MULTI-VALUED FIXED POINT THEOREM IN METRIC SPACES BY ALTERING DISTANCE BETWEEN THE POINTS

ISSN 1817 - 2695

AMAL. M. HASHIM

Department of Mathematics, College of Science, University of Basrah, Basrah, Iraq E-mail: amalmhashim@yahoo.com

((Received 8/10/2009, Accepted 19/5/2010))

Abstract.

In this paper we established some results on fixed point theorems for multi-valued mappings on a complete metric spaces by altering the distance between the points. We extend and generalized some well-known results in [2], [5], [6], [8] and [9].

Key Words: Multi-valued maps, fixed point, compact metric space, complete metric space.

<u>INTRODUCTION</u>

Delbosco [1] and Skof [12] have established fixed point theorems for self-maps of complete metric spaces by altering the distances between the points with the use of map $\phi:[0,\infty)\to[0,\infty)$ satisfying the following properties:

(i) ϕ is continuous and strictly increasing in R^+ :

(ii) $\phi(t) = 0$ iff t = 0;

(iii) $\phi(t) \ge Mt^{u}$ for every t > 0, u > 0 are constants.

Khan et al. [5] gave the following theorem, **Theorem K:** Let T be a self-map of a complete metric space (X,d) and ϕ satisfying (i) and (ii). Furthermore, Let a, b, c be three decreasing maps from R^+ into [0,1) such that

$$a(t) + 2b(t) + c(t) < 1$$

For every t > 0.

Suppose that T satisfies the following condition

 $(I) \quad \phi(d(Tx,Ty)) \le a(d(x,y))\phi(d(x,y)) + b(d(x,y))[\phi(d(x,Tx)) + \phi(d(y,Ty))] + c(d(x,y))\min\{\phi(d(y,Tx)),\phi(d(x,Ty))\}$

Where x, y in X and $x \neq y$. Then T has a unique fixed point.

In this paper we shall establish a common fixed point theorem for a pair of multi-valued mappings T and S and a single valued mapping which satisfies the contractive definition corresponding to (I).

PDF Created with deskPDF PDF Writer - Trial :: http://www.docudesk.com

2.Basic Preliminaries

We generally follow the definitions and notations used in [3], [10] and [11]. Given a metric space (X, d), let (CL(X), H) and (C(X), H)denote respectively the hyperspaces of non-empty closed and non-empty compact subsets of X, wherein H is the Hausdorff metric inducted by d. Throughout, d(A, B) will denote the ordinary distance between subsets A and B of X and d(x, B)will stand for d(A, B) when A is singleton $\{x\}$. Further, let Y be an arbitrary non-empty set and $C(f, T) = \{u : fu \in Tu\},$ the collection of coincidence points of the maps $f: Y \to X$ and $T: Y \to CL(X)$.

We shall use the following lemma and definitions.

Lemma 2.1 [6]. Let A, B are two compact subset of a metric space, then for all $x \in A$ there exists $y \in B$ such that $d(x, y) \le H(A, B)$.

Definition 2.2 [2]. A map $\psi:[0,\infty) \to [0,1)$ will be said to have property (p) if for every t > 0, there exists n(t) > 0 such that

 $0 \le S - t < \eta(t) \rightarrow \psi(s) \le \gamma(t) < 1.$

Definition 2.3 [Itoh and Takahashi [7]. The maps $T: X \to CL(X)$ collection of all closed subsets of X and $f: X \to X$ are IT-commuting at a point $v \in X$ if $fTv \subset Tfv$.

Definition 2.4 [3] Let $T: X \to CB(X)$. The $f: X \to X$ is said to be T-weakly commuting at $x \in X$ if $ffx \in Tfx$

Here we remark that for hybrid pairs (f,T) (IT)commuting at the coincidence points implies that f is T-weakly commuting but the converse is not true in general.

Example 2.5[3]Let $X = [1, \infty)$ with the usual metric, Define $f: X \to X, T: X \to CB(X)$ by fx = 2x and Tx = [1, 2x + 1] for all $x \in X$ then for all

 $x \in X$, $fx \in Tx$, $ffx = 4x \in [1, 4x + 1] = Tfx$, $fTx = [2, 4x + 2] \not\subset Tfx$ therefore f is T – weakly commuting but not *IT* – commuting.

3. Our Main Results

Theorem 3.1 Let (X,d) be a compact metric space, $T, S: Y \to CL(X), f: Y \to X$ such that $SY \subset fY, \phi: R^+ \to R^+$ is $TY \subset fY$ and continuous and strictly increasing such that

 $\phi(0) = 0$ and Let a, b and c be three maps from R^{+} into [0,1) such that a+2b satisfies the property (P), and,

$$(II) \quad \phi(H(Tx,Sy)) \leq a(d(fx,fy))\phi(d(fx,fy)) + b(d(fx,fy)) \Big[\phi(d(fx,Tx)+\phi(d(fy,Sy)))\Big] \\ + c(d(fx,fy))\min\Big\{\phi(d(fx,Sy),\phi(d(fy,Tx)))\Big\},$$

Then C(f,T) and C(f,S) are nonempty.

Further, if Y = X, z is a coincidence point of f, T and S and fz is a fixed point of f then

(i) fz is also a fixed point of T (resp S) provided f is T-weakly commuting at z (resp f is S-weakly commuting at z),

Journal of Basrah Researches ((Sciences)) Vol. 36, No. 3, 15 June ((2010))

(ii) fz is a common fixed point of T and S provided f is T-weakly commuting at z and f is S-weakly commuting at z.

Proof. Pick $x_0 \in Y$. Construct two sequences $\{x_n\} \subset Y$ and $\{y_n\} \subset X$ in the following

manner. Since $x_0 \in Y$ and $TY \subset fY$, there exists a point $x_1 \in Y$ such that

 $y_{I} = f x_{I} \in Tx_{o}$. Since $SY \subset fY$, in view of the remark following Lemma 2.1, we can choose $x_{I} \in Y$ such that $y_{2} = fx_{2} \in Sx_{I}$ and

$$d(y_1, y_2) = d(fx_1, fx_2) \le H(Tx_0, Sx_1)$$

So by using (II)
$$\phi(d(fx_1, fx_2)) \leq \phi(H(Tx_0, Sx_1))$$

$$\leq a(d(fx_0, fx_1))\phi(d(fx_0, fx_1)) + b(d(fx_0, fx_1)) \Big[\phi(d(fx_0, Tx_0)) + \phi(d(fx_1, Sx_1))\Big]$$

$$+ c(d(fx_0, fx_1)) \min \Big\{\phi(d(fx_0, Sx_1), \phi(d(fx_1, Tx_0))\Big\}$$

$$\leq a(d(fx_0, fx_1))\phi(d(fx_0, fx_1)) + b(d(fx_0, fx_1)) \Big[\phi(d(fx_0, fx_1) + \phi(d(fx_1, fx_2))\Big]$$

$$+ c(d(fx_0, fx_1)) \min \Big\{\phi(d(fx_0, fx_2)), \phi(d(fx_1, fx_1))\Big\}$$

$$\leq a(d(fx_0, fx_1))\phi(d(fx_0, fx_1)) + b(d(fx_0, fx_1)) \Big[\phi(d(fx_0, fx_1) + \phi(d(fx_1, fx_2))\Big],$$
Hence $\phi(d(fx_1, fx_2)) \leq q(d(fx_0, fx_1))\phi(d(fx_0, fx_1))$ where
$$q(d(fx_0, fx_1)) = \frac{a(d(fx_0, fx_1)) + b(d(fx_0, fx_1))}{1 - b(d(fx_0, fx_1))}$$

By induction there exists x_n such that

$$fx_{2n+1} \in Tx_{2n}, n = 0, 1, 2, \dots$$

$$fx_{2n+2} \in Sx_{2n+1}, n = 0, 1, 2, \dots \text{ and}$$

$$\phi(d(fx_n, fx_{n+1})) \le q(d(fx_{n-1}, fx_n))\phi(d(fx_{n-1}, fx_n)) < \phi(d(fx_{n-1}, fx_n))$$
(*).

Put $t_n = d\left(fx_n, fx_{n+1}\right)$, then we have $\phi(t_n) < \phi(t_{n-1})$, but ϕ is increasing, so $\{t_n\}$ is decreasing, hence $\lim_n t_n = t$ exists. Now we show t = 0, suppose that t > 0, then since q satisfies the property (P)

$$\exists \eta(t) > 0 \quad \text{such} \quad \text{that}$$

$$0 \le s - t < \eta(t) \Rightarrow q(s) \le \gamma(t) < 1, \quad \text{but} \quad t_n \ge t$$
and $\lim_{n \to \infty} t_n = t$, so there exists n_o such that
$$n \ge n_0 \Rightarrow 0 \le t_n - t < n(t),$$

Consequently $q(t_n) \le \gamma(t) < 1$. from the inequality (*) we deduce that

$$\phi(t_n) \le \gamma(t) \phi(t_{n-1}) \qquad \forall n \ge n_0,$$

Hence when $n \to \infty$ we obtain

$$\phi(t) \le \gamma(t) \phi(t) < \phi(t),$$

this is a contradiction, so $\underset{n}{lim} d \left(fx_n, fx_{n+1} \right) = 0$, since, X is compact, so $\{ fx_n \}$ has a convergent subsequence which we denote by $\{ fx_k \}$, Let

HASHIM:MULTI-VALUED FIXED POINT THEOREM IN METRIC SPACES BY ALTERING ...

 $fx = \lim_{k} fx_k$, we have to show that fx is a coincidence point of T and S. By condition (II).

$$\phi(d(fx_{k+1}, Sx)) \leq \phi(H(Tx_{k}, Sx))
\leq a(d(fx_{k}, fx)) \phi(d(fx_{k}, fx)) + b(d(fx_{k}, fx)) \Big[\phi(d(fx_{k}, Tx_{k})) + \phi(d(fx, Sx)) \Big]
+ c(d(fx_{k}, fx)) \min \Big\{ \phi(d(fx_{k}, Sx)), \phi(d(fx, Tx_{k})) \Big\}
< \phi(d(fx_{k}, fx)) + \frac{1}{2} \Big[\phi(d(fx_{k}, fx_{k+1})) + \phi(d(fx, Sx)) \Big]
+ \phi(d(fx_{k}, fx_{k+1})),$$

therefore taking $k \to \infty$, we have

$$\phi(d(fx,Sx)) \le \frac{1}{2}\phi(d(fx,Sx)),$$
 hence $\phi(d(fx,Sx)) = 0,$

Consequently d(fx, Sx) = 0, and $fx \in Sx$. Similarly, we can show that $fx \in Tx$.

Hence C(f,T) and C(f,S) are non-empty.

Further, fz = ffz and f is T-weakly commuting at $z \in C(f,T)$ which implies that $fz \in Tfz$. So fz is common fixed point of f that T. The proof

 $(III) \quad \phi(d(Tx, Sy)) \le a(d(x, y))\phi(d(x, y))$

$$+b (d (x, y)) [\phi(d (x, Tx)) + \phi(d (y, Sy))]$$

+c (d (x, y)) min {\phi(d (y, Tx)), \phi(d (x, Sy))}.

Where x, y in X and $x \neq y$. Then T and S have a unique fixed point.

Proof: Let x_o be some point in X. We define $x_{2n+1} = Tx_{2n}$, n = 0, 1, 2, ...,

of fz is common fixed point of f and S is similar. Now (ii) is immediate.

Corollary 3.2 [9]. Theorem 3.1 with S = T, and f = identity map.

Theorem 3.3: Let T and S be self-maps of a complete metric space (X,d) and ϕ satisfying (i) and (ii). Furthermore, let a, b and c be three functions from $(0, \infty)$ into [0, 1) such that a+2b and a+c have both property (P). Suppose that T and S satisfy the following condition.

$$x_{2n+2} = Sx_{2n+1}, \quad n = 0, 1, 2, ...,$$

We put $t_n := d\left(x_n, x_{n+1}\right)$ for all integer n. without loss of generality; we may assume that $t_n > 0$ for all integer n.

Then by using (III)

$$\phi(t_{n}) = \phi(d(Tx_{n-1}, Sx_{n}))
\leq a(d(x_{n-1}, x_{n}))\phi(d(x_{n-1}, x_{n})) + b(d(x_{n-1}, x_{n}))[\phi(d(x_{n-1}, Tx_{n-1})) + \phi(d(x_{n}, Sx_{n}))]
+ c(d(x_{n-1}, x_{n})) \min\{\phi(d(x_{n}, Tx_{n-1})), \phi(d(x_{n-1}, Sx_{n}))\}
So$$

$$\phi(t_n) \le a(t_{n-1})\phi(t_{n-1}) + b(t_{n-1}) \lceil \phi(t_{n-1}) + \phi(t_n) \rceil.$$

Hence we obtain:

$$\phi(t_n) \le q(t_{n-1})\phi(t_{n-1}) < \phi(t_{n-1}).$$
 (*)

Where
$$q(t_{n-1}) = \frac{a(t_{n-1}) + b(t_{n-1})}{1 - b(t_{n-1})}$$

Since ϕ is increasing, $\{t_n\}$ is decreasing sequence.

Let $\lim_n t_n = t$, assume that t > 0. Since q satisfies the property (P), then for $0 \le s - t < \eta(t)$ we have $q(s) \le \gamma(t) < 1$, but $t_n \ge t$, $\lim_n t_n = t$, so there exists n_0 such that $n \ge n_0 \Rightarrow 0 \le t_n - t < \eta(t)$,

Consequently $q(t_n) \le \gamma(t) < 1$. From equality (*), we deduce that $\phi(t_n) \le \gamma(t)\phi(t_{n-1}) \quad \forall n \ge n_0$, hence when $n \to \infty$ we obtain

$$\phi(t) \leq \gamma(t)\phi(t) < \phi(t)$$

This is a contraction, consequently t = 0, i.e.

$$\lim d\left(x_{n}, x_{n+1}\right) = 0.$$

If $\{x_n\}$ is not Cauchy sequence there exists $\varepsilon > 0$, and two sequences $\{m(k)\}, \{n(k)\}, n(k) > m(k), m(k) \to \infty$ as $k \to \infty$ such that

$$d\left(x_{n(k)}, x_{m(k)}\right) > \varepsilon \quad \text{while} \ d\left(x_{n(k)-1}, \ x_{m(k)}\right) \le \varepsilon \ .$$

Then we have

$$\varepsilon < d_{k} = d\left(x_{n(k)}, \ x_{m(k)}\right) \le d\left(x_{n(k)}, x_{n(k)-1}\right) + d\left(x_{n(k)-1}, x_{m(k)}\right) \\ \le t_{n(k)} + \varepsilon,$$

since $\{t_n\}$ converge to $0,\ d_k \to \mathcal{E}$. Furthermore, by triangular inequality, it follows that

$$d_{k} - t_{n(k)} - t_{m(k)} \le d(x_{n(k)+1}, x_{m(k)+1}) \le d_{k} + t_{n(k)} + t_{m(k)}$$

and therefore the sequence $\left\{d\left(x_{n(k)+1}, x_{m(k)+1}\right)\right\}$ converges to ε .

From (III), we also deduce.

$$\phi(d(x_{n(k)+1}, x_{m(k)+1})) = \phi(d(Tx_{n(k)}, Sx_{m(k)}))
\leq a(d(x_{n(k)}, x_{m(k)})) \phi(d(x_{n(k)}, x_{m(k)}))
+ b(d(x_{n(k)}, x_{m(k)})) [\phi(d(x_{n(k)}, Tx_{n(k)}) + \phi(d(x_{m(k)}, Sx_{m(k)}))]
+ c(d(x_{n(k)}, x_{m(k)})) \min \{\phi(d(x_{m(k)}, Tx_{n(k)})), \phi(d(x_{n(k)}, Sx_{m(k)}))\}
\leq a(d_k)\phi(d_k) + b(d_k) [\phi(t_{n(k)} + \phi(t_{m(k)}))]
+ c(d_k)\phi(d_k + t_{n(k)})$$
(1)

Since $d_k > \varepsilon$, $d_k \to \varepsilon$ and a+c have property (P), there exists an integer k_o such that

$$k \ge k_o \to 0 \le d_k - \varepsilon < n(\varepsilon) \implies a(d_k) + c(d_k) \le \gamma(\varepsilon) < 1 \tag{2}$$

From (1) and (2) we have

HASHIM:MULTI-VALUED FIXED POINT THEOREM IN METRIC SPACES BY ALTERING ...

$$\phi\left(d\left(x_{n(k)+1}, x_{m(k)+1}\right)\right) \leq \gamma\left(\varepsilon\right)\phi\left(d_{k} + t_{n(k)} + \phi\left(t_{n(k)}\right) + \phi\left(T_{m(k)}\right)\right),$$

For all $k \ge k_a$,

as $k \to \infty$, we obtain

$$\phi(\varepsilon) \le \gamma(\varepsilon) \phi(\varepsilon) < \phi(\varepsilon)$$
.

this is a contradiction. Hence $\{x_n\}$ is a Cauchy sequence in a complete metric space, then there exists a point z in X such that $x_n \to z$ as $n \to \infty$.

Now we shall show that Sz = z.

From (III), we have

$$\phi(d(x_{n},Sz)) = \phi(Tx_{n-1},Sz)
\leq a(d(x_{n-1},z))\phi(d(x_{n-1},z))
+b(d(x_{n-1},z))[\phi(d(x_{n-1},Tx_{n-1})) + \phi(d(z,Sz))]
+c(d(x_{n-1},z))\min\{\phi(d(x_{n-1},Sz),\phi(d(z,Tx_{n-1}))\}.$$
(3)
$$\text{Using } b < \frac{1}{2} \text{ and letting } n \to \infty \text{ in (3),}$$

We have $\phi(d(z, Sz)) = 0$ and therefore d(z, Sz) = 0, i.e. Sz=z

Similarly, it can be shown that Tz=z. Hence S and T have a common fixed point z in X. We claim that z is the unique common fixed point of T and S. For this, we suppose that $w(w \neq z)$ is another fixed point of S and T. Then

$$\phi(d(z, w)) = \phi(d(Tz, Sw))$$

$$\leq a(d(z, w)) \phi(d(z, w))$$

$$+ b(d(z, w)) [\phi(d(z, Tz)) + \phi(d(w, Sw))]$$

$$+ c(d(z, w)) min {\phi(d(z, Sw)), \phi(d(w, Tz))}$$

$$<\phi(d(z,w))$$

This is a contradiction. Hence w = z

Corollary 3.4 [8]. Let T and S be self-maps on a complete metric space (X,d) and ϕ satisfying the condition (i) and (ii). Furthermore, let a, b and c be three decreasing maps from R^+ into [0,1) such that

$$a(t) + 2b(t) + c(t) < 1$$

For every t > 0.

Suppose that T and S satisfy condition (III). Then T and S have a unique fixed point in X .

REFERENCES

Journal of Basrah Researches ((Sciences)) Vol. 36, No. 3, 15 June ((2010))

- 1. B. Delbosco, Un estensione diun teoreme sul punto fisso di s-Reich, Rend-sem. Mat. Unvies. Politecn. Torino 35, 233-239, (1976-77).
- 2. M. EL Amrani and A. B. Mbarki, Fixed point theorem by altering distance between the points, Southwest Journal of pure and Applied Mathematics, Vol. 1, 16-21, (2000).
- 3. T. Karmran, Coincidence and fixed points for hybrid strict contraction, J. Math. Anal. Appl. 299, 235-241, (2004).
- 4. J. Matkowski, Fixed point theorem for mapping with a contractive iterate a point, Proc. Amer. Math. Soc. 62, no 2, 344-348, (1977).
- 5. M. S. Khan., M. Swaleh And S. Sessa , Fixed point theorems by altering distance between the points, Bull-Austral-Math. Soc. 30, 1-9. (1984).
- 6. B. Marzouki and A. B. Mbarki, Multivalued fixed point theorems by altering distance between the points, south west J. Pure and Appl. Math., Issue 1, , 126-134, July (2002).
- 7. S. Itoh and W. Takahashi, Single-valued mappings, multivalued

- mappings and fixed point theorems J. Math. Anal. Appl. 59, 514-521, (1977).
- 8. R. A. Rashwan and A. M. Sadeek, A common fixed point theorem in complete metric spaces, southwest. J. Pure and Appl. Math. Vol. No. 01, 6-10, (1996).
- 9. R. A. Rashwan and A. M. Sadeek, Multivalued fixed point theorems by altering distance between the points, Southwest J. Pure and Appl. Math., Issue 1, 126-134, (2002).
- 10. S. L. Singh and Amal M. Hashim, New coincidence and fixed point theorems for strictly contractive hybrid maps, J. Austral. Math. Anal. And Appl. 2(1), 1-7, (2005).
- 11. S. L. Singh and Amal M. Hashim, New coincidence and fixed point reciprocally continous and compatible hybrid maps.phs.sci,18,no.2, 97-104, (2004).
- 12. S. Skof, Teorema di punti fisso per application ineglispazi metrici, Atti, Accad. Aci. Torino 111, 323-329, (1977).

مبرهنات النقطة الصامدة للدوال متعددة القيم بواسطة تغيير المسافات بين النقاط في الفضاء المترى

HASHIM:MULTI-VALUED FIXED POINT THEOREM IN METRIC SPACES BY ALTERING ...

أمل محمد هاشم البطاط المعرة – البصرة – العراق العراق

الملخص:

في هذا البحث حصلنا على بعض النتائج حول مبرهنات النقاط الثابتة للدوال الاحادية ومتعددة القيم في الفضاء المتري بواسطة تغيير المسافات بين النقاط . لقد تم توسيع وتعميم بعض النتائج المعروفة في [2] ,[5] ,[6] ,[8] و [9].