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Covariance Matrix Adaptation Evolutionary Strategy Optimization
of Patch Antenna for Wireless Communication

Ali A. Al-Azza'» 2 *, Frances J. Harackiewicz!, and Hemachandra R. Gorla!

Abstract—Covariance matrix adaptation evolutionary strategy algorithm is applied to optimize a
dielectric loaded microstrip patch antenna. The optimization process performance is enhanced by not
considering the symmetrical factor of the antenna structure. The antenna is optimized to work for IEEE
802.11a WLAN 5-6 GHz band. Experimental measurements have also been performed to validate the
performance of the proposed antenna.

1. INTRODUCTION

Low cost and compact antennas are a key element of modern wireless communications. For these
wireless systems, antennas need to have high gain, wide bandwidth, and also need to be a compact
enough to be fabricated in portable devices.

Different wireless local area network (WLAN) communication systems are used nowadays, which
can provide different operating frequencies and data rates for different applications. For a wireless
transmission requiring of a higher data rate, wireless local area network (WLAN) in the 5 GHz band of
IEEE 802.11a has been employed. IEEE 802.11a network is widely used in business networks and has
the ability to provide high-speed connectivity (> 50 Mb/s).

Different optimization methods have been introduced in the last few years. Many of these search
techniques are inspired by naturallaws and biological swarm intelligence such as Particle Swarm
Optimization (PSO) and Genetic Algorithm (GA). PSO is inspired by the ability of flocks of birds,
and herds of animals to adapt to their environment, find rich sources of food, and avoid predators by
implementing an “information sharing” approach, hence, developing an evolutionary advantage. On the
other hand, the GA is inspired by the principles of genetics and evolution, and mimics the reproduction
behavior observed in biological populations. In unconstrained non-linear problems with continuous
variables, PSO tends to outperform GA in both criteria, specially in computational efficiency. If the
search space is discrete and is highly constrained and discontinuous, GA would probably find higher
quality solutions. The mutation and crossover operators will help GA to jump the discontinuity in the
search space and lead to better exploration.

The performance of many global optimization techniques, such as genetic algorithms (GAs) and
particle swarm optimization (PSO), is dependent primarily on the evolutionary settings of these
algorithms. For example, by choosing different values for the mutation and crossover, the user of
a GA may lead to different optimization results and convergence speed. The Covariance Matrix
Adaptation Evolutionary Strategy (CMA-ES) overcomes the typical problems that are often associated
with evolutionary algorithms. The CMA has the advantage of fewer human (user) settings. Based on
available evolutionary information, CMA-ES automatically tunes itself during the optimization process
without any human interaction. Moreover, it has the advantage of requiring fewer function evaluations
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before convergence [1]. CMA-ES shares properties of local and global optimization by avoiding early
convergence to a local minimum and also by changing the internal step size to control convergence. It
has been applied efficiently to different types of applications [2-5]. In order to use both local and global
abilities of the CMA-ES algorithm, the value of the sigma setting parameter, which plays an important
role in scaling the searching step size, should be chosen carefully. A small value (close to zero) of sigma
will make the method more local and large value (close to one) will make the method more global as
shown in Equation (1) where N is a multivariate normal distribution of the gth generation with mean
m and covariance C' and z is the variable vector [6]. More details for the interested reader about the
complete CMA-ES procedure can be found in [7].
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PSO and GA have been used widely to solve many antenna optimization problems [8-13]. In [13],
Minasian and Bird used particle swarm optimization to design a microstrip antenna for WLAN
application by using passive parasitically coupled sub patches. PSO is used in [14] in designing a
reconfigurable planar array antenna to operate in the WiFi frequency band from 2.4 GHz up to 2.5 GHz.
A binary version of the PSO algorithm has been used in [15] to design an array of plasmonic nanospheres
in order to achieve broadband field enhancement. In [16], an integrated multifunction antenna has been
optimized by PSO for an automotive rescue management system. PSO is used in [17] to miniaturize a
pre-fractal monopole antenna for 406 MHz SARSAT radio beacons. A miniaturized fractal antenna is
also reported and optimized by PSO in [18] for ISM band applications.

In this paper, CMA-ES is used to design a simple, low cost and compact dielectric loaded microstrip
antenna for wireless communication systems that cover the WLAN TEEE 802.11a bandwidth. In this
work, the antenna structure will not be limited by the symmetry factor in order to enhance the possibility
to have the optimal solution. A simple feeding technique has been chosen in order to reduce the cost
and the complexity of the final design.

The proposed design approach in this paper will solve many of fabrication difficulties that were
explained in [13]. Moreover, a symmetrical broadside radiation pattern is applied as a second goal at
the center frequency of operation bandwidth. The proposed antenna shows a simulated impedance BW
of 19.8% (4.97-6.06 GHz), a 7.29dBi maximum numerical gain and symmetrical broadside radiation
patterns.

The 3D electromagnetic simulation software, Computer Simulation Technology (CST), is used to
simulate and optimize the proposed configuration and it was followed by experimental verifications. A
good agreement between the measured and simulated results are obtained.

2. OPTIMIZATION PROCEDURE

The geometry of the proposed patch antenna is shown in Figure 1. The antenna is printed on a Rogers
RT5880LZ substrate with relative permittivity equal to 1.96, thickness 1.52 mm and loss tangent 0.0019.
The overall size of the substrate is 40 mm x 40 mm. The structure consists of a radiating patch which
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Figure 1. Proposed antenna configuration. (a) Perspective view. (b) Front view. (c¢) Photograph of
the fabricated antenna.
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is fed by a 50 Ohm transmission line. A rectangular slot has been inserted in the ground plane of the
antenna. The antenna is loaded by using dielectric material RO3010 with relative permittivity equal to
10.2, thickness 1.27 and loss tangent 0.0023.

Achieving the desired bandwidth for WLAN IEEE 802.11a and a broadside radiation pattern with
acceptable gain for WLAN applications are the main goals of the optimization procedure. As an
initial design step, a rectangular patch antenna is printed on a RT5880LZ board. In order to get a
resonance at 5.5 GHz, the width and resonant length of the patch are set as 22.42 mm of 18.49 mm,
respectively. Compared to [13], the complexity of the fabrication process is taken into consideration. A
50 Ohm microstrip line which is consider a simple feeding technique will be used to excite the antenna.
Moreover, the initial patch is divided into four connected strips in order to reduce the shape complexity
of the final design and to solve the overlapping issue that reported in [13] which is consider a significant
fabrication challenge due to the resolution limitation of the printed circuits milling machines. In order
to obtain another resonant mode, a rectangular slot is inserted in the ground plane. Due to the ability
of increasing the impedance bandwidth by loading the antenna with a dielectric material [19] and in
order to increase the degrees of freedom for searching for the optimal candidate solution, the antenna is
loaded with a dielectric rectangular brick. Table 1 lists the fixed parameters, optimization parameters
and the different boundaries used in the antenna implementation. By changing the shape of the patch,
slot dimension, and the dimension and location of the dielectric brick, the desired goals can be obtained.

Table 1. Summary of the antenna optimization (dimensions in millimeters).

Fixed parameters W, L, Ly, Wi
Optimization parameters Wa, W3, Wy, W5, Wg, Ls, Wp, Lp
Boundaries [Wa, Wy, Wy, Wi, Ws] € (1, 40); Ls € (0, 35); [Wp, Lp] € (1,40)
Sigma 0.6

A weighted sum fitness function x(f) is used to evaluate the performances of the candidate designs.
This function will be used to maximize the gain (G) and front to back ratio (FB) at the center frequency
of the operation bandwidth (f.). The goal of the impedance bandwidth will be applied by using the
function (9;).

The weighted fitness function is given as follows:

o(f) = Axdj+ B |FB|je=55 — FBaes| + C % |G| fe=5.5.0=0, =0 — Ges| (2)
where A, B, C are weighting factors,

] j:1327~~~7Nf7‘eq (3)

S11]; refers to the negative return loss in dB at the jth sampling frequency, and Z;,; and Z, are the
input impedance at the feed of the same frequency and the reference impedance, respectively. Achieving
a larger bandwidth can be obtained by reducing the difference between the highest and lowest values of
the negative return loss through minimizing the maximum return loss among the Ny, samples. Since
the sum of the weighting factor should be equal to 1 [20] and to make the optimization bias more to
the bandwidth goal, the weighting factors (A, B, C) are set as 0.5, 0.25, and 0.25.

0; = Minimize [max ‘Sllj - S11,,.

3. SIMULATIONS AND MEASUREMENTS

The detailed optimized dimensions of the proposed antenna are listed in Table 2. To verify the
simulation, the proposed antenna was fabricated using the milling machine LPKF ProtoMat S62, which
is especially designed for RF and microwave circuit boards. Figure 2 shows the simulated reflection
coefficients of the optimized designs plotted in the smith chart as the frequency change from 4 GHz to
7GHz. The simulated and measured real and reactive part of the input impedance of the antenna are
shown in Figure 3.
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Table 2. Geometry details in millimeters of the optimized proposed design.

L w Ly Lo L3 | Ly Ls Lg
40 40 5 2 2 6 9.94 | 32.66
Wy Wo Ws Wy | Ws | Ws | Wp Lp
5.36 | 10.86 | 19.5 | 31.57 | 40 | 1.52 | 28.27 | 20.56

-1.0j

Figure 2. Simulated reflection coefficients for the optimized antennas.

250
-10
= @ -20
7 - o > -
Q al
) / @ -30
/ —o—Re(Z;,) (sim.)
-150 Im(Zin) (sim.) -40 | == Proposed without DR
~—Re(Z;,) (mes.) 0= Simulated
-250 >— IM(Zin) (mes.) 50 == Measured
4.5 5.0 55 6.0 6.5 4 5 6 7
Frequency (GHz) Frequency (GHz)
Figure 3. Simulated and measured input Figure 4. Return loss response of design
impedance. configurations of the antenna.

The negative return loss in dB of the fabricated antenna was measured using the vector network
analyzer over the frequency range 4 to 7 GHz. With reference to Figure 4, reasonable agreement between
simulated and measured negative return loss is observed. With reference to the figure, the two measured
resonance frequencies (min |S11|) are 5.11 GHz and 5.88 GHz, respectively, which agree very well with
the simulated resonant frequencies of 5.09 GHz (2% error) and 5.84 GHz (4% error).

As can be seen in Figure 5, the fundamental mode has come from the patch while the slot which acts
as approximately a quarter wavelength at 5.88 GHz generates the second mode. Loading the overall
structure with dielectric material shifted the resonance modes to lower values and also enlarge the
bandwidth.

2D representation of the optimized far-field of the antenna at the center frequency is shown in
Figure 6. It is evident from the figure that the maximum radiation power intensity is concentrated in
the broadside direction with minimum value in the back side region.
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Figure 5. Magnetic field distribution at: Figure 6. 2D far-field distribution at 5.5 GHz.
(a) 5.5 GHz, (b) 5.88 GHz.
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Figure 7. Convergence curve of the fitness value.
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Figure 8. Measured and simulated radiation patterns: (a) 5.25 GHz, (b) 5.5 GHz, (c) 5.75 GHz.

The simulated and measured radiation patterns in the E-plane and H-plane observed at different
frequency points are plotted in Figure 8. Broadside radiation could be observed in E- and H-planes
in the whole frequency band points. Figure 9 shows the gain and the radiation efficiency of the
antenna. The maximum measured peak gain is 6.76 dBi. The maximum antenna radiation efficiency
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Figure 9. Measured/simulated peak gain and efficiency of proposed antenna.

Table 3. Simulated and measured results of the optimized antenna at 5.5 GHz.

|S11] (dB) | G (dBi) | FB (dB)
Simulated —13.2 6.26 15.5
Measured —14.7 6.23 15.3

was computed as 93% at 5.25 GHz. Table 3 shows the simulation and measured results of the return
loss, gain, and front to back ratio at frequency 5.5 GHz.

The convergence curve of fitness value is presented in Figure 7. After 1171 iterations, an optimum
design is obtained compare to 1500 iterations by using PSO method to achieve the same goals which
shows that CMA-ES method is quicker than PSO.

The packaging of the proposed antenna is found to be a limitation due to the presence of the slot
in the ground plane. If a conducting plate is positioned parallel to the ground plane at a distance 8 mm
apart or less than that, the —10dB impedance bandwidth will drift from the 5 to 6 GHz frequency
range. Such a case is considered better than the one reported in [21] where the conducting plane should
be placed at a distance more than 76.5 mm in order to avoid the antenna-performance degradation.

4. CONCLUSION

In this paper, a microstrip antenna loaded with dielectric material suitable for WLAN TEEE 802.11a
applications has been designed, optimized, and fabricated. The antenna has been successfully optimized
by CMA-ES technique to achieve a good impedance matching and radiation characteristics in the entire
band of WLAN IEEE 802.11a. The numerical simulations and experimental measurements of both
electrical and radiation parameters have been used to assess the effectiveness and reliability of the
antenna model as well as the corresponding prototype.
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