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Abstract 
 

This research involved a study of the heat treatment conditions effect on the mechanical properties of martensitic stainless steel type AISI 
410. Heat treatment process was hardening of the metal by quenching at different temperature 900°C, 950°C, 1000°C, 1050°C and 
1100°C, followed by double tempering at 200°C, 250°C, 300°C, 350°C, 400°C, 450°C, 500°C, 550°C, 600°C, 650°C and 700°C, were 
evaluated and study of some mechanical properties such as hardness, impact energy and properties of tensile test such as yield and tensile 
strength is carried out. Multiple outputs Artificial Neural Network model was built with a Matlab package to predict the quenching and 
tempering temperatures. Also, linear and nonlinear regression analyses (using Data fit package) were used to estimate the mathematical 
relationship between quenching and tempering temperatures with hardness, impact energy, yield, and tensile strength. A comparison 
between experimental, regression analysis and ANN model show that the multiple outputs ANN model is more accurate and closer to the 

experimental results than the regression analysis results. 
 
Keywords: Artificial neural network ANN, austenitizing temperature, multiple tempering, regression analyses. 

 

 

1. Introduction 

Stainless steels are iron base alloys containing at least 10.5 % Cr. 

Few stainless steels contain more than 30 % Cr or less than 50 % 
Fe. Other elements added to improve particular characteristics 
include molybdenum, titanium, nickel, aluminum, niobium, 
silicon, copper, sulfur, nitrogen, and selenium. Amounts of carbon 
is normally ranging less than 0.03 % to over 1.0 % in grades of 
certain martensitic [1]. 
Essentially alloys of Martensitic stainless steels are carbon and 
chromium that possesses in the hardened condition of a 

martensitic crystal structure and distorted body-centered cubic 
BCC. They are resistant to corrosion, hardenable by heat 
treatments and ferromagnetic [2]. 
Artificial neural networks represent different methodology to the 
implementing of mechanical properties. In the materials science, 
ANNs model has increased use due to better results achieve of 
prediction. After learning the relationship between input and 
output data, this method becomes able to generate output data for 

any new input value. The ANN is very suitable method for 
prediction properties of material in the case of unknown the 
relevant factors, as well as for solving complex phenomena [3][4]. 
An overview of the relevant available literature, 
Dobrzański and Honysz, (2009) [5] presented after heat treatment 
of steels, application of the artificial neural networks for 
prediction of mechanical properties. The mechanical properties, 
such as strength, impact resistance or hardness are predicted on 

the basis of such input parameters, which are geometrical 
dimensions of elements, type of heat treatment and the chemical 
compositions. After heat treatment, the results of the given range 

of input parameters obtained show is very good ability of 

constructed artificial neural networks to predict and described the 
mechanical properties of steels. 
Smoljan, et al. (2010) [6] established a method of computer 
simulation based on experimental results and by regression 
analysis for mechanical properties of quenched and tempered 
steel. Also, used theoretical analysis of relevant properties which 
have an influence on the hardness of quenched and tempered steel. 
The proposed method of computer simulation of mechanical 

properties of quenched and tempered steel is based on predicted 
steel hardness. It was found that the proposed method can be 
successfully predicted the mechanical properties of quenched and 
tempered steel. 
Titus et al. (2017) [7] developed based machine learning models a 
single layer and multilayer artificial neural network back 
propagation feed forward algorithm to predict the mechanical 
properties of hydrogen charged metallic materials. Model of feed 

forward Multilayer back propagation was employed to predicts the 
tensile strength. And model of feed forward single layer back 
propagation feed forward was used to predict the percentage of 
elongation. Studied and developed models for their capability of 
tested and validated with unknown inputs data. 
Efendi et al. (2018) [8] developed by heat treatment process the 
microstructure of the steels and mechanical properties. The 
experimental results of steels quenched at 1100°C showed after 

tempering of 600, 650 and 700°C that had highest values of both 
elongation and tensile strength and after tempering at 600°C the 
best combination of elongation and tensile strength. Whereas, as 
tempering temperature increased, the mechanical properties of the 
steels decreased. 
The objectives of the present Investigation of identifying the heat 
treatment parameters including the austenitizing and tempering 
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temperature required to select suitable mechanical properties such 
as tensile strength, hardness and Impact energy for optimal 
engineering application using experimental and regression 
analysis. 

Design and construct an artificial neural network ANN model as a 
tool applied to simulate the relationship between heat treatment 
and mechanical properties to determine and predict the 
austenitizing and tempering temperature of AISI 410 martensitic 
stainless steel. 

2. Experimental Work 

2.1 Chemical Composition of AISI 410 Martensitic 

Stainless Steel 

Chemical composition of the AISI 410 martensitic stainless steel 
conducted by "METEK" spectrographic analysis Instrument 
GmbH, Boschstrasse, kleve, Germany. The sample contains 

12.08% chromium, with small additions of copper, nickel, 
vanadium, silicon, manganese and molybdenum. This procedure 
was mentioned in our previous work in the part I [9]. 

2.2 Micro structural Analysis 

Fifty-five microstructure specimens are prepared as circular disks 
of 12 mm diameter and 10 mm thickness. Optical microscopy was 
utilized to examine as received materials microstructure. The 

specimens were grinded by emery paper then polished and etched 
with vilella's reagent (1g Picric acid + 5 ml HCl + 100 ml ethanol) 

according to the ASTM Standard (E 407 - 99) [9]. 

2.3 Heat Treatment of Martensitic Stainless Steel 

Heat treatment process was hardening of the metal by Oil 
quenching at different temperature 900°C, 950°C, 1000°C, 
1050°C and 1100°C, followed by double tempering by water at 
200°C, 250°C, 300°C, 350°C, 400°C, 450°C, 500°C, 550°C, 
600°C, 650°C and 700°C, were evaluated and study the heat 

treatment effect on the microstructure of the alloy [9]. 

2.4 The Mechanical Properties of Martensitic Stainless 

Steel 

Fifty-five samples are prepared for the tensile, impact, and 
hardness test according to the ASTM Standard (A 370 - 03a or E 
8M - 01), (E 23 – 02a), and (E 18 - 02), respectively. This 
procedure was mentioned in our previous work in the part II [10]. 

3. Artificial Neural Network Modelling 

In this investigation, the artificial neural network model is 
employed to simulate and predicted the austenitizing and 
tempering temperatures resulted from the experimental work 
depending upon the tested mechanical properties. This model is 
coded using Matlab package which as M-file basic function of 
Matlab saved, whereas a program of Matlab function develops to 

call the model results of the correct basis and weights. In general, 
use developed by Matlab code a graphical user interface GUI in 
order to simplify this model. 
The artificial neural network model which is used to predict the 
austenitizing and tempering temperatures implemented by back-
propagation algorithm and several different neural network 
algorithms.  

3.1 The Training and Testing Patterns Selection 

Training and testing, two subsets of data are employed, to build of 
the ANN model. Important steps of building a neural network 

model is selection of training data. The training set of data is used 
to updating the network biases and for computing the gradient and 
find the relationship between the input and output parameters and 
weights to diminish the training error. The ability of the learning 

process was evaluating by testing data set. Table 1 shown the total 
numbers of experimental values is 55 test cases are employed to 
train the neural network as training data and the parameters of the 
testing set contains approximately 20 % of total data. The testing 
set comprises of 11 cases and the training set contains 44 cases. 

 
Table 1: Parameters of input and output  

Item Parameters 
Range of Parameters 

Units 
From To 

Input 

Parameters 

Rockwell 

Hardness 
31.733 51.7 HRC 

Impact Energy 20 108 J 

Yield Strength 450 700 MPa 

Tensile Strength 821.488 1717.787 MPa 

Output 

Parameter 

Austenitizing 

Temperature 
900 1100 °C 

Tempering 

Temperature 
200 700 °C 

 

3.2 Input and Output Nodes 

 
The introduced parameters which as the input vector components 
consist of; the Rockwell hardness HRC, Impact toughness It, 
Yield strength Ys, Ultimate tensile strength Us. The output data 
are Austenitizing temperature Ta, and tempering temperature Tt. 
Therefore, the nodes in the input and output layer are 4 and 2, 
respectively. 

3.3 The Number of Nodes and Number of Hidden 

Layers  

An adequate number of hidden layers and the number of nodes is 
carried out choosing in each hidden layer by the trial-and-error 
approach. It is usual to start with a relatively small number of 
hidden units and increase it until we are satisfied with the 
approximation quality of the network. According to the following 
rules, selected in the hidden layer the number of nodes [11]: 

 The maximum error of the output parameters network 

for testing and training patterns should be as small as possible. 

 There is a perfect correlation between outputs and 

targets if this number is equal to 1, then the correlation coefficient 
should be as high as possible. 
In this investigation, the one and two hidden layers' network 

configurations is tested in each hidden layer with an increasing 
number of nodes and the different activation and training function 
types. 

3.4 Investigation of one Hidden Layer  

A different activation and training functions are investigated for 
the hidden and output layer of one hidden layer networks. In each 
hidden layer, a different numbers of nodes from 12 to18 nodes are 
used. Tables 2, 3, 4, 5, 6 and 7 represent the regression and 

performance of these network for testing and training data. 
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Table 2: R and MSE for training functions of Conjugate Gradient 
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Training data (80%) Testing data (20%) 

MSE R1 R2 MSE R1 R2 
tr

a
in

c
g

f
 

12 0.000795 0.9995 0.9988 0.0026 0.9963 0.9953 

14 0.000 33 1.0000 0.9992 6.419e-5 1.0000 0.9998 

16 7.772e-5 0.9999 0.9999 0.00031 0.9994 0.9997 

18 3.203e-6 1.0000 1.0000 3.911e-6 1.0000 1.0000 

tr
a

in
c
g

p
 

12 0.000507 0.9999 0.9989 0.0033 0.9999 0.9875 

14 8.68e-5 1.0000 0.9999 0.000287 0.9999 0.9991 

16 4.022e-5 1.0000 1.0000 5.544e-6 1.0000 1.0000 

18 6.90e-6 1.0000 1.0000 4.364e-6 1.0000 1.0000 

tr
a

in
c
g

b
 

12 0.000199 0.9999 0.9996 0.000473 0.9997 0.9987 

14 1.126e-6 1.0000 1.0000 2.064e-6 1.0000 1.0000 

16 1.72e-7 1.0000 1.0000 2.372e-7 1.0000 1.0000 

18 2.402e-7 1.0000 1.0000 8.736e-8 1.0000 1.0000 

tr
a

in
sc

g
 

12 0.000384 0.9998 0.9994 0.000761 0.9998 0.9982 

14 0.000237 0.9999 0.9995 0.000178 0.9999 0.9996 

16 2.09e-10 1.0000 1.0000 3.96e-10 1.0000 1.0000 

18 2.29e-10 1.0000 1.0000 2.04e-10 1.0000 1.0000 

 
Table 3: R and MSE for training functions of Quasi-Newton  
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Training data (80%) Testing data (20%) 

MSE R1 R2 MSE R1 R2 

tr
a

in
b

fg
 

12 0.000147 0.9999 0.9998 0.000114 0.9999 0.9997 

14 0.000171 1.0000 0.9997 0.0026 0.9989 0.9920 

16 9.97e-10 1.0000 1.0000 8.635e-10 1.0000 1.0000 

18 4.78e-10 1.0000 1.0000 3.55e-10 1.0000 1.0000 

tr
a

in
o

ss
 

12 0.0011 0.9993 0.9983 0.0019 0.9985 0.9969 

14 0.000525 0.9999 0.9988 0.0001057 1.0000 0.9996 

16 6.304e-6 1.0000 1.0000 9.175e-6 1.0000 1.0000 

18 1.95e-10 1.0000 1.0000 3.597e-10 1.0000 1.0000 

 
Table 4: R and MSE for training functions of Gradient Descent  
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Training data (80%) Testing data (20%) 

MSE R1 R2 MSE R1 R2 

tr
a

in
g

d
 

12 0.1499 0.7645 0.9084 0.1001 0.7960 0.8777 

14 0.1064 0.8560 0.9279 0.0762 0.8606 0.8941 

16 0.1034 0.8549 0.9230 0.0770 0.8431 0.9067 

18 0.1019 0.8392 0.9460 0.0549 0.8913 0.9438 

tr
a

in
g

d
m

 

12 0.1049 0.8520 0.9317 0.1103 0.8309 0.8282 

14 0.1088 0.8285 0.9443 0.0877 0.8262 0.8883 

16 0.1232 0.8330 0.8983 0.1056 0.7610 0.9025 

18 0.0936 0.8693 0.9352 0.0871 0.7998 0.9171 

 

Table 5: R and MSE for training functions of Levenberg-Marquardt  
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Training data (80%) Testing data (20%) 

MSE R1 R2 MSE R1 R2 

T
ra

in
lm

 12 0.000158 1.000 0.999 0.000204 1.000 0.999 

14 6.19e-28 1.000 1.000 4.49e-28 1.000 1.000 

16 1.63e-28 1.000 1.000 1.65e-28 1.000 1.000 

18 1.89e-21 1.000 1.000 4.16e-22 1.000 1.000 

T
ra

in
b

r 12 6.713e-4 0.999 0.999 0.0014 0.999 0.995 

14 5.935e-5 1.000 0.999 2.546e-4 0.999 0.999 

16 1.52e-29 1.000 1.000 1.46e-29 1.000 1.000 

18 2.71e-17 1.000 1.000 1.04e-16 1.000 1.000 

 
Table 6: R and MSE for training functions of Variable Learning Rate  
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MSE R1 R2 MSE R1 R2 

tr
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d
x

 12 0.0049 0.9954 0.9943 0.0066 0.9922 0.9882 

14 0.0028 0.9984 0.9953 0.0041 0.9975 0.9897 

16 0.0017 0.9994 0.9966 0.0028 0.9974 0.9939 

18 0.0023 0.9990 0.9956 0.0016 0.9993 0.9949 
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Table 7: R and MSE for training functions of Resilient Back-propagation  
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Training data (80%) Testing data (20%) 

MSE R1 R2 MSE R1 R2 

tr
a

in
rp

 12 0.0019 0.9993 0.9962 0.0030 0.9994 0.9926 

14 0.000554 0.9994 0.9994 0.0015 0.9972 0.9986 

16 0.000176 0.9999 0.9997 0.00021 0.9999 0.9994 

18 0.000158 0.9999 0.9996 0.000142 0.9999 0.9995 

 
From Table 7, the network with 18 nodes in the hidden layer and 
arrangement of activation function (tansig) (purelin) function and 

training function (trainrp) for hidden and output layers 
respectively gives better performance and a correlation coefficient 
than another. 

3.5 Investigation of Two Hidden Layers  

In this section, investigated of two hidden layer networks for each 
layer with different activation and training functions. In each 
hidden layer, a different numbers of nodes from 5 to 8 nodes are 

used. The regression and performance of these network topologies 

of testing and training are presented in Tables 8, 9,10, 11, 12 and 
13. 

From Table 8 the performance of network with (8-5) nodes (8 is 
the nodes of the first hidden layer and 5 nodes in the second 
hidden layer) gives the better regression for testing and training 
than the other. The results show that the network of two hidden 
layer is significantly better than that one hidden layer. 
Affects the number of nodes response in the one and two hidden 
layers of the network with different node numbers and training 
functions represented in the tables from 2 to 13. Selected back-

propagation conjugate gradient type (trainscg) here as a training 

function. Compared to the present work investigated to other 
functions. 
Figure 3 and Table 14 show examined activation functions 
arrangements, in order to complete this investigation with the 
selected training function. 
It can show from Table 14 that arrangement of the activation 
function (tansig, tansig, purelin) gives the best performance and 

regressions for testing and training phases. 
 

Table 8: R and MSE for training functions of Conjugate Gradient  
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Training data (80%) Testing data (20%) 

MSE R1 R2 MSE R1 R2 

tr
a

in
c
g

f 6-7 0.0026 0.9969 0.9978 0.0022 0.9986 0.9970 

7-5 0.0013 0.9996 0.9972 0.000825 0.9990 0.9985 

7-8 0.00085 0.9993 0.9989 0.000426 0.9991 0.9996 

8-5 0.00079 0.9998 0.9984 0.000522 0.9995 0.9989 

tr
a

in
c
g

p
 6-7 0.000884 0.9988 0.9994 0.000264 0.9998 0.9994 

7-5 0.000812 0.9996 0.9986 0.000374 0.9998 0.9995 

7-8 0.000728 0.9996 0.9988 0.0010 0.9993 0.9982 

8-5 0.000219 0.9998 0.9998 0.000918 0.9983 0.9991 

tr
a

in
c
g

b
 6-7 0.000519 0.9994 0.9995 0.000381 0.9994 0.9996 

7-5 0.0012 0.9998 0.9973 0.000431 0.9994 0.9994 

7-8 0.000122 0.9999 0.9999 0.0017 0.9970 0.9980 

8-5 0.000928 0.9993 0.9987 0.000704 0.9999 0.9977 

tr
a

in
sc

g
 6-7 0.0013 0.9994 0.9976 0.0023 0.9958 0.9970 

7-5 0.0011 0.9998 0.9975 0.000678 0.9994 0.9986 

7-8 0.000206 1.0000 0.9995 0.000459 0.9999 0.9987 

8-5 0.000 144 0.9999 0.9997 2.355e-5 0.9999 0.9999 

Table 9: R and MSE for training functions of Quasi-Newton  
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Training data (80%) Testing data (20%) 

MSE R1 R2 MSE R1 R2 

tr
a

in
b

fg
 6-7 0.000362 1.0000 0.9992 0.000521 1.0000 0.9984 

7-5 0.000184 0.9999 0.9997 0.000354 0.9999 0.9989 

7-8 0.000466 1.0000 0.9989 0.000133 0.9999 0.9996 

8-5 0.00095 0.9997 0.9981 0.000625 0.9997 0.9983 

tr
a

in
o

ss
 6-7 0.0012 0.9996 0.9975 0.000717 0.9997 0.9978 

7-5 0.0015 0.9987 0.9981 0.0013 0.9980 0.9985 

7-8 0.000141 0.9999 0.9997 0.000293 0.9999 0.9991 

8-5 0.0014 0.9995 0.9971 0.000189 0.9998 0.9997 

 
Table 10: R and MSE for training functions of Levenberg-Marquardt. 
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MSE R1 R2 MSE R1 R2 
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a

in
lm

 6-7 0.000427 1.000 0.9990 0.00031 1.000 0.9990 

7-5 0.000574 0.9999 0.9988 0.000244 0.9999 0.9994 

7-8 0.000844 0.9993 0.9988 0.000163 0.9998 0.9996 

8-5 0.000179 1.000 0.9996 0.000729 0.9988 0.9989 

tr a
i

n
b r 6-7 0.4743 0.0000 0.0000 0.3527 0.0000 0.0000 
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7-5 0.0052 0.9932 0.9963 0.0055 0.9944 0.9874 

7-8 1.22e-16 1.000 1.000 1.33e-16 1.000 1.000 

8-5 0.000477 0.9999 0.9990 0.000215 0.9999 0.9994 

 

Table 11: R and MSE for training functions of Variable Learning Rate  
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Training data (80%) Testing data (20%) 

MSE R1 R2 MSE R1 R2 

tr
a

in
g

d
x

 6-7 0.0078 0.9951 0.9876 0.0084 0.9937 0.9822 

7-5 0.0075 0.9937 0.9899 0.0045 0.9973 0.9881 

7-8 0.0059 0.9979 0.9882 0.0023 0.9985 0.9964 

8-5 0.0054 0.9971 0.9907 0.0074 0.9973 0.9793 

 
Table 12: R and MSE for training functions of Gradient Descent  
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Training data (80%) Testing data (20%) 

MSE R1 R2 MSE R1 R2 

tr
a

in
g

d
 6-7 0.1650 0.7405 0.8872 0.0914 0.8255 0.8984 

7-5 0.1114 0.8467 0.9087 0.0656 0.8790 0.9048 

7-8 0.0993 0.8997 0.8793 0.1089 0.7674 0.8646 

8-5 0.1276 0.8258 0.8955 0.0931 0.8038 0.8927 

tr
a

in
g

d
m

 6-7 0.1689 0.7353 0.8816 0.1246 0.7331 0.8632 

7-5 0.1479 0.8280 0.8409 0.1070 0.8018 0.8369 

7-8 0.0915 0.8859 0.9149 0.0847 0.8605 0.8589 

8-5 0.0929 0.8856 0.9114 0.0912 0.8642 0.8369 

 
Table 13: R and MSE for training function of Resilient Back-propagation  
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MSE R1 R2 MSE R1 R2 
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 6-7 0.0028 0.9991 0.9944 0.0057 0.9972 0.9861 

7-5 0.0032 0.9977 0.9951 0.0021 0.9994 0.9930 

7-8 0.0018 0.9987 0.9973 0.0014 0.9990 0.9979 

8-5 0.0024 0.9983 0.9963 0.0017 0.9980 0.9977 

 
Table 14: Regression & MSE with different arrangements training function of (trainscg) with activation functions of (4-8-5-2) network  

Trainscg Training 

Function 

Activation Functions Arrangements 

tansig, purelin, 

purelin 

tansig, tansig, 

purelin 

tansig, tansig, tansig purelin, 

tansig, tansig 

tansig, purelin, 

tansig 

MSE (train) 0.0087 0.000144 0.0025 0.0343 0.0080 

MSE (test) 0.0072 2.355e-5 0.000132 0.0158 0.0023 

R1 (train) 0.9929 0.9999 0.9999 0.9773 0.9899 

R1 (test) 0.9919 0.9999 0.9999 0.9976 0.9991 

R2 (train) 0.9879 0.9997 0.9941 0.9482 0.9946 

R2 (test) 0.9837 0.9999 0.9997 0.9424 0.9935 

 

3.6 Suggested Network 

From the analysis above, it can be noted that the training function 
(trainscg) arrangements for different neural networks, with 
activation functions (tansig, tansig, purelin) for the two and output 
layers, respectively gives the best correlation coefficients and 

(MSE) for both testing and training than the other. Therefore, for 
the present study can be selected this network as a suggested 
network. Figure 1 represented the performance of the different 
activation functions each of (4-8-5-2) network with (trainscg) 
training function, also shown the best one is (tansig, tansig, 
purlin). Figure 2 shown the comparison performance between the 
best one and two hidden layers.  Figure 3 represents the suggested 
network configuration. Figures 4, 5, 6 and 7 represents the 

analysis of regression between the output of neural network and 
the corresponding target for testing and training data respectively, 
for Austenitizing temperature (Ta), and tempering temperature 
(Tt). Outputs are plotted versus the targets in these Figures. The 
broken line indicates the perfect fit and the solid line indicates the 
best linear fit (output equals target). 
Figures 8 and 9 show the neural networks behavior to predict 
overall austenitizing temperature (Ta), and tempering temperature 

(Tt) for the training data set respectively. 
Similar Figures 10 and 11 are show the predicted and actual 
values of output parameters plotted, overall austenitizing 

temperature  (Ta), and tempering temperature (Tt) for testing data 
set respectively. It is can be noted that the predicted and actual 
values are close to each other, which lead to conclude that the 
ANN proposed model has high levels of accuracy for both testing 
and training data of prediction of (Ta) and (Tt). 

3.7 Computer Program 

The computer program contains three steps as follows: 

 The first step is the generalization processes of the back-
propagation of Artificial Neural Network that is coded in Matlab 
program. Figure 12 shown the structure of the Artificial Neural 

Network program. The main variables are stored in Matlab by the 
cell multidimensional arrays whose elements are copies of other 
arrays, and description of the ANN is saved and extracted in a 
separate file. Suitable values of the biases and weight as a results 
of this step. 

 The second step is the Matlab function that is coded in 

Matlab program. From step 1 extracted this function uses the 
network parameters to put the selected model in its operating 
mode. 

 The third step is the Graphical User Interface is coded by 

Matlab program. From step 2 extracted this program uses the 
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function to put the selected model in its operating mode as shown 
in Figure 13. 

 

 
Fig. 1: Comparison of suggested network performance of activation 

function 

 

 
Fig. 2: Comparisons of network performance between the best one and 

two hidden layers' 

 

 
Fig. 3: The Configuration of the suggested ANN (4-8-5-2) 

 

 
Fig. 4: Training Ta Regression of the Proposed Network 

 
Fig. 5: Testing Ta Regression of the Proposed Network 

 

 
Fig. 6: Training Tt Regression of the Proposed Network 

 

 
Fig. 7: Testing Tt Regression of the Proposed Network 

 

 
Fig. 8: Training Behavior of Predicted Overall Austenitizing temperatures 
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Fig. 9: Training Behavior of Predicted Overall Tempering temperatures 

 

 
Fig. 10: Testing Behavior of Predicted Overall Austenitizing temperatures 

 

 
Fig. 11: Testing Behavior of Predicted Overall tempering temperatures 

 

 
Fig. 12: The Structure of the Artificial Neural Network Program 

 
Fig. 13: Steps of the Graphical User Interface of Neural Network Program 

4. Results and Discussion 

Computer programs that are coded in Matlab language are used to 
develop the Multi-Output Artificial Neural Network model. Linear 

and nonlinear regression analysis using statistical software (Data 
fit) involved to develop the best mathematical models are 
presented to predict austenitizing and tempering temperature 
compares with Matlab program. 

4.1 Multiple Linear Regression Analysis Model 

The regression procedure was employed for developing the 
mathematical models; the first step, multiple linear regression 
analysis techniques were used. The mechanical properties of the 

experimental results of martensitic stainless steel samples were 
used in this model as input variables such as hardness, impact 
energy, yield and tensile strength. Separate models were 
developed for heat treatment conditions (Austenitizing and 
tempering temperature). The multiple linear regression analysis 
was performed using Statistical software (Data fit RC 148, 2008) 
to generate a model using the least squares method to fit data 
through a set of observations. The number of functions was 

defined to describe the relationships between the input and each 
output variable. 
The functions of linear regression model were initially defined by 
Y= f (HRC, It, Ys, Us) according to the equation (1) [12]: 

Y = ao + ax1 + bx2 + cx3 + ….. + nxm                                          (1) 

Where ao is the free term of the regression equation. (a, b, c, ….. 
n) are coefficients in linear terms. 
The mathematical models that determined by the above analysis 

are represented below: 

Austenitizing Temperature = (758.510172) – (0.905466987) 
(HRC) + (1.093313339) (It) – (6.27E-02) (Ys) + (0.384543051) 
(Us)                                                                                               (2) 

Tempering Temperature = (500.8754918) – (2.880372275) (HRC) 
+ (1.192089984) (It) +(0.544228309) (Ys) +(0.169287202) (Us) 
                                                                                                     (3) 

4.2 Multiple Nonlinear Regression Analysis Model 

The multiple nonlinear regression procedures were used for 
developing the mathematical models to predict Austenitizing and 
Tempering Temperature. The second order polynomial 
representing the response for "n" factors are given by equation (4) 
[13]: 

                                                                                                      (4) 
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Where ao is the free term of the regression equation. a1, a2, a3, a4, 
a5 and a6 are coefficients in linear terms. a11, a22, a33, a44, a55, and 
a66 are quadratic terms and the coefficients a12, a13, a14, a15, a16, 
a23, a24, a25, a26, a34, a35, a36, a45, a46, and a56 are coefficients 

interaction terms. Statistical software (Data fit RC 148, 2008) 
program was employed to calculate the values of these 
coefficients. The mathematical models that determined by the 
above analysis are represented below: 

Austenitizing Temperature = – (2051.773065) + (30.53528934) 
(HRC) + (22.10365287) (It) + (2.848325703) (Ys) + 
(8.289644551) (Us) + (1.159318915) (HRC^2) – (0.054127166) 
(It^2) – (8.91E-04) (Ys^2) + (9.02E-04) (Us^2) + (3.95E-02) 

(HRC) (It) – (2.95E-02) (HRC) (Ys) – (0.156423196) (HRC) (Us) 
– (8.71E-03) (It) (Ys) – (1.79E-02) (It) (Us) – (2.63E-03) (Ys) 
(Us)                                                                                              (5) 

Tempering Temperature = – (1486.386696) – (139.240141) 
(HRC) + (37.18283173) (It) + (2.888351357) (Ys) + 
(17.47920735) (Us) + (2.208059056) (HRC^2) – (6.14E-03) (It^2) 
+ (1.96E-03) (Ys^2) + (5.25E-03) (Us^2) + (0.311734233) (HRC) 
(It) + (0.113209079) (HRC) (Ys) – (0.287336394) (HRC) (Us) – 

(2.33E-02) (It) (Ys) – (3.47E-02) (It) (Us) – (1.44E-02) (Ys) (Us) 

                                                                                                      (6) 

4.3 Comparisons between the Linear and Nonlinear 

Regression Analysis Results Model 

Table 15 shows the experimental data against the predictions 
linear and nonlinear regression analysis results by using eleven 
datasets. Table 15 shows that the error maximum between 
experiment and the predicted linear results for the prediction of 
austenitizing temperature is 10.7812 % and the mean error rate is 

3.6649 %. While the maximum error between experimental and 
nonlinear regression analysis results is 7.4441 % and the mean 
error rate is 2.5318 %. Moreover, Table 16 shows that the error 
maximum between experiment and the predicted linear results for 
the prediction of tempering temperature is 29.0091 % and the 
mean error rate is 15.697 %. While maximum error between 
experimental and nonlinear regression analysis results of 
tempering temperature is 39.04536 % and the mean error rate is 

12.08883 %. 
A comparison of the relative standard error for linear and 
nonlinear regression analysis shows that the nonlinear predictions 
are superior to the linear analysis for all the input mechanical 
properties. Therefore, nonlinear regression analysis provides an 
overall reasonable to define the objective function. 
The plot of the experimental data against the predictions linear 
and nonlinear regression analysis results is shown in the Figures 
14 and 15 for testing austenitizing and tempering temperature. 

 
Table 15: Comparison between experimental, Linear and Nonlinear 

regression analysis results of austenitizing temperature 

Experimental 

Results 

Linear 

Regression 
Error % 

Nonlinear 

Regression 
Error % 

1050 1009.404 3.8663 1023.856 2.4899 

1100 981.4066 10.7812 1018.115 7.4441 

900 882.3231 1.9641 889.4762 1.1693 

1000 986.7937 1.32063 1005.615 0.5615 

1050 1030.02 1.90286 1057.959 0.758 

1000 1024.39 2.439 1019.123 1.9123 

900 859.3434 4.5174 875.0711 2.7699 

1000 1011.098 1.1098 1015.025 1.5025 

1000 1036.408 3.6408 1028.569 2.8569 

950 994.6287 4.69776 990.2234 4.2340 

1050 1007.225 4.07381 1027.415 2.15095 

Mean error rate % 3.6649 2.5318 

 
Where,  n = 11 
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Fig. 14: The experimental, linear and nonlinear regression analysis results 

of testing austenitizing temperature 
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Fig. 15: The experimental, linear and nonlinear regression analysis results 

of testing tempering temperature 

 

Table 16: Comparison between experimental, Linear and Nonlinear 

regression analysis results of tempering temperature 
Experimental 

Results 

Linear 

Regression 
Error % 

Nonlinear 

Regression 
Error % 

200 235.7275 17.86375 228.3187 14.15935 

550 513.5173 6.63322 529.0312 3.81251 

400 424.2353 6.05883 385.6721 3.581975 

400 311.6268 22.0933 399.1881 0.202975 

300 254.4996 15.1668 330.388 10.12934 

250 317.2229 26.8892 347.6134 39.04536 

450 426.292 5.26845 417.7829 7.159356 

350 301.4481 13.87198 317.7952 9.201372 

300 387.0273 29.0091 361.0238 20.3413 

300 385.0775 28.3592 360.72 20.24 

650 640.5458 1.454493 683.1737 5.10365 

Mean error 

rate % 
15.697 12.08883 

 

4.4 Comparisons between the ANN and Nonlinear 

Regression Analysis Models 

 
Table 17 shows a comparison between the experimental and 
predicted ANN and nonlinear regression analysis results using 
eleven datasets.  
Table 17 shows that the maximum error between experiment and 
the predicted ANN results for prediction austenitizing temperature 

is 0.140064 % and the mean error rate is 0.032947 %. While the 
maximum error between experimental and nonlinear regression 
analysis results is 7.4441 % and the mean error rate is 2.5318 %.  
Moreover, Table 18 shows that the maximum error between 
experiment and the predicted ANN results for prediction 
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tempering temperature is 1.45285 % and the mean error rate is 
0.320189 %. While maximum error between experimental and 
nonlinear regression analysis results is 39.04536 % and the mean 
error rate is 12.08883 %. 

It can be concluded that from the above mentioned, the artificial 
neural network is a more accurate prediction system than 
nonlinear regression analysis for predicting austenitizing and 

tempering temperature. Therefore, this work used artificial neural 
network models to define the objective function. 
The plot of the experimental data against the artificial neural 
network predictions and nonlinear regression analysis results is 

shown in the Figures 16 and 17 for testing austenitizing and 
tempering temperature. 

 
Table 17: Comparison between experimental, predicted ANN model and nonlinear regression analysis results of austenitizing temperature 

Experimental 

Results 

Predicted 

ANN 
Error % Nonlinear Regression Error % 

1050 1049.86 0.01334 1023.856 2.4899 

1100 1100.673 0.06119 1018.115 7.4441 

900 899.7311 0.029878 889.4762 1.1693 

1000 1000.16 0.016 1005.615 0.5615 

1050 1049.865 0.012857 1057.959 0.758 

1000 1000.097 0.0097 1019.123 1.9123 

900 899.7342 0.029534 875.0711 2.7699 

1000 1000.458 0.0458 1015.025 1.5025 

1000 999.9726 0.00274 1028.569 2.8569 

950 948.6694 0.140064 990.2234 4.2340 

1050 1049.986 0.00134 1027.415 2.15095 

Mean error rate % 0.032947 2.5318 

 

Table 18: Comparison between experimental, predicted ANN model and nonlinear regression analysis results of tempering temperature 

Experimental 

Results 

Predicted 

ANN 
Error % Nonlinear Regression Error % 

200 202.9057 1.45285 228.3187 14.15935 

550 548.9291 0.19471 529.0312 3.81251 

400 399.9829 0.004275 385.6721 3.581975 

400 399.7335 0.066625 399.1881 0.202975 

300 300.2411 0.080367 330.388 10.12934 

250 247.7523 0.89908 347.6134 39.04536 

450 450.9974 0.221645 417.7829 7.159356 

350 349.9289 0.02032 317.7952 9.20137 

300 301.3199 0.43997 361.0238 20.34127 

300 299.601 0.133 360.72 20.24 

650 650.0601 0.00925 683.1737 5.10365 

Mean error rate % 0.320189 12.08883 
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Fig. 16: The experimental predicted ANN model and nonlinear regression analysis results of testing austenitizing temperature 
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Fig. 17: The experimental, predicted ANN model and nonlinear regression analysis results of testing tempering temperature 
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5. Modeling Results 

Results obtained show the high ability of artificial neural networks 

from the given range of input data to predict heat treatment 

temperature (Austenitizing and Tempering Temperature). 

Inform about low deviation ratio of the correct execution of the 

testing and training and the correlation coefficient over 90 %, 

small differences in the relation between computed by measured 

values experimentally and ANN model. The vectors of uniform 

distribution in every set indicated that a good ability of the 

networks to results generalization. 

Received results also have confirmed the correctness of the 

artificial neural network usage as possible the simulating tool for 

the application in the area of engineering material for mechanical 

properties prediction. Heat treatment applied with success for 

stainless steels it gives the chance on the effective application for 

different stainless steel grades or even for the different types of 

engineering materials.  

This study investigates the ability to using multiple outputs 

Artificial Neural Network model that was built with Matlab 

package accurately to predict the quenching and tempering 

temperatures for martensitic stainless steel. Also, linear and 

nonlinear regression analyses (using Data fit package) were used 

to estimate the mathematical relationship between quenching and 

tempering temperatures with hardness, tensile properties and 

impact energy of martensitic stainless steel have been investigated 

as a function of mechanical properties in order to achieve the 

suitable heat treatment temperature. 

6. Conclusions 

The most important conclusions drawn from the present study that 

is the best training function that found in one and two hidden 

layers is [trainrp and transcg] respectively. The arrangement of 

activation function [tansig, tansig, purelin] is found to give a 

maximum regression and minimum mean square error for both 

training and testing phases. 

The ANN model with two hidden layers significantly improves 

the performance of the network rather than a single hidden layer. 

In this investigates the configuration of (8-5) (8 is the nodes of the 

first hidden layer and 5 nodes in the second hidden layer) is 

proved to be very efficient to predict the austenitizing and 

tempering temperature. 
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