basic block is the
hyperbolic tangent function that corresponds to opera-
tional amplifier saturation [31–33]. The electronic cir-
cuitry of the new chaotic system has been designed
and realized by physical components. We have found a
good agreement between simulations and experiments.
Such new chaotic system can be used in chaos-based
engineering applications due to its capability of pro-
ducing multiscroll chaotic signals with a quite simple
circuitry.
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