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EXISTENCE OF 1D VECTORIAL ABSOLUTE MINIMISERS

IN L∞ UNDER MINIMAL ASSUMPTIONS

HUSSIEN ABUGIRDA AND NIKOS KATZOURAKIS

(Communicated by Joachim Krieger)

Abstract. We prove the existence of vectorial Absolute Minimisers in the
sense of Aronsson to the supremal functionalE∞(u,Ω′)=‖L (·, u,Du)‖L∞(Ω′),

Ω′ � Ω, applied to W 1,∞ maps u : Ω ⊆ R −→ R
N with given boundary val-

ues. The assumptions on L are minimal, improving earlier existence results
previously established by Barron-Jensen-Wang and by the second author.

1. Introduction

The main goal of this paper is to prove the existence of vectorial Absolute Min-
imisers with given boundary values to the supremal functional

(1.1) E∞(u,Ω′) := ess sup
x∈Ω′

L (x, u(x),Du(x)) , u ∈ W 1,∞
loc (Ω,RN ), Ω′ � Ω,

applied to maps u : Ω ⊆ R −→ R
N , N ∈ N, where Ω is an open interval and L ∈

C(Ω× R
N × R

N ) is a non-negative continuous function which we call Lagrangian
and whose arguments will be denoted by (x, η, P ). By Absolute Minimiser we mean

a map u ∈ W 1,∞
loc (Ω,RN ) such that

(1.2) E∞(u,Ω′) ≤ E∞(u+ φ,Ω′),

for all Ω′ � Ω and all φ ∈ W 1,∞
0 (Ω′,RN ). This is the appropriate minimality

notion for supremal functionals of the form (1.1); requiring at the outset minimality
on all subdomains is necessary because of the lack of additivity in the domain
argument. The study of (1.1) was pioneered by Aronsson in the 1960s [A1]–[A5],
who considered the case N = 1. Since then, the (higher dimensional) scalar case of
u : Ω ⊆ R

n → R has developed massively and there is a vast literature on the topic
(see for instance the lecture notes [C,K7]). In the case the Lagrangian is C1, of
particular interest has been the study of the (single) equation associated to (1.1),
which is the equivalent of the Euler-Lagrange equation for supremal functionals
and is known as the “Aronsson equation”:

(1.3) A∞u := D
(
L (·, u,Du)

)
LP (·, u,Du) = 0.

In (1.3) above, the subscript denotes the gradient of L (x, η, P ) with respect to
P and, as is customary, the equation is written for smooth solutions. Herein we
are interested in the vectorial case N ≥ 2 but in one spatial dimension. Unlike
the scalar case, the literature for N ≥ 2 is much more sparse and starts much
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more recently. Perhaps the first most important contributions were by Barron-
Jensen-Wang [BJW1,BJW2], who among other deep results proved the existence
of Absolute Minimisers for (1.1) under certain assumptions on L which we recall
later. However, their contributions were at the level of the functional, and the
appropriate (non-obvious) vectorial analogue of the Aronsson equation was not
known at the time. The systematic study of the vectorial case of (1.1) (actually in
the general case of maps u : Ω ⊆ R

n −→ R
N ), together with its associated system of

equations, was begun in the early 2010s by the second author in a series of papers;
see [K1]–[K6], [K8]–[K12] (and also the joint contributions with Croce, Pisante and
Pryer [CKP,KP1,KP2]). The ODE system associated to (1.1) for smooth maps
u : Ω ⊆ R −→ R

N turns out to be

(1.4) F∞
(
·, u,Du,D2u

)
= 0, on Ω,

where

F∞(x, η, P,X) :=
[
LP (x, η, P )⊗ LP (x, η, P )

+ L (x, η, P )[LP (x, η, P )]⊥LPP (x, η, P )
]
X

+
(
Lη(x, η, P ) · P + Lx(x, η, P )

)
LP (x, η, P )

+ L (x, η, P )
[
LP (x, η, P )

]⊥(
LPη(x, η, P )P

+ LPx(x, η, P ) − Lη(x, η, P )
)
.

(1.5)

Quite unexpectedly, in the case N ≥ 2 the Lagrangian needs to be C2 for the equa-
tion to make sense, whilst the coefficients of the full system are discontinuous ; for
more details we refer to the papers cited above. In (1.5) the notation of subscripts
symbolises derivatives with respect to the respective variables, and

[
LP (x, η, P )

]⊥
is the orthogonal projection to the hyperplane normal to LP (x, η, P ) ∈ R

N :

(1.6)
[
LP (x, η, P )

]⊥
:= I− sgn

(
LP (x, η, P )

)
⊗ sgn

(
LP (x, η, P )

)
.

The system (1.4) reduces to the equation (1.3) when N = 1. In the paper [K9]
the existence of an absolutely minimising generalised solution to (1.4) was proved,
together with extra partial regularity and approximation properties. Since (1.4)
is a quasilinear non-divergence degenerate system with discontinuous coefficients,
a notion of appropriately defined “weak solution” is necessary because in general
solutions are non-smooth. To this end, the general new approach of D-solutions
which has recently been proposed in [K8] has proven to be the appropriate setting
for vectorial Calculus of Variations in L∞ (see [K8]–[K10]), replacing to some extent
viscosity solutions which essentially apply only in the scalar case.

Herein we are concerned with the existence of Absolute Minimisers to (1.1) with-
out drawing any connections to the differential system (1.4). Instead, we are inter-
ested in obtaining existence under the weakest possible assumptions. Accordingly,
we establish the following result.
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Theorem 1. Let Ω ⊆ R be a bounded open interval and let also

L : Ω× R
N × R

N −→ [0,∞)

be a given continuous function with N ∈ N. We assume that:

(1) For each (x, η) ∈ Ω × R
N , the function P 	−→ L (x, η, P ) is level-convex;

that is, for each t ≥ 0 the sublevel set{
P ∈ R

N : L (x, η, P ) ≤ t
}

is a convex set in R
N .

(2) There exist non-negative constants C1, C2, C3, with C1 > 0 and 0 < q ≤
r < +∞ and a positive locally bounded function h : R × R

N −→ [0,+∞)
such that for all (x, η, P ) ∈ Ω× R

N × R
N ,

C1|P |q − C2 ≤ L (x, η, P ) ≤ h(x, η)|P |r + C3.

Then, for any affine map b : R −→ R
N , there exist a vectorial Absolute Minimiser

u∞ ∈ W 1,∞
b (Ω,RN ) of the supremal functional (1.1) (definition (1.2)).

Theorem 1 generalises two respective results in both the papers [BJW1] and [K9].
On the one hand, in [BJW1] Theorem 1 was established under the extra assumption
C2 = C3 = 0 which forces L (x, η, 0) = 0, for all (x, η) ∈ R × R

N . Unfortunately
this requirement is incompatible with important applications of (1.1) to problems
of L∞-modelling of variational Data Assimilation (4DVar) arising in the earth
sciences and especially in meteorology (see [B,BS,K9]). An explicit model of L is
given by

(1.7) L (x, η, P ) :=
∣∣k(x)−K(η)

∣∣2 + ∣∣P − V (x, η)
∣∣2

and describes the “error” in the following sense: consider the problem of finding
the solution u to the following ODE coupled by a pointwise constraint:

Du(t) = V
(
t, u(t)

)
and K(u(t)) = k(t), t ∈ Ω.

Here V : Ω × R
N −→ R

N is a time-dependent vector field describing the law of
motion of a body moving along the orbit described by u : Ω ⊆ R −→ R

N (e.g.
Newtonian forces, Galerkin approximation of the Euler equations, etc.), k : Ω ⊆
R −→ R

M are some partial “measurements” in continuous time along the orbit
and K : RN −→ R

M is a submersion which corresponds to some component of the
orbit that is observed. We interpret the problem as being that u should satisfy
the law of motion and also be compatible with the measurements along the orbit.
Then minimisation of (1.1) with L as given by (1.7) leads to a uniformly optimal
approximate solution without “spikes” of large deviation of the prediction from the
actual orbit.

On the other hand, in the paper [K9] Theorem 1 was proved under assump-
tions allowing one to model Data Assimilation, but strong convexity, smoothness
and structural assumptions were imposed, allowing one to obtain stronger results
accordingly. In particular, the Lagrangian was assumed to be radial in P , which
means it can be written in the form

L (x, η, P ) := H
(
x, η,

1

2

∣∣P − V (x, η)
∣∣2).

In this paper we relax the hypotheses of both the aforementioned results.
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2. Proof of the main result

In this section we establish Theorem 1. In the proof we will utilise the follow-
ing lemma essentially proved in the paper [BJW1], which we recall below for the
convenience of the reader.

Lemma 2 (cf. Lemma 2.2 in [BJW1]). In the setting of Theorem 1 and under the
same hypotheses, for a fixed affine map b : R −→ R

N , set

Cm := inf
{
Em(u,Ω) : u ∈ W 1,qm

b (Ω,RN )
}
,

C∞ := inf
{
E∞(u,Ω) : u ∈ W 1,∞

b (Ω,RN )
}
,

where E∞ is as in (1.1) and

(2.1) Em(u,Ω) :=

∫
Ω

L
(
x, u(x),Du(x)

)m
dx.

Then, there exist u∞ ∈ W 1,∞
b (Ω,RN ) which is a (mere) minimiser of (1.1) over

W 1,∞
b (Ω,RN ) and a sequence of approximate minimisers {um}∞m=1 of (2.1) in the

spaces W 1,qm
b (Ω,RN ) such that, for any s ≥ 1,

um −−⇀ u∞, weakly as m → ∞ in W 1,s(Ω,RN )

along a subsequence. Moreover,

(2.2) E∞(u∞,Ω) = C∞ = lim
m→∞

(Cm)
1
m .

By approximate minimiser we mean that um satisfies

(2.3)
∣∣Em(um,Ω)− Cm

∣∣ < 2−m2

.

Finally, for any A ⊆ Ω measurable of positive measure the following lower semi-
continuity inequality holds:

(2.4) E∞(u∞, A) ≤ lim inf
m→∞

Em(um, A)
1
m .

The idea of the proof of (2.3) is based on the use of Young measures in order
to bypass the lack of convexity for the approximating Lm minimisation problems
(recall that L (x, η, ·) is only assumed to be level-convex); without weak lower-
semicontinuity of Em, the relevant infima of the approximating functionals may
not be realised. For details we refer to [BJW1] (this method of [BJW1] has most
recently been applied to higher order L∞ problems; see [KP2]). We also note that
(2.4) has been established on page 264 of [BJW1] in slightly different guises, whilst
the scaling of the functionals Em is also slightly different therein. However, it is
completely trivial for the reader to check that their proofs clearly establish our
Lemma 2.

Proof of Theorem 1. Our goal now is to prove that the candidate u∞ of Lemma 2
above is actually an Absolute Minimiser of (1.1), which means we need to prove
u∞ satisfies (1.2).

The method we utilise follows lines similar to those of [K9], although techni-
cally it has been slightly simplified. The main difference is that due to weaker
assumptions than those of [K9], we invoke the general Jensen inequality for level-
convex functions. In [K9] the Lagrangian was assumed to be radial in the third
argument, a condition necessary and sufficient for the symmetry of the coefficient
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matrix multiplying the second derivatives in (1.4); this special structure of L led to
some technical complications. Also, herein we have reduced the number of auxiliary
parameters in the energy comparison map (defined below) by invoking a diagonal
argument.

Let us fix Ω′ � Ω. Since Ω′ is a countable disjoint union of open intervals, there is
no loss of generality in assuming Ω′ is itself an open interval. By a simple rescaling
argument, it suffices to assume that Ω′ = (0, 1) ⊆ R, for, let φ ∈ W 1,∞

0 ((0, 1),RN )
be an arbitrary variation and set ψ∞ := u∞ + φ. In order to conclude, it suffices
to establish

E∞
(
u∞, (0, 1)

)
≤ E∞

(
ψ∞, (0, 1)

)
.

Obviously, u∞(0) = ψ∞(0) and u∞(1) = ψ∞(1). We define the energy comparison
function ψm,δ, for any fixed 0 < δ < 1/3, as

ψm,δ(x) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
δ − x

δ

)
um(0) +

(x
δ

)
ψ∞(δ), x ∈ (0, δ],

ψ∞(x), x ∈ (δ, 1− δ),(
1− x

δ

)
ψ∞(1− δ) +

(
x− (1− δ)

δ

)
um(1), x ∈ [1− δ, 1),

where m ∈ N ∪ {∞}. Then, ψm,δ − um ∈ W 1,∞
0

(
(0, 1),RN

)
and

Dψm,δ(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ψ∞(δ)− um(0)

δ
, on (0, δ),

Dψ∞, on (δ, 1− δ),

ψ∞(1− δ)− um(1)

−δ
, on (1− δ, 1).

Now, note that

(2.5) ψm,δ −→ ψ∞,δ in W 1,∞(
(0, 1),RN

)
, as m → ∞,

because ψm,δ −→ ψ∞,δ in L∞(
(0, 1),RN

)
, and for a.e. x ∈ (0, 1) we have∣∣∣Dψm,δ(x)−Dψ∞,δ(x)

∣∣∣ = χ(0,δ)
|u∞(0)− um(0)|

δ
+ χ(1−δ,1)

|u∞(1)− um(1)|
δ

≤
(
1

δ
+

1

δ

)
‖um − u∞‖L∞(Ω)

= o(1),

as m → ∞ along a subsequence.
Now, recall that ψm,δ = um at the endpoints {0, 1}. Let us also remind the

reader that after the rescaling simplification, (0, 1) is a subinterval of Ω ⊆ R, whilst
(2.3) holds only for the whole of Ω. Since um is an approximate minimiser of (2.1)

over W 1,m
b (Ω,RN ) for each m ∈ N, by utilising the approximate minimality of

um (given by (2.3)), the additivity of Em with respect to its second argument, we
obtain the estimate

Em

(
um, (0, 1)

)
≤ Em

(
ψm,δ, (0, 1)

)
+ 2−m2

.

Hence, by Hölder inequality

Em

(
um, (0, 1)

) 1
m ≤ Em

(
ψm,δ, (0, 1)

) 1
m + 2−m

≤ E∞
(
ψm,δ, (0, 1)

)
+ 2−m.

(2.6)
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On the other hand, we have

E∞
(
ψm,δ, (0, 1)

)
= max

{
E∞

(
ψm,δ, (0, δ)

)
,

E∞
(
ψm,δ, (δ, 1− δ)

)
,

E∞
(
ψm,δ, (1− δ, 1)

)}
,

and since ψm,δ = ψ∞ on (δ, 1− δ), we have

E∞
(
ψm,δ, (0, 1)

)
≤ max

{
E∞

(
ψm,δ, (0, δ)

)
, E∞

(
ψ∞, (0, 1)

)
,

E∞
(
ψm,δ, (1− δ, 1)

)}
.

(2.7)

Combining (2.5)-(2.7) and (2.4), we get

E∞
(
u∞, (0, 1)

)
≤ lim inf

m→∞

(
max

{
E∞

(
ψm,δ, (0, δ)

)
, E∞

(
ψ∞, (0, 1)

)
,

E∞
(
ψm,δ, (1− δ, 1)

)})

≤ max
{
E∞

(
ψ∞, (0, 1)

)
, E∞

(
ψ∞,δ, (0, δ)

)
,

E∞
(
ψ∞,δ, (1− δ, 1)

)}
.

(2.8)

Let us now denote the difference quotient of a function v : R−→R
N as D1,tv(x) :=

1
t [v(x+ t)− v(x)]. Then, we may write

Dψ∞,δ(x) = D1,δψ∞(0), x ∈ (0, δ),

Dψ∞,δ(x) = D1,−δψ∞(1), x ∈ (1− δ, 1).

Note now that

(2.9)

⎧⎪⎨
⎪⎩

E∞
(
ψ∞,δ, (0, δ)

)
= max

0≤x≤δ
L

(
x, ψ∞,δ(x),D1,δψ∞(0)

)
,

E∞
(
ψ∞,δ, (1− δ, 1)

)
= max

1−δ≤x≤1
L

(
x, ψ∞,δ(x),D1,−δψ∞(1)

)
.

In view of (2.8)-(2.9), it suffices to prove that there exists an infinitesimal sequence
(δi)

∞
i=1 such that

E∞
(
ψ∞, (0, 1)

)
≥ max

{
lim sup
i→∞

max
[0,δi]

L
(
·, ψ∞,δi ,D1,δiψ∞(0)

)
,

lim sup
i→∞

max
[1−δi,1]

L
(
·, ψ∞,δi ,D1,−δiψ∞(1)

)}
.

(2.10)

The rest of the proof is devoted to establishing (2.10). Let us begin by recording
for later use that

(2.11)

⎧⎪⎨
⎪⎩

max
0≤x≤δ

∣∣∣ψ∞,δ(x)− ψ∞(0)
∣∣∣ −→ 0, as δ → 0,

max
1−δ≤x≤1

∣∣∣ψ∞,δ(x)− ψ∞(1)
∣∣∣ −→ 0, as δ → 0.

Fix a generic u ∈ W 1,∞(Ω,RN ), x ∈ [0, 1] and 0 < ε < 1/3 and define

Aε(x) := [x− ε, x+ ε] ∩ [0, 1].
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We claim that there exists an increasing modulus of continuity ω ∈ C(0,∞) with
ω(0+) = 0 such that

(2.12) E∞
(
u,Aε(x)

)
≥ ess sup

y∈Aε(x)

L
(
x, u(x),Du(y)

)
− ω(ε).

Indeed for a.e. y ∈ Aε(x) we have |x− y| ≤ ε, and by the continuity of L and the
essential boundedness of the derivative Du, there exists ω such that∣∣∣L (

x, u(x),Du(y)
)
− L

(
y, u(y),Du(y)

)∣∣∣ ≤ ω(ε)

for a.e. y ∈ Aε(x), leading directly to (2.12). Now, we show that

(2.13) sup
Aε(x)

{
lim sup

t→0
L

(
x, u(x),D1,tu(y)

)}
≤ ess sup

Aε(x)

L
(
x, u(x),Du(y)

)
.

Indeed, for any Lipschitz function u, we have

(2.14) D1,tu(y) =
u(y + t)− u(y)

t
=

∫ 1

0

Du(y + λt) dλ,

when y, y + t ∈ Aε(x), t = 0. Further, for any x ∈ Ω the function L (x, u(x), ·)
is level-convex and the Lebesgue measure on [0, 1] is a probability measure. Thus
Jensen’s inequality for level-convex functions (see e.g. [BJW1,BJW2]) yields

L
(
x, u(x),D1,tu(y)

)
= L

(
x, u(x),

∫ 1

0

Du(y + λt) dλ

)

≤ ess sup
0≤λ≤1

L
(
x, u(x),Du(y + λt)

)
,

when y ∈ Aε(x), 0 < x < 1. Consequently,

sup
Aε(x)

{
lim sup

t→0
L

(
x, u(x),D1,tu(y)

)}

≤ sup
Aε(x)

{
lim sup

t→0

[
ess sup
0≤λ≤1

L
(
x, u(x),Du(y + λt)

)]}

≤ sup
Aε(x)

{
lim
s→0

[
ess sup

y−s≤z≤y+s
L

(
x, u(x),Du(z)

)]}

= ess sup
Aε(x)

L
(
x, u(x),Du(y)

)
,

as desired. Above we have used the following known property of the L∞ norm (see
e.g. [C]):

‖f‖L∞(Ω) = sup
x∈Ω

(
lim
ε→0

{
ess sup
(x−ε,x+ε)

|f |
})

.

Note now that by (2.12) we have

E∞
(
u, (0, 1)

)
≥ E∞

(
u,Aε(x)

)
≥ ess sup

Aε(x)

L (x, u(x),Du(y)) − ω(ε),

which combined with (2.13) leads to

E∞
(
u, (0, 1)

)
≥ sup

Aε(x)

(
lim sup

t→0
L

(
x, u(x),D1,tu(y)

))
− ω(ε)

≥ lim sup
t→0

(
L

(
x, u(x),D1,tu(x)

))
− ω(ε).
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By passing to the limit as ε → 0 we get

(2.15) E∞
(
u, (0, 1)

)
≥ lim sup

t→0

(
L

(
x, u(x),D1,tu(x)

))
,

for any fixed u ∈ W 1,∞(Ω,RN ) and x ∈ [0, 1]. Now, since∣∣D1,tu(x)
∣∣ ≤ ‖Du‖L∞(Ω), x ∈ (0, 1), t = 0,

for any finite set of points x ∈ (0, 1), there is a common infinitesimal sequence
(ti(x))

∞
i=1 such that

(2.16) the limit vectors lim
i→∞

D1,ti(x)u(x) exist in R
N .

Utilising the continuity of L together with (2.15)-(2.16) we obtain

E∞
(
u, (0, 1)

)
≥ lim sup

i→∞
L

(
x, u(x),D1,ti(x)u(x)

)

= L
(
x, u(x), lim

i→∞
D1,ti(x)u(x)

)
.

(2.17)

Now we apply (2.17) to u = ψ∞ and x ∈ {0, 1} to deduce the existence of a
sequence (δi)

∞
i=1 along which

(2.18) the limit vectors lim
i→∞

D1,δiψ∞(0), lim
i→∞

D1,−δiψ∞(1) exist in R
N

and also

E∞
(
ψ∞, (0, 1)

)
≥ max

{
L

(
0, ψ∞(0), lim

i→∞
D1,δiψ∞(0)

)
,

L
(
1, ψ∞(1), lim

i→∞
D1,−δiψ∞(1)

)}
.

(2.19)

By recalling (2.9), (2.11) and (2.18), for δ = δi we obtain

lim
i→∞

E∞
(
ψ∞,δi , (0, δi)

)
= lim

i→∞
max
[0,δi]

L
(
·, ψ∞,δi ,D1,δiψ∞(0)

)

= L
(
0, ψ∞(0), lim

i→∞
D1,δiψ∞(0)

)(2.20)

and also

lim
i→∞

E∞
(
ψ∞,δi , (1− δi, 1)

)
= lim

i→∞
max

[1−δi,1]
L

(
·, ψ∞,δi ,D1,−δiψ∞(1)

)

= L
(
1, ψ∞(1), lim

i→∞
D1,−δiψ∞(1)

)
.

(2.21)

By putting together (2.19)-(2.21), (2.10) ensues and we conclude the proof. �
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