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ROUND-OFF STABILITY OF PICARD ITERATIVE
PROCEDURE FOR MULTIVALUED OPERATORS

S. L. Singh†, Charu Bhatnagar and Amal M. Hashim‡

Department of Mathematics

Gurukula Kangri University

Hardwar-249404, India

Abstract. While solving inclusions numerically by an iterative procedure, usually we

follow some theoretical model and deal with an approximate numerical sequence. If
the numerical sequence converges to a point anticipated by the theoretical sequence,

then we say that the iterative procedure is stable. This kind of study plays a vital
role in computational analysis, game theory and computer programming. The purpose

of this paper is to discuss stability of the Picard iterative procedure for multivalued
operators in metric spaces. Some special cases are discussed as well.

1. Introduction

Let (X, d) be a metric space and T a self-map of X. The solution of a fixed
point equation Tx = x for any x ∈ X, is usually approximated by a sequence {xn}
in X generated by an iterative procedure f(T, xn) that converges to a fixed point
of T . But, in actual computations, we consider an approximative sequence {yn} in
X instead of {xn}. The iterative procedure xn+1 = f(T, xn) is considered to be
numerically stable if and only if the sequence {yn} converges to the desired solution
of the equation Tx = x. M. Urabe [16] initiated the study on this kind of problem,
and A. M. Ostrowski [11] was the first to obtain the classical stability result on metric
spaces (see [8]). Harder & Hicks and Rhoades have obtained stability results for a
wider class of contractive type maps (cf. [6, 7, 12, 13]). Singh & Chadha [15] extended
Ostrowski’s stability theorem (cf. Cor. 3.2) to multivalued operators. In this paper,
we discuss the stability of Picard iterative procedure, i.e., xn+1 ∈ f(T, xn) = Txn

for multivalued operators using the general contractive condition. Some interesting
results as special cases are discussed.
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2. Preliminaries

Consistent with [15], we will use the following notations, where (X, d) is a metric
space and CL(X) is the collection of all nonempty closed subsets of X. For A ,
B ∈ CL(X) and ε > 0,

N (ε, A) = {x ∈ X : d(x, a) < ε for some a ∈ A},
EAB = {ε > 0 : A ⊆ N (ε, B), B ⊆ N (ε, A)},

H(A, B) = {
inf EAB , if EAB 6= ∅,

+∞, if EAB = ∅,

and for x ∈ X, D(x, A) = inf {d(x, a) : a ∈ A}. H is called the generalized Hausdorff
metric for CL(X) induced by the metric d of X.

The following lemma (cf. [14]) will be used.

Lemma. Let B ∈ CL(X) and a ∈ X. Then for any b ∈ B, d(a, b) ≤ H(a, B).

Let T : X −→ CL(X)... For a point x0 ∈ X, let xn+1 ∈ f(T, xn) denote some
iterative procedure. Let {xn} be convergent to a fixed point p of T and {yn} be
an approximative sequence in X. Set εn = H(yn+1, f(T, yn)), n = 0, 1, 2, · · ·. If
limn εn = 0 implies that limn yn = p then the iterative procedure is said to be T-
stable or stable with respect to T (cf. Singh and Chadha [15]). Notice that this
definition is essentially due to Harder & Hicks [6] when T is a single-valued self-
operator of X. The Picard orbit of a multivalued map T : X −→ CL(X), at an
initial point x0, is a sequence {xn : xn ∈ Txn−1, n = 1, 2, · · ·} and the space X
is T-orbitally complete iff every Cauchy sequence of the form {xni : xni ∈ Txni}
converges in X (cf. Ćirić [4]). Evidently, this means that if the space X is complete
then it is T-orbitally complete and the reverse implication is not true. Ćirić [op. cit.]
obtained the following result.

Theorem 2.1. Let X be T-orbitally complete and T : X −→ CL(X) such that

H(Tx, Ty) ≤ q max {d(x, y), D(x, Tx), D(y, Ty),
1
2
(D(x, Ty) + D(y, Tx))}, (2.1)

for all x, y ∈ X and 0 < q < 1. Then
(i) for every x0 ∈ X, there exists an orbit {xn} of T at x0 and an u ∈ X such that

limn xn = u;
(ii) the point u is fixed under T .

We remark that Theorem 2.1 with (2.1) replaced by

H(Tx, Ty) ≤ q max {d(x, y), D(x, Tx), D(y, Ty), D(x, Ty), D(y, Tx)} (2.2)

remains an open question. However, it is true when T is single-valued operator
on a complete metric space (cf. Ćirić [5]). Also, notice that T : X −→ CL(X)
satisfying (2.3) (see below) need not have a fixed point on a complete metric space
(see Osilike[9] and Berinde [1, p.137] when T is single-valued). For a good discussion
on the generality, usefulness and importance of the condition (2.3) with T single-
valued, one may refer to Berinde [2, 3].
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Proposition. Let T : X → CL(X) be such that

H(Tx, Ty) ≤ qd(x, y) + LD(x, Tx), (2.3)

for all x, y ∈ X, 0 < q < 1 and L ≥ 0. Then

(i) (2.1) ⇒ (2.2);
(ii) (2.1) with 0 < q < 1

2 ⇒ (2.3);
(iii) (2.2) with 0 < q < 1

2 ⇒ (2.3).

Proof. It is enough to show the last implication. For x, y ∈ X, in view of (2.2),
one of the following holds:

H(Tx, Ty) ≤ qd(x, y); H(Tx, Ty) ≤ qD(x, Tx);

H(Tx, Ty) ≤ qD(y, Ty) ≤ q{d(y, x) + D(x, Tx) + H(Tx, Ty)}

yielding

H(Tx, Ty) ≤ L{d(y, x) + D(x, Tx)}, where L =
q

1 − q
;

H(Tx, Ty) ≤ qD(x, Ty) ≤ q{D(x, Tx) + H(Tx, Ty)}

implying

H(Tx, Ty) ≤ LD(x, Tx);

H(Tx, Ty) ≤ qD(y, Tx) ≤ q{d(y, x) + D(x, Tx)}.

Therefore, in all the cases,

H(Tx, Ty) ≤ qd(x, y) + LD(x, Tx).

3. Main results

Theorem 3.1. Let X be a complete metric space and T : X → CL(X) satisfying

(2.3) for all x, y ∈ X. Let {xn}∞n=1 be an orbit for T at x0 ∈ X such that {xn}∞n=1

converges to a fixed point p of T . Let {yn}∞n=1 be a sequence in X and set εn =
H(yn+1, T yn), n = 0, 1, 2, · · ·. Then

(I) d(p, yn+1) = d(p, xn+1) + qn+1d(x0, y0) + LΣn
i=0q

n−id(xi, xi+1) + Σn
i=0q

n−iεi.

Further, if Tp is singleton then

(II) lim
n

yn = p if and only if lim
n

εn = 0.
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Proof. Let n be a nonnegative integer. Then, by the above lemma and (2.3),

d(xn+1, yn+1)

≤ H(Txn, yn+1) ≤ H(Txn, T yn) + H(Tyn, yn+1)

≤ qd(xn, yn) + LD(xn, Txn) + εn

≤ q{qd(xn−1, yn−1) + LD(xn−1, Txn−1) + εn−1} + LD(xn, Txn) + εn

≤ q2d(xn−1, yn−1) + Lqd(xn−1, xn) + Ld(xn, xn+1) + qεn−1 + εn+1.

Inductively,

d(xn+1, yn+1) ≤ qn+1d(x0, y0) + LΣn
i=0q

n−id(xi, xi+1) + Σn
i=0q

n−iεi.

So
d(p, yn+1)

≤ d(p, xn+1) + d(xn+1, yn+1)

≤ d(p, xn+1) + qn+1d(x0, y0) + LΣn
i=0q

n−id(xi, xi+1) + Σn
i=0q

n−iεi.

This proves (I). To prove (II), first we assume yn → p as n → ∞. Note that
H(p, Tp) = 0 since, by hypothesis, Tp = {p}. By (2.2),

εn = H(yn+1, T yn) ≤ d(yn+1, p) + H(p, Tp) + H(Tp, Tyn)

≤ d(yn+1, p) + qd(p, yn) + LD(p, Tp).

Therefore lim
n

yn = p implies lim
n

εn = 0.
Now, suppose εn → 0 as n → ∞. Since 0 < q < 1 and xn → p as n → ∞, the first

two terms on the right hand side of (I) vanish in the limit. Consequently,

lim
n

d(p, yn+1) ≤ lim
n

[LΣn
i=0q

n−id(xi, xi+1) + Σn
i=0q

n−iεi].

Let A denote the lower triangular matrix with entries anj = qn−j. Then lim
n

anj =
0 for each j and

lim
n

Σn
j=0anj = lim

n

(
1 − qn+1

1 − q

)
=

1
1 − q

.

Therefore A is multiplicative, i.e., for any convergent sequence {sn}, lim
n

A(sn) =
1

1−q lim
n

sn (cf. Rhoades [13]). Since lim
n

εn = 0, lim
n

[
Σn

j=0q
n−1εj

]
= 0. Noting that

lim
n

d(xn, xn+1) = 0, we get lim
n

[
LΣn

i=0q
n−id(xi, xi+1)

]
= 0. This completes the

proof.

Corollary 3.1 [15]. Let X be a complete metric space and T : X → CL(X) such
that H(Tx, Ty) ≤ qd(x, y) for all x, y ∈ X, where q < 1 is a positive number. Let
x0 be an arbitrary point in X and {xn}∞n=1 an orbit for T at x0 such that {xn}∞n=1

is convergent to a fixed point p of T .
Let {yn}∞n=1 be a sequence in X and set εn = H(yn+1, T yn), n = 0, 1, 2, · · · . Then

d(p, yn+1) ≤ d(p, xn+1) + qn+1d(x0, y0) + Σn
r=0q

n−rεr.

Further, if Tp is singleton then lim
n

yn = p iff lim
n

εn = 0.
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Corollary 3.2 [11]. Let (X, d) be a complete metric space and T : X → X a
Banach contraction with contraction constant k. Let p ∈ X be the fixed point of T .
Let x0 ∈ X and xn+1 = Txn, n = 0, 1, 2, · · ·. Suppose that {yn} is a sequence in X
and εn = d(yn+1, T yn), n = 0, 1, 2, · · · . Then

d(p, yn+1) ≤ d(p, xn+1) + kn+1d(x0, y0) + Σn
r=0k

n−rεr.

Moreover, lim
n

yn = p iff lim
n

εn = 0.

Corollary 3.3 [9]. Let (X, d) be a complete metric space and T a selfmap of X
such that d(Tx, Ty) ≤ ad(x, y) + Ld(x, Tx) for all x, y ∈ X, 0 < a < 1 and L ≥ 0.
Suppose T has a fixed point p. Let x0 ∈ X and let xn+1 = Txn, n ≥ 0. Let {yn} ⊂ X
and let εn = d(yn+1, T yn), n ≥ 0. Then

d(p, yn+1)

≤ d(p, xn+1) + an+1d(x0, y0) + LΣn
i=0a

n−id(xi, Txi) + Σn
i=0a

n−iεi.

Also lim
n

yn = p implies that lim
n

εn = 0.

Following Singh & Chadha [15], we modify the definition of εn as

εn = d(yn+1, pn), pn ∈ Tyn, (n = 0, 1, 2, · · ·). (?)

This facilitates to present another version of Theorem 3.1.

Theorem 3.2. Let all the hypotheses of Theorem 3.1 hold, wherein the definition
of εn is replaced by (?). Then
(III) d(p, yn+1) ≤ d(p, xn+1) + qn+1d(x0, y0) + LΣn

i=0q
n−id(xi, xi+1) + Σn

i=0q
n−i(Hi,

+εi), where Hi := H(xi+1, Txi).
Further, if Tp is singleton, then

(IV) lim
n

yn = p if and only if lim
n

εn = 0.

Proof. For any nonnegative integer n,

d(xn+1, yn+1)

≤ d(xn+1, pn) + d(pn, yn+1) ≤ H(xn+1, T yn) + εn

≤ H(xn+1, Txn) + H(Txn, T yn) + εn.

In view of (2.3),

d(xn+1, yn+1)

≤ Hn + qd(xn, yn) + LD(xn, Txn) + εn

≤ Hn + q[Hn−1 + qd(xn−1, yn−1) + Ld(xn−1, xn) + εn−1] + Ld(xn, xn+1) + εn

≤ q2d(xn−1, yn−1) + Lqd(xn−1, xn) + Ld(xn, xn+1) + q(Hn−1 + εn−1) + (Hn + εn).

Inductively,

d(xn+1, yn+1) ≤ qn+1d(x0, y0) + LΣn
i=0q

n−id(xi, xi+1) + Σn
i=0q

n−id(Hi + εi),
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and the relation (III) follows from,

d(p, yn+1) ≤ d(p, xn+1) + d(xn+1, yn+1).

To prove (IV), assume first yn → p as n → ∞. Then εn = d(yn+1, pn) ≤ H(yn+1, T yn).
This, as in the proof of Theorem 3.1, gives lim

n
εn = 0. Now, assume that lim

n
εn = 0.

From (III),

d(p, yn+1) ≤ d(p, xn+1) + qn+1d(x0, y0) + LΣn
i=0q

n−id(xi, xi+1) + Σn
i=0q

n−iti,

where ti = Hi + εi. In view of the proof of Theorem 3.1, it suffices to show that
the sequence {ti} is convergent to 0. Since, by assumption, the sequence {εi} is
convergent to 0, it is enough to show that {Hi} is also convergent to 0. By (2.2),

lim
n

Hn = lim
n

H(xn+1, Txn) ≤ d(xn+1, p) + D(p, Tp) + H(Tp, Txn)

≤ d(xn+1, p) + qd(p, xn) + LD(p, Tp) → 0 as n → ∞.

This completes the proof.

Corollary 3.4. Let X be a complete metric space and T : X → CL(X) such
that (2.1) holds for all x, y ∈ X. Let x0 be an arbitrary point in X and {xn} an
orbit for T at x0 such that {xn} is convergent to a fixed point p of T .

Let {yn} be a sequence in X and set εn = H(yn+1, T yn), n = 0, 1, 2, · · ·. Then
the conclusions of Theorem 3.1 and 3.2 follow, wherein L = q

1−q with q < 1
2 .

Proof. It is evident in view of the proposition.

We remark that all the results (theorems and corollaries) stated above remain true
when the completeness of the space X is relaxed to the orbital completeness.
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paper.
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