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On Edge Addition of Altered Graphs
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Abstract; This paper proves that, for any integers > 6 and d = 2, the upper bound

of minimum diameter of a connected graph obtained from a single path of length d

by adding ¢ extra edges is(d W—Q—Z ford € I'(t k) = {2k(t+ 1)+ 1,2kt + 1) +

+1
2.26C+ 1 =141} U (2kGH+D =14kt h =67, 1} and| +J+1otherwme
for any integer £ == 1, which improves the known results. The bound( _’_11+11s

best possible.
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0 Introduction
We follow ref. [1] for graph-theoretical terminology and notation not defined here.

Let G = (V,E) be a simple undirected graph, where V = V(G) and E = E(G) are the
vertex-set and the edge-set of G, respectively. Let z; denote the maximum number of edges
that can be added to a path of length d, and P(¢,d) the minimum diameter of a graph
obtained by adding ¢ extra edges to a path of length d. Clearly, the symbol P(¢,d) means
t < ty. Determining P(z,d) for givend and ¢, proposed by ref. [ 2], is of important interest
in designing and analyzing interconnection networks.

For some small ¢’s and special d’s, the values of P(¢,d) have been determined. It is

easy to verify that P(1,d) = LdT_HJ for d = 2; Schoone et al. " determined P(2,d) =

(d—gi—w for d = 3 and P3.d) = (d—i—ZW for d = 5; Deng and Xu" determined
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P, 2k —1)(t 1)+ 1) =2k for any positive integer/e,LJrLJ< PG, d)<( JrJ—l—lfor
—9 )
t =4,5andd >4, and, in general, ( +1—‘ P(t.d) <B{+1 J—Q—& For any integer k >

1, let
I'(tk) =20+ 1) +1, 2bG+1) +2, 2kG+1) —t+1}) U
{Zk([+l) 7t+h : h. — 6777'"7 [}.
In this paper, we improve the upper bound of P(z,d) to

d— Mz if d € I'(2,k) for some ¢ and &,
t+1
P(t.d) <
UCZ{Jrlerl otherwise

for the integerst == 6,d == 2 and k = 1. This upper bound is tight for some ¢ and d.

1 Several lemmas
Lemma 1. 1) For any integers # and h with2 < h <t -+1,
PG, (t+1DQ2k—1) +h) < 2k+1, whenr = 4,5,
The following lemma is simple, but useful.
Lemma 1.2 Let ¢, be the maximum number of edges added to a path of lengthd >1,
then

_dd—1

ty 2

Lemma 1.3 P(.d) < 2k, whered =2, d—2 <t < 1, fork = 1, and | = |~

1 <t<(%}*2 for any integer & > 2.

Proof To prove the lemma, we construct an altered graph G from a single path P =
x123°* x4 by adding ¢ extra edges such that the diameter of G is at most 2k.

When £ = 1, choose r = 1 or 2. We add ¢ extra edges x,x; to P, where j = r + 2,
r=+3,-+,d+ 1. Since every vertex can reach the vertex x, within one step, then the
distance between any two vertices is at most 2. Thus P(¢,d) <2 fort = d —2. Since P(z,
d) =P d)ift <<t <t;, soP(t,sd) <2whend—2<t< t,.

Now, assume £ > 1. Putm = (%W— 1. We add m edges 111 x4—p—s)—icr1y for i =

0,1,+, m— 1. The end-vertices of these edges divide P into m -+ 2 segments L, ,L,, ***,

Lm—H 9Lm+2 ) Where

@ Clearly, the lemma is invalid for some d and # when -1 — 1> d —21ie 2k+1<<P(t.d) or P(t,d)<<
2k— 2k—2

2k—1 for any t—=1.
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Ll - P(Tl o Lpt1 ) ’
L, = P(Iku s Ld—(k—2)—(m—1) (2k—1) ) s
L= P(Idf(/rZ)f(z?H)(Z/rl) s Lg—(k—2)—i(2k—1) )s 1 =0,1, =+y m—2,

Lm+2 = P(Id—uﬂ) s L1 ).

~ ‘ _[d=17_ d—1 _
See Fig. 1 for an example. Since m = (213 — J 1= oh — 1 1, we have
d—(—2)—m—1DQ2k—1)—(k+1) <
d—1 N o
d—(h—2)— (ﬁ 2)(2k D—(k+1) =2k

Indeed,

d(L,) =k,

d(Ly) < 2k,

dl, ) =2k—1,i=0,1, -y, m—2,if m =2,
d(L,2) = k—1.

Ty 10 T15 20 T25 T30 T35 T36
Fig. 1 Construction of Lemma 1.3 fork = 3,d = 36 andm =t = 6
We need to prove that the diameter of G is at most 2k. Since any vertex can reach the
vertex a1 within £ steps, the distance of any two vertices in G is at most 2k, which means
PGn,d) <2k. Sincet=mand P(¢t,d) << P ,d) ift=1", so P(¢t,d) <2k whend =2 and
(%W—l gtg(%;‘izW—Zfor any integer k > 2. L]
Lemma 1.4 Lemma 1. 3 is equivalent to the statement that P(z,d) < 2k, where

1+vo+é V29+8"‘<d<t+2for/e — 1, andd = 26t +1) —1—hoh = 01,2z - 1 for any

integer k = 2,

Proof Clearly, the lemma satisfies whenk =1, sinced —2 <t < ¢, from lemma 1. 3.

So we only need to prove the lemma for £ = 2. Let t = (%W — 1, then t >
d—1—QCk—1) . - d o
o 1 , that is, d << 2k(t + 1) — . Now 1eu<(—2k71} 2, we prove d =

2k(t+1) — 2t — 1 by contradiction. Suppose d <l 2k(t+1) —2t—2. Thend < (2k—2) -

(t+1), which implies ¢ >(2k—d_2} 1, a contradiction. Thus d = 2kt +~1) — 2t —1. []

The following lemma extends LLemma 1. 1 for any ¢ = 6.
Lemma 1.5 P(:,2k(t+1) —t+6—h") << 2k+1 for the integerst =6,k =1, and
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1<<h <5.
Proof Like the proof of Lemma 1.3, we construct an altered graph G from a single
path P = x,x,+** x4, by adding ¢ extra edges such that the diameter of G is at most 2k+1.
Letd = 2k(t+1) —t+5. We add ¢ edges

€2i-1 = L2k(3—r)+1—r) Ld—2(i—1) 2k—1+1 » fori=1,2,,(t— 7’)/2 —2

€21 = k(2L d—(2i—1) 2k—D—1 3 fori=1,2,,t+r)/2—3
€4 = T4peX12k+H1 s €3 — X6kt1L10k+H] 2
€2 = TupXgptl s €1 — LoLekt1ls € — L1TL4k s

0 if ¢ is even,
where r = o
1 if z is odd.
Now the end-vertices of these edges divide P into ¢t + 1 segments, since

d—@—5Ck—D +1=2kG+1) —t+5—G—5QCL—D +1=12k+1,

we have

L; = P(xaickv1 s Tavenn s fori=1,2,2,0—5
L., = P(IL%H s L1201 ) s L.,= P(l"skﬂ s L10k+1 )
L, = Plxgn s Lgkt1 )s L.y = Play s Lopt1 ),

L, — P(IZ;J,IU\,), L[+1 — P(Il 7.1”2;3)9
See Fig. 2 for an example.
€2

€s
€g €4

Ty T4 ) 17 € Ty €375 T3 T34
€7
€1
Fig.2 Construction of Lemma 1.5 fork = 2,7 = 8 and d = 33.
Let X = {x1s25s s 2111} and X' = {xopi1 sXopi2 5+ sx4 ). From the proof of Lemma
1.1 we have the distance between any two vertices x,y € X is less than or equal to 2k 1.

So we only need to prove the lemma when 2,y € X orx € X and y € X is less than or
equal to 2k +1. Forj =1,2,++,t —5 we define (W*B) cycles Cj,C3 5+, C;7' as

Cl =1L, Ut L +e teuss
Ci=1L;, Ut Ly +te +em +ew; e fori =2,3,,6—j—3,
Czﬁjiz - L; U+ L, +€; ‘|‘€]+1 +e o
Cit =L, U+ Lo +e +ems
Co7 =L, U+L +e +eu tes
C§7j+l = Lj U+ L;+1 +€j +€j+1 +€h1 +€;.
Their lengths are
e(C) =4k, ifj<i—5;
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e(Cls) = dk+1;

e(C)) =4k+2, fori=2,3,"t—j5—5,]<t—6,t>7;

e(Co) = AR +3, il j < 1—5.1 % 6;

e(Ci77) = 4k + 3;

e(C) =4k+2, fort—j—2<i<t—j;+1.
It is easy to see that any two vertices .y € X orx € X and y € X are contained in some
cycle Ci defined above. The fact

max{d<c;>=1<]<z—5,1<z<t—j+1}<L‘“¢T+3J:2/e+1
means P2+ 1) —145) < d(G) < 2%+ 1.
Since P(t.d) < P(tod) ifd < d' P(t.2k(t+1) — 1+ 6 —h') < 2% + 1 when 1<k’ <35,

]

2 Proof of main result

In this section, we only consider t = 6. For a givent, letd(k) = 2k(t+1) — 2t — 1.
Thend(k+1) = 2k(t+1) +1 = d(k) +2t+2. We give an upper bound of P(z,d) when
d is any integer in the interval I(z,k) = [2k(z+1) —2t—1, 2k(z+1) ] for any £ =1 and
t = 6. To state our theorem, let I'(¢,k) = {2k(t+1)+1, 2k(t+1)+2, 2k(t+1) —t+
1) U{2kG+1) —2+hth=26,7,, t}.

Theorem 2.1 For anyt>=6andk > 1, ifd € I(¢,k) then

d—
1
P(t.d) < o
4
t+1

W—!—Z ifd € I'(¢,k) for some ¢ and k;

1—0— 1 otherwise.

Proof First, we consider £ = 1. In this case, w <d<t+2andd >3 since

> 1. Ford <<t+ 2 we haved = t+ 2 — i for some: = 0,1,+*+, t — 1 and, thus,
d—2 _ (+2—D—2 _ 1—i
t+1 r+1 t+1’

which means (d — 21 = 1. From Lemma 1. 4 we have

t+1
P(t.d) <2 (dH}H

Secondly, we consider k=2 andd = 2k(t+1)—t—h, h=0,1,+,t+1. In this case,

we have

t+1 r+1 t+1°

which implies that

NI ot D
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Forh =0,1,-, t, we have?ill < 1. When h = ¢ the equality holds and, hence,
_o_d—2 _[d—2
% zfﬁlﬁﬁl] &
Also whenh =t+1,d = 2k(¢t+1) — 2t — 1. From (1) we have
o _d—2 1 [d—2
2k—2 =]+ 4y =[] )
Ifo<<{h<Ct—1, then from (1) we have
. _d—2 ht+1_[d—2
2k 147##1+t+1 {€+11' S
Thus, from Lemma 1. 4 and (1) we have
- _d—2 h+1
P, 2k(t+1) —1t—h) < 2k P +1+ 1 (5

From (2), (3), (4) and (5) we have

‘f;ﬂw for d = 2k(t+1) —2t—1 or 2k(t+1) — 2t;
Pt.d) <
U‘ZZHZH1 for 2k(t+1) — 2t +1<d < 2k(t+1) — 1.
which implies for £ > 1
I=2]42 ford = 2kC+1)+1 or 2k +1) 425
P(t.d) <
(‘flﬂﬂ for 261+ 1D +3<d <2kG+ 1) +1+2.

Thirdly, fork>>1 we considerd = 2k(t+1) —t+6—h" with 1< h" < 5. In this case,
we have

d—2 _2kG+D—1+6—h"—=2 _,, t1—=4+W
t+1 t+1 t+1 7

that is,

o o 4
d 2+z‘ 4+h

k1 =" {41

+ 1. (6)

If A" = 5 then, from (6). we have

d—2
t+1
If 1 << A" <4 then, from (6), we have

2k+1= +2

I
- 1
~ |

|
Do

|+2. <)

d—2  t—4+H [d—2
2kl =" T —H_L+1

From Lemma 1. 5 and the equalities (6),(7) and (8) we have
d—2
t+1

P(t,d) <
- (d—Z
t+1
Finally, since for any 2 > 1,

|+ (8)

Hz ford = 2k(t+1) — 1+ 15

}+1 for 2kt +1) —1+2<d <2 +1)—1+5,
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2
PQZMr+D+4><(%{}+2
and P(¢,d") << P(¢t,d") whend’ < d’, then we have
P, d><(d+1}+2 for 26t 4+1) — 1+ 6<d< 2k(1+1). O

Corollary 2. 1" P(#,2k(t+ 1) —t) = 2k for any positive integer k.

Proof letd = 2k(z+1) —t. On the one hand, by P(z,d) >( due to ref. [ 4]

2=l

and stated in Introduction, we have

Pty =[] <[UED =]y,

On the other hand, (:+1) J (d —2), by Theorem 2. 1, we have

P(t.d) <(d+ﬂ+1 =Rt D == 2] g g

t+1
So, P(t,2k(t+ 1) —t) = 2k for any positive integer k. L]
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