JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

Vol. 36, No. 9 Sep. 2006

Article ID: 0253-2778(2006)09-0951-05

On addition and deletion of edges of graphs

NAJIM Alaa A, XU Jun-ming

(Department of Mathematics, University of Science and Technology of China, Hefei 230026, China)

Abstract: Let P(t,d) (resp. C(t,d)) denote the minimum diameter of a graph obtained by adding t extra edges to a path (resp. cycle) of length d. Let $T_P(p,d)$ (resp. $T_C(p,d)$) be the minimum number of edges added to a path (resp. cycle) of length d in order to obtain a graph of diameter not greater than p. Let f(t,d) denote the maximum diameter of a connected graph obtained after deleting t edges from a connected graph of diameter d. Some new lower and upper bounds of these parameters were presented. In particular, it is proved that $T_c(3,d) = d - 8$ for $d \ge 12$ conjectured by Grigorescu [J. Graph Theory, 2003,43(2):299-303], and it is partially proved that $f(t,d) \leq$ (t+1)d-t+1 conjectured by Schoone et al [J. Graph Theory, 1987,11(3):409-427].

Key words: diameter; altered graph; edge addition; edge deletion; Schoone et al's conjecture

CLC number: O157. 5; TP302. 1 Document code: A

AMS Subject Classification(2000):33C80; 03F05; 65Q05.

关于图的边添加和减少

NAIIM Alaa A,徐俊明

(中国科学技术大学数学系,安徽合肥 230026)

摘要:用P(t,d)(或者C(t,d))表示从长为d的路(或者圈)通过添加t条边后得到的图的最小直径, $T_P(p,d)$ (或者 $T_C(p,d)$)表示为了得到直径最多为p的图需要向长为d的路(或者圈)中添加的最少边数,f(t,d)表示从直径为d的图中删去t条边后得到的连通图的最大直径.我们给出了这些参数新的上下界.特别地, 证明了 Grigorescu[J. Graph Theory, 2003, 43(2): 299-303]猜想: $T_c(3,d) = d-8$, 其中 $d \ge 12$; 并且部 分地解决了 Schoone 等人[J. Graph Theory, 1987, 11(13): 409-427] 的猜想: $f(t,d) \leq (t+1)d-t+1$. 关键词:直径;变更图;边添加;边减少; Schoone 等的猜想

0 Introduction

This paper is the series paper of Refs. [5] and [6]. We also follow Ref. [1] for graph-theoretical terminology and notation not defined here. As Ref. [6], let G = (V, E) be a simple undirected

graph with a vertex-set V = V(G) and an edge-set E = E(G).

Let P(t,d) (resp. C(t,d)) denote the minimum diameter of a graph obtained by adding textra edges to a path (resp. cycle) of length d. For some small t's and special d's, the exact values of

Foundation item: Supported by NNSF of China (10271114).

Biography: NAJIM Alaa A, male, born in 1965, PhD. Research field: graphs and combinatorics. E-mail: alaaamer6@hotmail.com

Corresponding author: XU Jun-ming, Prof. E-mail: xujm@ustc. edu. cn

Received: 2005-10-11; **Revised:** 2006-06-17

P(t,d) and C(t,d) have been determined. For example,

$$P(1,d) = \left\lfloor \frac{d+1}{2} \right\rfloor \text{ for } d \geqslant 2,$$

$$P(2,d) = \left\lceil \frac{d+1}{3} \right\rceil \text{ for } d \geqslant 3,$$

$$P(3,d) = \left\lceil \frac{d+2}{4} \right\rceil \text{ for } d \geqslant 5,$$

$$C(1,d) = \left\lfloor \frac{d}{2} \right\rfloor \text{ for } d \geqslant 2,$$

$$C(2,d) = \left\lceil \frac{d+2}{4} \right\rceil \text{ for } d \geqslant 4,$$

determined by Schoone *et al*^[2], and

$$P(t,(2k-1)(t+1)+1) = 2k$$

for any positive integer k determined by DENG and $\mathrm{XU}^{[3]}$. Schoone et $al^{[2]}$ proved that the problem determining the values of the two parameters for general integers t and d is NP-complete. However, many lower and upper bounds of P(t,d) and C(t,d) have been established by several authors $[2^{-7}]$.

Let $T_P(p,d)$ (resp. $T_C(p,d)$) be the minimum number of edges that have been added to a path (resp. cycle) of length d to transform it into a graph of diameter at most p. Schoone $et~al^{[2]}$ proved that it is NP-complete to determine the $T_P(p,d)$ and $T_C(p,d)$. Alon [8] determined $T_P(2,d)=d-2$ for $d\geqslant 273$, $T_C(2,d)=d-3$, $d-99\leqslant T_P(3,d)$, $d-100\leqslant T_C(3,d)\leqslant d-6$ and, in general, $T_P(p,d)\leqslant (d+1)/p/2$]. Grigorescu^[9] proved $d-59\leqslant T_C(3,d)\leqslant d-8$ and conjectured $T_C(3,d)=d-8$ for $d\geqslant 12$.

Let f(t,d) denote the maximum diameter of a connected graph obtained after deleting t edges from a connected graph of diameter d. Plesnik^[10] determined f(1,d) = 2d. Schoone $et\ al^{[2]}$ proved f(2,d) = 3d-1, f(3,d) = 4d-2 for d>1, f(t,2)=t+3 for t=1,2,3,4,6, and t+2 otherwise; and conjectured

$$f(t,d) \leqslant (t+1)d - t + 1.$$

1 Main results

In this paper we prove $\left\lceil \frac{d-2}{t+1} \right\rceil \leqslant P(t,d) \leqslant$

$$\left\lceil \frac{d-2}{t+1} \right\rceil + 1 \text{ for } t \geqslant 4 \text{ and odd } d \geqslant 3; \ P(t,d) = \left\lceil \frac{d-2}{t+1} \right\rceil + 1 \text{ for } t \geqslant 4 \text{ and } 3t+1 \leqslant d \leqslant 3t+3;$$

$$C(t,d) \geqslant \left\lceil \frac{d-1}{t+2} \right\rceil \text{ for } t \geqslant 3 \text{ and } d \geqslant 2; \left\lceil \frac{d}{p} \right\rceil - 1 \leqslant T(p,d) \leqslant \left\lfloor \frac{d-7}{p-3} \right\rfloor - 1 \text{ for } p \geqslant 4 \text{ and } d \geqslant 12, \text{ and}$$

$$\left\lceil \frac{d-2}{p-1} \right\rceil - 1 \leqslant T(p,d) \leqslant \left\lfloor \frac{d-2}{p-2} \right\rfloor - 1 \text{ for some}$$
special integers p and d . In particular, we prove the conjecture of Grigorescu that $T_C(3,d) = d-8$ for $d \geqslant 9$.

For the conjecture of Schoone et al, we obtain

$$f(t,d) \leqslant \begin{cases} (t+1)d - t + 1 & \text{if } d \geqslant 3 \text{ and is odd or} \\ P(t,d) = \left\lceil \frac{d-2}{t+1} \right\rceil + 1, \\ (t+1)d - 2t & \text{if } P(t,d) = \left\lceil \frac{d-2}{t+1} \right\rceil + 2, \end{cases}$$

which is tight when d is even and

$$P(t,d) = \left\lceil \frac{d-2}{t+1} \right\rceil + 1.$$

2 Several lemmas

Lemma 2.1^[5] For any integer $k \ge 1$, let $I'(t,k) = \{2k(t+1)+1, 2k(t+1)+2, 2k(t+1)-t+1\} \cup \{2k(t+1)-t+h: h=6,7,\cdots,t\}$. Then

$$P(t,d) \leqslant \begin{cases} \left\lceil \frac{d-2}{t+1} \right\rceil + 2 & \text{if } d \in I'(t,k), \\ \left\lceil \frac{d-2}{t+1} \right\rceil + 1 & \text{otherwise} \end{cases}$$

for any integers $t \ge 6$ and $d \ge 2$.

4,5 and $d \ge 4$.

Lemma 2. 2^[6] $P(t,d) = \left\lceil \frac{d-2}{t+1} \right\rceil + 1$, where $t \geqslant 4$, $t+4 \leqslant d \leqslant t+7$, and t=4, d=10k+1, $k \geqslant 1$. For $t \geqslant 3$, C(t,d) = 3 where $t+6 \leqslant d \leqslant t+8$.

Lemma 2.3^[3] For any positive integers t and $d(\geqslant 2)$, $\left\lceil \frac{d}{t+1} \right\rceil \leqslant P(t,d) \leqslant \left\lfloor \frac{d-2}{t+1} \right\rfloor + 3$. In particular, P(t,(2k-1)(t+1)+1)=2k for any positive integer k, $F(t,d) \leqslant \left\lfloor \frac{d}{t} \right\rfloor + 1$ if d is large enough, and $\left\lceil \frac{d}{t+1} \right\rceil \leqslant P(t,d) \leqslant \left\lceil \frac{d}{t+1} \right\rceil + 1$ for t=1

Lemma 2.4^[11] Let G be a connected undirected graph, $S \subset E(G)$ and |S| = t. If h = d(G-S) is well defined, then $d(G) \ge P(t,h)$.

Lemma 2.5^[7] Let $t \ge 4$. $P(t,d) \le \frac{d-7}{t+1} + 3$ for $d \ge 2$, and

$$C(t,d) \leq$$

$$\begin{cases} \frac{d-7}{t+2} + 3 & \text{if } t \text{ is even,} \\ \left\lceil \frac{d+t-6}{2t+2} \right\rceil + \left\lceil \frac{d+t-1}{2t+2} \right\rceil \leqslant \frac{d-8}{t+1} + 3 & \text{if } t \text{ is odd,} \end{cases}$$
 and
$$\begin{cases} \frac{d}{4} \right\rceil - 1 \leqslant C(3,d) \leqslant \left\lceil \frac{d}{4} \right\rceil \text{ for } d \geqslant 5. \text{ Also} \end{cases}$$

$$f(t,d) \geqslant (t+1)d - 2t + 4 \text{ for any odd } d \geqslant 3.$$

3 Proof of main results

3.1 Addition of edges

Theorem 3.1 For $t \geqslant 4$,

$$P(t,d) = \left[\frac{d-2}{t+1} \right] + 1 = 4,$$

where $3t + 1 \le d \le 3t + 3$.

Proof Let $P = (x_0, x_1, \dots, x_d)$ be an (x_0, x_d) -path and G an altered graph with diameter d(G) = P(t,d) obtained from P plus t extra edges, where d = 3t + 1. From Lemma 2. 3, $d(G) \geqslant 3$. So, it is sufficient to prove $d(G) \neq 3$. Assume the contrary d(G) = 3. For $0 \leqslant i < d$, let x_i be the smallest numbered vertex that G has no edge (x_i, x_j) with j > i + 1. Thus, for each $h = 0, 1, \dots, i - 1$, there exists a $j(j \geqslant h + 2)$ such that $(x_h, x_j) \in E(G)$ is an extra edge. For each $h = 0, 1, \dots, i - 1$, let A_h be the set of extra edges incident with the vertex x_h and B the set of other extra edges. Then $|A_h| \geqslant 1$ for each $h = 0, 1, \dots, i - 1$, $|\bigcup A_h| \geqslant i$ and $|\bigcup A_h| + |B| = t$.

Suppose that there are three consecutive vertices x_{j-1} , x_j and x_{j+1} , $i+4 \le j \le d-1$ such that none of them is incident with some extra edge. Then x_j needs at least 4 steps to reach x_i , which contradicts the hypothesis of d(G) = 3. Thus, at least one of the three consecutive vertices x_{j-1} , x_j and x_{j+1} in $X_2 = \{x_{j+4}, x_{j+5}, \dots, x_d\}$ is incident with some extra edge. We consider the worst case, that is, exactly one vertex in $\{x_{j-1}, x_j, x_{j+1}\}$ is incident

with only one extra edge. Since the distance between x_i and x_j is at least two in G, the only vertex incident with the only extra edge must be x_j . Let the only extra edge be e_j . So, any shortest path P from x_i to x_j with length two must contain either the vertex x_{i+1} or some vertex x_h in $X_1 = \{x_0, x_1, \dots, x_{i-1}\}$. If the former happens, then $e_j = x_{i+1}x_j$ and $e_j \in B$. If the later happens, then $|A_h| \ge 2$ if $h \le i-2$. Thus, the vertex x_i needs at least $\left\lceil \frac{(d+1)-(i+4)}{3} \right\rceil - \delta$ extra edges to reach all vertices in X_2 by at most three steps, where $\delta = 0$ if i = 0, and at most one step otherwise. Let E_1 be the set of these edges.

Since every edge in E_1 must reach either the vertex x_{i+1} or some vertex x_h in X_1 , then the graph needs at least two new extra edges to become graph of diameter at most three.

Thus we have

$$t \geqslant i + \left\lceil \frac{(d+1) - (i+4)}{3} \right\rceil + 2 - \delta \geqslant t + \left\lceil \frac{2i + 4 - 3\delta}{3} \right\rceil \geqslant t + 1.$$

Thus $P(t,3t+1) \geqslant 4$. Since $P(t,d) \leqslant P(t,d')$ if $d \leqslant d'$, $P(t,d) \geqslant 4$ for $d \geqslant 3t+1$. On the other hand, since $3t+1,3t+2,3t+3 \in I'(t,k)$ for any k, from Lemma 2. 1, $P(t,d) \leqslant \left\lceil \frac{d-2}{t+1} \right\rceil + 1 = 4$ for $t \geqslant$

6. For t = 4, 5, from Lemma 2. 3,

$$P(t,d) \leqslant \left\lceil \frac{d}{t+1} \right\rceil + 1 = 4 \text{ for } d \geqslant 4.$$

Thus, P(t,d)=4 for $3t+1 \le d \le 3t+3$ and $t \ge 4$.

Remark From Theorem 3. 1 and Lemma 2. 3, $3 \le P(t,d) \le 4$ for $t+8 \le d \le 3t$ and $t \ge 4$.

Theorem 3. 2 For $t \ge 3$ and $d \ge 2$, $C(t,d) \ge \lceil \frac{d-1}{t+2} \rceil$, which is tight when t is even, $k(t+2) + 2 \le d \le k(t+2) + 6$ and $k \ge 0$. Furthermore, C(t,d) = 4, where $(t,d) \in \{(3,13), (3,14), (3,15), (4,16), (4,17), (4,18), (5,19), (6,22)\}$.

Proof It is easy to verify that

$$C(t,d+1) \geqslant P(t+1,d), \tag{1}$$

since one way of adding t+1 edges to a path P_{d+1} is to first add one edge joining two end vertices of

 P_{d+1} and then to add t edges in an optimal way to the resulting cycle C_{d+1} . Then from Lemma 2.3 we have

$$C(t,d) \geqslant \left\lceil \frac{d-1}{t+2} \right\rceil$$
.

Clearly, from Lemma 2.4, the boundary above is tight for any even $t \ge 3$,

$$k(t+2) + 2 \le d \le k(t+2) + 6$$

and $k \geqslant 0$.

From Theorem 3.1 and Inequality (1) we have

$$C(t,d+1) \geqslant 4$$
 for $3t+4 \leqslant d \leqslant 3t+6$, $t \geqslant 3$.

Also from Lemma 2.4 we have that for $t \ge 3$,

$$C(t, d+1) \leq 4$$
,

where $(t,d) \in \{(3,13), (3,14), (3,15), (4,16), (4,17), (4,18), (5,19), (6,22)\}.$

Theorem 3.3 For $p \geqslant 4$ and $d \geqslant 12$,

$$\left\lceil \frac{d}{p} \right\rceil - 1 \leqslant T_P(p,d) \leqslant \left\lfloor \frac{d-7}{p-3} \right\rfloor - 1.$$

In particular,

$$\left\lceil \frac{d-2}{p-1} \right\rceil - 1 \leqslant T_P(p,d) \leqslant \left\lfloor \frac{d-2}{p-2} \right\rfloor - 1$$

for $(p = 3, d \ge 7)$, $(p = 4, d \ge 12)$, (p = 2k, d = 10k - 8), and (p = 2k + 1, d = 10k - 3), $k \ge 1$.

Proof From Lemma 2.1 and Lemma 2.5 we have $\left\lceil \frac{d}{t+1} \right\rceil \leqslant P(t,d) \leqslant \frac{d-7}{t+1} + 3$ for $t \geqslant 4$ and $d \geqslant 2$. Put p = P(t,d). Let $p \geqslant 4$ then we get $d \geqslant t+8$, which means that $d \geqslant 12$. Since

$$p \leqslant \frac{d-7}{t+1} + 3$$

we have

$$t \leqslant \left\lfloor \frac{d-7}{b-3} \right\rfloor - 1$$
.

Since $p \geqslant \left\lceil \frac{d}{t+1} \right\rceil \geqslant \frac{d}{t+1}$, we have

$$t \geqslant \left\lceil \frac{d}{b} \right\rceil - 1$$
.

So, for $p \geqslant 4$ and $d \geqslant 12$,

$$\left\lceil \frac{d}{p} \right\rceil - 1 \leqslant T_P(p,d) \leqslant \left\lfloor \frac{d-7}{p-3} \right\rfloor - 1.$$

From Theorem 3.1, and Lemmas 2.2 and 2.3 we have $P(t,d) = \left\lceil \frac{d-2}{t+1} \right\rceil + 1$ for $t \geqslant 4$, $3t+1 \leqslant d \leqslant$

3t+4, $t+4 \le d \le t+7$, and d = (2k-1)(t+1) + 1, and for t = 4, d = 10k+1, $k \ge 1$. Let p = 3 then $\frac{d-2}{5} + 2 \ge 3$, this means $d \ge 7$. Also in same way we have $d \ge 12$, 10k-8, 10k-3 when p = 4, 2k,2k+1, respectively. Since $p \le \frac{d-2}{t+1} + 2$, we have

$$t \leqslant \left\lfloor \frac{d-2}{p-2} \right\rfloor - 1.$$

Also since $p \geqslant \frac{d-2}{t+1} + 1$, we have

$$\left\lceil \frac{d-2}{p-1} \right\rceil - 1 \leqslant t$$
.

So the theorem follows.

Theorem 3.4 For $d \ge 11$, $T_C(3,d) = d - 8$ and $d - 7 \le T_P(3,d) \le d - 3$.

Proof From Lemma 2. 2,

$$C(t,d) = 3$$
 for $t+6 \le d \le t+8$ and $t \ge 3$.

Then we have C(t,d) = 3 for $d-8 \le t \le d-6$ and $d \ge 11$, which means

$$T_C(3,d) \geqslant d-8$$
.

Since Grigorescu^[9] proved $T_c(3,d) \leqslant d-8$, we have

$$T_C(3,d) = d - 8.$$
 (2)

It is easy to verify that

$$T_C(p,d+1) \leqslant T_P(p,d)$$
.

Then from Equality (2) and Theorem 3.3 we have $d-7 \leqslant T_P(3,d) \leqslant d-3$.

The theorem follows.

3. 2 Deletion of edges

Theorem 3.5 For any integers $t \ge 2$ and $d \ge 1$,

$$f(t,d) \leqslant \begin{cases} (t+1)d - t + 1 & \text{if } d \geqslant 3 \text{ and is odd or} \\ P(t,d) = \left\lceil \frac{d-2}{t+1} \right\rceil + 1, \\ (t+1)d - 2t & \text{if } P(t,d) = \left\lceil \frac{d-2}{t+1} \right\rceil + 2. \end{cases}$$

This bound is tight when d is even and $P(t,d) = \left\lceil \frac{d-2}{t+1} \right\rceil + 1$.

Proof It is clear that for any $t \ge 4$,

$$\left\lceil \frac{d-2}{t+1} \right\rceil \leqslant \left\lceil \frac{d}{t+1} \right\rceil \leqslant \left\lceil \frac{d-2}{t+1} \right\rceil + 1.$$

From Lemma 2. 1 and Lemma 2. 3 we have for $t \ge 4$ and $d \ge 2$,

$$P(t,d) = \left\lceil \frac{d-2}{t+1} \right\rceil + i$$
, for some $i = 0,1,2$.

(3)

Let G be an undirected graph with diameter d, $S \subset E(G)$ and |S| = t such that

$$d(G-S) = h = f(t,d).$$

Then from Lemma 2.4 and Equality (3) there exists some i such that

$$\left\lceil \frac{h-2}{t+1} \right\rceil + i = P(t,h+1) \leqslant d.$$

Then

$$\frac{h-2+it+i}{t+1} \leqslant d.$$

Thus

$$f(t,d) = h \le (t+1)d - it - i + 2$$

So, from Lemma 2.5, the theorem follows.

From Lemma 2.5 and Theorem 3.5, we immediately have

Corollary 3.6 If $t \geqslant 4$, and $d \geqslant 3$ and is odd, then $\left\lceil \frac{d-2}{t+1} \right\rceil \leqslant P(t,d) \leqslant \left\lceil \frac{d-2}{t+1} \right\rceil + 1$.

References

- [1] XU Jun-ming. Theory and Application of Graphs [M].

 Dordecht/ Boston/ London: Kluwer Academic Publishers, 2003.
- [2] Schoone A A, Bodlaender H L, Van Leeuwen J.

- Diameter increase caused by edge deletion [J]. J. Graph Theory, 1987, 11(3):409-427.
- [3] DENG Z G, XU J M. On diameters of altered graph [J], J. Mathematical Study, 2004, 37 (1):35-41.
- [4] Chung F R K, Garey M R. Diameter bounds for altered graphs [J]. J. Graph Theory, 1984, 8(4):511-534.
- [5] Najim A A, XU J M. On edge addition of altered graph [J]. Journal of University of Science and Technology of China, 2005, 35(6):725-731.

 Najim A A, 徐俊明. 变更图的边添加[J]. 中国科学技术大学学报,2005,35(6):725-731.
- [6] Najim A A, XU J M. Edge addition and edge deletion of graphs [J]. Journal of University of Science and Technology of China, 2006, 36 (3):254-257.

 Najim A A, 徐俊明. 图的边添加和减少[J]. 中国科学技术大学学报,2006, 36 (3):254-257.
- [7] WU Y Z, XU J M. On diameters of altered graph [J]. J. Math. Research Exposition, 2006, 26(3):502-508.
- [8] Alon N, Gyárfás A, Ruszinkó M. Decreasing the diameter of bounded degree graphs [J]. J. Graph Theory, 2000, 35 (2):161-172.
- [9] Grigorescu E. Decreasing the diameter of cycles [J]. J. Graph Theory, 2003, 43 (2):299-303.
- [10] Plesnik J. Note on diametrically critical graphs [C]// Recent Advances in Graph Theory. Prague: Academia, 1975:455-465.
- [11] XU Jun-ming. Topological Structure and Analysis of Interconnection Network [M]. Dordecht/ Boston/ London: Kluwer Academic Publishers, 2001.