JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

Vol. 36, No. 3 Mar. 2006

Article ID: 0253-2778(2006)03-0254-04

Edge addition and edge deletion of graphs

NAJIM Alaa A, XU Jun-ming

(Department of Mathematics, University of Science and Technology of China, Hefei 230026, China)

Abstract: Let P(t,d) (resp. C(t,d)) be the minimum diameter of a connected graph obtained from a single path (resp. from a single circle) of length d by adding t extra edges. It is proved that $P(t,d) = \left\lceil \frac{d-2}{t+1} \right\rceil + 1$ if t and d satisfy the following conditions: $t \geqslant 4$ and $t+4 \leqslant d \leqslant t+7$, t=4 and $t+4 \leqslant d \leqslant t+7$. For some t and $t+4 \leqslant d \leqslant t+7$, are determined, and so the conjecture of Schoone, et al [J]. Graph Theory, 1987, 11:409-427 is settled partially.

Key words: diameter; altered graph; edge addition; edge deletion; Schoone et al's conjecture

CLC number: O157. 5; TP302. 1 Document code: A

AMS Subject Classification(2000):33C80; 03f05; 65Q05

图的边添加和减少

NAJIM Alaa A,徐俊明

(中国科学技术大学数学系,安徽合肥 230026)

摘要:用 P(t,d) (或者 C(t,d))表示从一条长为 d 的简单路(或者简单圈)通过添加 t 条边后得到图的最小直径. 证明了:如果 t 和 d 满足条件 $t \ge 4$ 且 $t+4 \le d \le t+7$,或者 t=4 且 d=10k+1 ($k \ge 1$),那么 $P(t,d) = \left\lceil \frac{d-2}{t+1} \right\rceil +1$. 对某些 t 和 d,确定了 C(t,d) 的值和最好下界,部分地解决了 Schoone 等的猜想 [J. Graph Theory,1987,11:409—427].

关键词:直径;变更图;边添加;边减少;Schoone 等的猜想

0 Introduction

We follow ref. [1] for graph-theoretical terminology and notation not defined here. Let G be a simple undirected graph with vertex-set V = V(G) and edge-set E = E(G).

Let P(t,d) denote the minimum diameter of a graph obtained by adding t extra edges to a path

 $P = (x_1, x_2, \dots, x_{d+1})$ of length d. For some small t's and special d's, the values of P(t,d) have been determined. It is easy to verify that $P(1,d) = \lfloor \frac{d+1}{2} \rfloor$ for $d \ge 2$. Ref. [2] determines $P(2,d) = \lfloor \frac{d+1}{3} \rfloor$ for $d \ge 3$ and $P(3,d) = \lfloor \frac{d+2}{4} \rfloor$ for $d \ge 5$.

Foundation item: Supported by NNSF of China (10271114).

Biography: NAJIM Alaa A, male, born in 1968, PhD candidate. Research field: graphs and combinatorics. E-mail: alaaamer6@hotmail. com **Corresponding author**: XU Jun-ming, Prof. E-mail: xujm@ustc. edu. cn

^{*} **Received**: 2005-04-26; **Revised**: 2006-03-01

Ref. [3] determines P(t, (2k-1)(t+1)+1) = 2k for any positive integer k,

$$\left\lceil \frac{d}{t+1} \right\rceil \leqslant P(t,d) \leqslant \left\lceil \frac{d}{t+1} \right\rceil + 1$$

for t = 4.5 and $d \ge 4$ and in general

$$\left[\frac{d}{t+1}\right] \leqslant P(t,d) \leqslant \left[\frac{d-2}{t+1}\right] + 3.$$

Also ref. [4] determines

$$P(t,d) \leqslant \begin{cases} \left\lceil \frac{d-2}{t+1} \right\rceil + 2 & \text{if } d \in I'(t,k), \\ \left\lceil \frac{d-2}{t+1} \right\rceil + 1 & \text{otherwise,} \end{cases}$$

where $I'(t,k) = \{2k(t+1)+1, 2k(t+1)+2, 2k(t+1)-t+1\} \cup \{2k(t+1)-t+h, h=6,7,\dots,t\}$ and the integers $t \ge 6, d \ge 2$ and $k \ge 1$.

Let C(t,d) denote the minimum diameter of a graph obtained by adding t extra edges to a circle of length d. It is easy to verify that $C(1,d) = \left\lfloor \frac{d}{2} \right\rfloor$ for $d \geqslant 2$. Ref. [2] determines $C(2,d) = \left\lceil \frac{d+2}{4} \right\rceil$ for $d \geqslant 4$. For general $t \geqslant 3$ and $d \geqslant 5$, ref. [5] obtains $\left\lceil \frac{d}{t+i} \right\rceil - 1 < C(t,d) \leqslant \left\lceil \frac{d}{t+i} \right\rceil + 3$ for i equal 1 if t is odd and 2 if it is even. WU and XU[®] prove that for $d \geqslant 5$, $\left\lceil \frac{d}{4} \right\rceil - 1 < C(3,d) \leqslant \left\lceil \frac{d}{4} \right\rceil$ and in general $C(t,d) \leqslant \left\lceil \frac{d-9+i}{t+i} \right\rceil + 3$ for i equal 1 if t is odd and 2 if t is even for any integer $t \geqslant 4$.

Let f(t,d) denote the maximum diameter of a connected graph obtained after deleting t edges from a connected graph of diameter d. For t=1, ref. [6] determines f(1,d)=2d. For small t and d, Schoone, et al^[2] prove that f(2,d)=3d-1, f(3,d)=4d-2 for d>1, f(t,2) is equal to t+3 for t=1,2,3,4,6 and t+2 otherwise, $f(t,d) \leq (t+1)d$ for any positive integers t and d, and $f(t,d) \geq (t+1)d-t$ for d is even. Also WU and XU⁰ prove $f(t,d) \geq (t+1)d-2t+4$ for $t \geq 4$ and d is odd not less than 3.

In this paper we first prove that P(t,d) =

 $\left\lceil \frac{d-2}{t+1} \right\rceil + 1$, for $t \geqslant 4$, $t+4 \leqslant d \leqslant t+7$ and for t = 4, d = 10k+1 ($k \geqslant 1$). Then we prove that for $t \geqslant 3$, C(t,d) = 3 for $t+6 \leqslant d \leqslant t+8$, and the lower bound C(t,d) is 3 for d = t+9 and 2k for $d = (2k-1)(t+2)+2(k \geqslant 1)$. These bounds are tight for some t and d.

After that we prove the conjecture of Schoone et $al^{[2]}f(t,d) \leq (t+1)d-t+1$, for $t \geq 4$, $t+4 \leq d \leq t+7$, and d=2k(t+1)-t, $k \geq 1$, and for t=4 and d=10k+1. This upper bound is tight for some d.

1 Several lemmas

Lemma 1.1^[4] For any integer $k \ge 1$, let $I'(t,k) = \{2k(t+1)+1, 2k(t+1)+2, 2k(t+1)-t+1\} \cup \{2k(t+1)-t+h: h=6,7,\cdots,t\}$. Then

$$P(t,d) \leqslant \begin{cases} \left\lceil \frac{d-2}{t+1} \right\rceil + 2 & \text{if } d \in I'(t,k), \\ \left\lceil \frac{d-2}{t+1} \right\rceil + 1 & \text{otherwise,} \end{cases}$$

for the integers $t \ge 6$, and $d \ge 2$.

Lemma 1. 2^[3] For given positive integers t and $d(\geqslant 2)$, $\left\lceil \frac{d}{t+1} \right\rceil \leqslant P(t,d) \leqslant \left\lfloor \frac{d-2}{t+1} \right\rfloor + 3$. In particular, P(t,(2k-1)(t+1)+1)=2k for any positive integer k, $P(t,d) \leqslant \left\lfloor \frac{d}{t} \right\rfloor + 1$ if k is large enough, and $\left\lceil \frac{d}{t+1} \right\rceil \leqslant P(t,d) \leqslant \left\lceil \frac{d}{t+1} \right\rceil + 1$ for t=4,5 and $d\geqslant 4$.

Lemma 1.3^[7] Let G be a connected undirected graph, $S \subset E(G)$ with |S| = t. If h = d(G-S) is well defined, then $d(G) \ge P(t,h)$.

Lemma 1. 4[©] For $d \geqslant 5$ and $t \geqslant 4$, $C(t,d) \leqslant$ $\begin{cases} \frac{d-7}{t+2} + 3 & \text{if } t \text{ is even,} \\ \left\lceil \frac{d+t-6}{2t+2} \right\rceil + \left\lceil \frac{d+t-1}{2t+2} \right\rceil \leqslant \frac{d-8}{t+2} + 3 & \text{if } t \text{ is odd.} \end{cases}$ Also $\left\lceil \frac{d}{4} \right\rceil - 1 \leqslant C(3,d) \leqslant \left\lceil \frac{d}{4} \right\rceil.$

① WU Ye-zhou, XU Jun-ming. On diameters of altered graph, to appear in J. Math. Research Exposition (2006).

2 Proof of main results

2.1 Edge addition

Theorem 2.1 For $t \geqslant 4$,

$$P(t,d) = \left[\frac{d-2}{t+1} \right] + 1 = 3,$$

where $t+4 \leq d \leq t+7$.

Proof Let $P = (x_0, x_1, \dots, x_d)$ be an (x_0, x_d) path and G an altered graph obtained from P by
adding t extra edges and having diameter d(G) = P(t,d), where $d \ge t+4$.

If d(G) = 1, then the number of the extra edges is equal to

$$t \geqslant (d-1) + (d-2) + \dots + 1 = d(d-1)/2 \geqslant d-3 = t+1,$$

a contradiction.

If d(G) = 2, then let x_i be the smallest numbered vertex that G has no edge (x_i, x_j) with j > i+1. For each $j = 0, 1, \dots, i-1$, there exists a $j'(j' \ge j+2)$ such that $(x_j, x_{j'}) \in E(G)$ is an extra edge, and so such edges are at least i.

Since d(G) = 2, we must be able to reach every other vertex in two steps from x_i . Hence we need edges $(x_{j'}, x_j)$ with $j \ge j' + 2$ for all j with $i + 3 \le j \le d$, since these vertices could not be reached in two steps from x_i in P. Such edges are at least d+1-(i+3)-1=d-i-3, where the appearance of (-1) is due to the possibility that there may be an extra edge (x_{i-1}, x_j) in the first (i) extra edges when j' = i-1. Note that if j' < i-1, then $(x_i, x_{j'})$ and $(x_{j'}, x_j)$ are extra edges. Thus

$$t \geqslant i + (d - i - 3) = d - 3 = t + 1,$$

a contradiction.

Thus $P(t,t+4) = d(G) \geqslant 3$. Since $P(t,d) \leqslant P(t,d')$ if $d \leqslant d', P(t,d) \geqslant 3$ for $d \geqslant t+4$. On the other hand, since $t+4,t+5,t+6,t+7 \notin I'(t,k)$ for k=1, from Lemma 1.1,

$$P(t,d) \leqslant \left\lceil \frac{d-2}{t+1} \right\rceil + 1 = 3 \text{ for } t \geqslant 6.$$

For t = 4.5, from Lemma 1. 2, $P(t,d) \leqslant \left\lceil \frac{d}{t+1} \right\rceil + 1 = 3$ for $d \geqslant 4$. Thus, P(t,d) = 3 for $t+4 \leqslant d \leqslant t+7$ and $t \geqslant 4$.

Theorem 2.2 $P(4,d) = \left\lceil \frac{d-2}{5} \right\rceil + 1$ where d = 10k + 1 and $k \geqslant 1$.

Proof First we prove that $P(4,d) \leqslant \left\lceil \frac{d-2}{5} \right\rceil + 1$, where d = 10k + 1 and $k \geqslant 1$. We add four edges

$$egin{array}{ll} e_1 = x_1 x_{4k} \,, & e_2 = x_{4k} x_{8k+2} \,, \ e_3 = x_{2k} x_{6k+1} \,, & e_4 = x_{6k+1} x_{d+1} \,. \end{array}$$

to the path $P = x_1 x_2 \cdots x_{d+1}$ of length d (see Fig. 1 for k = 2 and d = 21). Now the end-vertices of these edges divide P into five segments

$$egin{align} L_1 &= P(x_1, x_{2k})\,, & L_2 &= P(x_{2k}, x_{4k})\,, \ L_3 &= P(x_{4k}, x_{6k+1})\,, & L_4 &= P(x_{6k+}, x_{8k+2})\,, \ L_5 &= P(x_{8k+2}, x_{d+1})\,. \end{array}$$

$$x_1$$
 x_4 x_8 x_{13} x_{18} x_{21}

Fig. 1 Construction of Theorem 2. 2 for k = 2 and d = 21

Define ten cycles as follows

$$C^1=L_1\cup +L_2+e_1,$$

$$C^2 = L_1 \cup + L_3 + e_1 + e_3$$
,

$$C^3 = L_1 \cup + L_4 + e_1 + e_2 + e_3$$
,

$$C^4 = L_1 \cup + L_5 + e_1 + e_2 + e_3 + e_4$$
,

$$C^5 = L_2 \cup + L_3 + e_3$$

$$C^6 = L_2 \cup + L_4 + e_2 + e_3$$
,

$$C^7 = L_2 \cup + L_5 + e_2 + e_3 + e_4$$
,

$$C^8 = L_3 \cup + L_4 + e_2$$
,

$$C^9 = L_3 \cup + L_5 + e_2 + e_5$$
,

$$C^{10} = L_4 \cup + L_5 + e_4$$
.

Their lengths are

$$\varepsilon(C^1) = 4k$$
;

$$\varepsilon(C^i) = 4k + 2$$
, for $i = 2, 5$;

$$\varepsilon(C^{10}) \leqslant 4k+1$$
;

$$\varepsilon(C^i) \leq 4k+3$$
; for $i = 3,4,6,7,8,9$.

Then any vertices x and y of G are contained in some cycles C^i defined above. Thus

$$\max\{d(Ci): 1 \leqslant i \leqslant 10\} \leqslant \left\lfloor \frac{4k+3}{2} \right\rfloor = 2k+1.$$

This means that for d = 10k + 1 and $k \ge 1$,

$$P(4,d) \leqslant d(G) \leqslant 2k+1 = \left\lceil \frac{d-2}{5} \right\rceil + 1.$$

From Lemma 1. 2 we have

$$\left\lceil \frac{10k+1}{5} \right\rceil \leqslant P(4,10k+1).$$

Since

$$\left\lceil \frac{10k+1}{5} \right\rceil = \left\lceil \frac{10k-1}{5} \right\rceil + 1$$

for $k \ge 1$, the theorem follows.

Theorem 2.3 For $t \ge 3$, C(t,d) = 3 where $t+6 \le d \le t+8$; $3 \le C(t,d) \le 4$ for d=t+9; and $2k \le C(t,d) \le 2k+1$ for d = (2k-1)(t+2)+2and t is even and $k \ge 1$ or t is odd and k = 1, 2, 3.

Proof It is easy to verify that,

$$C(t,d+1) \geqslant P(t+1,d)$$
,

since one way of adding t+1 edges to a path P_{d+1} is to first add one edge joining two end vertices of P_{d+1} and then to add t edges in an optimal way to result in a cycle C_{d+1} . Then from Theorem 2.1 we have

$$C(t,d+1) \geqslant 3$$
 for $t+5 \leqslant d \leqslant t+8, t \geqslant 3$.

Also from Lemma 1.2 we have

$$C(t,d+1) \ge 2k$$
, for $t \ge 3$,
 $d = (2k-1)(t+2) + 1, k \ge 1$.

Now from Lemma 1.4 we have for $t \ge 3$

$$C(t,d+1) \leqslant 3$$
, for $t+5 \leqslant d \leqslant t+7$,

$$C(t,d+1) \le 4$$
, for $d = t+8$,

and $C(t,d+1) \le 2k+1$ for d = (2k-1)(t+2) +1, and t is even and $k \ge 1$ or t is odd and k = 1, 2, 3. So the theorem follows.

Edge deletion 2. 2

Theorem 2.4 $f(t,d) \le (t+1)d - t + 1$ for $t \geqslant 4$ and $t+4 \leqslant d \leqslant t+7$, and d=2k(t+1)-tand $k \ge 1$, also for t = 4 and d = 10k + 1.

Proof Let $t \ge 4$. From Theorem 2. 1 we have $P(t,d) = \left[\frac{d-2}{t+1}\right] + 1$, for $t+4 \le d \le t+7$.

From Theorem 2.2 we have

$$P(4,d) = \left\lceil \frac{d-2}{5} \right\rceil + 1$$
, for $d = 10k + 1$ and $k \ge 1$.

From Lemma 1. 2 we have

$$P(t,(2k-1)(t+1)+1) = 2k$$
.

257

This means

$$P(t,d) = \left\lceil \frac{d-2}{t+1} \right\rceil + 1,$$

for
$$d = (2k-1)(t+1)+1, k \ge 1$$
.

Now let G be an undirected graph with diameter d, $S \subseteq E(G)$ with |S| = t such that d(G - G)S = h = f(t,d). Thus from Lemma 1. 3 and for t $\geqslant 4, d \in I_2(t,1), \text{ and } d = 2k(t+1) - t + 5, \text{ also}$ for t = 4 and d = 10k + 1 and $k \ge 1$, we have

$$\left\lceil \frac{h-2}{t+1} \right\rceil + 1 = P(t,h) \leqslant d.$$

Then

$$\frac{h+t-1}{t+1} \leqslant d.$$

Thus

$$f(t,d) = h \le (t+1)d - t + 1.$$

The theorem follows.

References

- Bondy J A, Murty U S R. Graph Theory with Applications M. London: Macmillan Press, 1976.
- $\lceil 2 \rceil$ Schoone A A, Bodlaender H L, Van Leeuwen J. Diameter increase caused by edge deletion [J]. J. Graph Theory, 1987, 11(3): 409-427.
- DENG Z G, XU J M. On diameters of altered graph [3] [J]. J. Mathematical Study, 2004, 37 (1): 35-41.
- [4] Najim A A, XU J M. On edge addition of altered graph [J]. Journal of University of Science and Technology of China, 2005, 35 (6): 725-731.
- Chung F R K, Garey M R. Diameter bounds for altered graphs [J]. J. Graph Theory, 1984, 8(4): 511-534.
- Plesnik J. Note on diametrically critical graphs [C] // Recent Advances in Graph Theory. Prague: Academia, 1975:455-465.
- XU Jun-ming. Topological Structure and Analysis of Interconnection Network [M]. Dordecht/ Boston/ London: Kluwer Academic Publishers, 2001.