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 Abstract  

   In the Bayesian approach to inference, all unknown quantities contained in a probability model for the 

observed data are treated as random variables. Specifically, the fixed but unknown parameters are viewed as 

random variables under the Bayesian approach. In this paper, Bayesian approach is employed to making 

inferences on the one- way repeated measurements model as mixed model , and we prove some theorems about 

posterior.  
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1.Introduction 

    Mixed models are an extension of regression models that allow for the incorporation of random effects. A 

more contemporary application of mixed models is the analysis of longitudinal data, clustered data repeated 

measurements and spatially correlated data. Often random effects are used to describe the correlation structure in 

this type of this data. [4],[9],[10],[12]. 

 

   Repeated measurements is a term used to describe data in which the response variable for each experimental 

units is observed on multiple occasions and possible under different experimental conditions . Repeated 

measures data is a common form of multivariate data, and linear models with correlated error which are widely 

used in modeling repeated measures data. Repeated measures is a common data structure with multiple 

measurements on a single unit repeated over time. Multivariate linear models with correlated errors have been 

accepted as one of the primary modeling methods for repeated measures data. We can represent repeated 

measurements model as a mixed model[1],[2],[4],[10],[12] .   

     In the Bayesian approach to inference, all unknown quantities contained in a probability model for the 

observed data are treated as random variables. Specifically, the fixed but unknown parameters are viewed as 

random variables under the Bayesian approach. Bayesian techniques based on Markov chain Monte Carlo 

provide what we believe to be the most satisfactory approach to fitting complex models as well as the direction 

that model is most likely to take in the future [3],[5],[6],[7],[8],[9],[11],[13],[14] . 

   In this paper, a simple Bayesian approach is employed to the linear one- way repeated measurements model to 

make inferences on the resulting mixed model coefficients. We investigate the posterior density and identify the 

analytic form of the Bayes factor. To illustrate the effectiveness of the our methodology. We have choosing the 

data set which A study was conducted at date palm research center laboratories, university of Basra, during 

2007-2008 season   

 

2. One- Way Repeated Measurements Model 

   Consider the model 

                                                                                                                            (1) 

Where  

i=1,…., n  is an index for experimental unit within group j , 

j=1,…,q  is an index for levels of the between-units factor (Group) , 
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k=1,…,p  is an index for levels of the within-units factor (Time) , 

yijk    is the response measurement at time k for unit i within group j,     

µ       is the overall mean , 

τj      is the added effect for treatment group j , 

δ i(j)      is the random effect for due to experimental unit i within treatment group j ,                 

         is the added effect for time k , 

(τ )jk   is the added effect for the group j   time k interaction , 

e ijk      is the random error on time k for unit i within group j , 

   For the parameterization to be of full rank, we imposed the following set of conditions 

     ∑     
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Table(1): ANOVA table for one-way Repeated measures model  

EE((MMSS))  MMSS  SSSS  dd..ff  
SSoouurrccee  ooff  

vvaarriiaattiioonn  
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The model (1) is rewritten as follows  

                                                                                                                                                              (2) 

Where  
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an                        (              )       . 

We assume that               versus                                                                       (3) 

As for the prior of   ,and   under                and b are independent and 

            ∑       ,    ∑     
                       ∑       ,    ∑     

                                        (4) 

Also we assume that        

                                                                

  
                          ,         

                                                                           (5) 

 

3. Posterior calculations 
 

We have  

                                 
    

    (     
     )                                                                                      (6) 

        [    ]       [   ]  

Then the likelihood function         
    

   can be expressed as 

        
    

    |  
     |

  
 ⁄    { 

  

 
       (  

     )
  

      }                                                   ) 

Then the joint posterior density to coefficients   and the error variances   
 and   

  given by  
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the expression 
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Therefore, it follows that                                         
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  Now we employ spectral decomposition to obtain             ,[4] where                         

                    is the matrix of eigenvalues and P is the orthogonal matrix of eigenvectors. Thus, 
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   Where                     . We choose the prior on   
 ,  =   

    
  and     

    
 , qualitatively similar 

to the used in [3]. Specifically, we take      
       to be proportional to the product of an inverse gamma 

density {  
        }           

     
          for   

  and the gamma density for   and the density of 

a       distribution for   (for suitable choice of   ,   , b and a).The posterior density of     given  , the 

posterior mean and covariance matrix of   as in the following theorems. 

 

Theorem1: the posterior density of     given   is: 
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Theorem2: The posterior mean and covariance matrix of   are: 
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1 above ). And by same way can prove the variance of    given  . 
 

4. Model checking and Bayes factors 

   We would like to choose between a Bayesian mixed repeated measurements model and its fixed counterpart by 

the criterion of the Bayes factor for two hypotheses : 

             versus               .                                                                             (19) 

We compute the Bayes factor,    , of     relative to    for testing problem (19) as following 
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 5.Example (The storage experiment) 
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   In this section, we illustrate the effectiveness of the our methodology. We have choosing the data set which a 

study was conducted at date palm research center laboratories, university of Basra, during 2007-2008 season. 

The objective of the study is to improve storage ability of date palm fruits cv. Barhi  at khalal stage. Fruits of 

both cultivars were soaked in calcium solution at (0,1,2)% concentration for 5 minutes and stored at 0  , 3   

and room temperature. the design of the experiment was done according to the model (1). Table (2) below show 

the results for the analysis of variance for model, from this table we can see that the calculated F-values is 

greater than the tabulated F-values at 0.05 level significant that is means there is significant effect for calcium 

chloride on storage capability for date palm fruits under different temperatures. The values of parameters 

(     δ                 
    

 ) for the model (1) based on ANOVA table shown in table (3). 

 

Table 2 : ANOVA table for one-way Repeated measures model 

F-Test E(M.S) M.S S.S d.f 
Source of 

variation 

   
   

      
       * 

  (2,6,0.05)=5.14 

41765.659 1478.15 2956.3 2 Group 

10724.508 

 
109.917 659.5 6 Unit (Group) 

   
    

   
         * 

  (6,21,0.05)=2.57 

63745.491 

 
7078.117 42468.7 6 Time 

    
     

   
       * 

  (12,21,0.05)=2.25 

5759.664 

 
1905.742 22868.9 12 Group*Time 

 
42.4381 42.4381 891.2 21 Residual 

  69844.6 47 Total 

 

Table(3) estimation values for parameters (                       
    

 ) 

 by ANOVA table 

 ̂   ̂      
̂    ̂       ̂    

 ̂   
 ̂ 

63.584 141.929 411.037 413.784 398.039 55.352 42.4381 

 

 

   We next applied our methodology (Bayesian method) to the storage experiment data. Figure(1) represent the 

posterior density of coefficients for the model (1). Figure (2) shows the number for iterations of the Gibbs 

sampler which used in this study, which was 10000 iterations for this data, while figure (3) shows density 

estimates based on 10000 iterations of   
  and   

 .Table(4) presents the values of the 

parameters(     δ                 
    

 ) based on Bayesian method. From table(3) and table(4), we can see that 

the values of parameters obtained in both ANOVA and Gibbs sampling are nearly alike and encouraging.    

 

Table(4)estimation values for parameters(                       
    

 ) 

 by Bayesian method 

 ̂   ̂      
̂    ̂       ̂    

 ̂   
 ̂ 

63.55 145.3 435.8 381.5 381.2 50.814 43.403 

      

   The model checking approach based on Bayes factor which its value was    

        2.0022      , 

that is mean the Bayes factor favors    with strong evidence for the storage experiment data. 
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Figure (1) the posterior density of one-way repeated measurements model 

coefficients(                    ) 
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Figure (2) shows 10000 iterations of the               Figure (3) shows density estimates based Gibbs 

sampler for the this data                    on 10000 iterations of   
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6.Conclusions 

1.We show that the posterior density of     given   in Bayesian one- way repeated measurements model is: 
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2.The posterior mean of   given   in Bayesian one- way repeated measurements  is: 
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4.Bayes factor in Bayesian one- way repeated measurements for testing the two models  

              versus               is:  
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5.There is significant effect for calcium chloride on storage capability for date palm fruits cv. Barhi                                            

under different temperatures.  

6.The values of parameters obtained in both ANOVA and Bayesian method are nearly alike and encouraging. 

7.The Bayes factor favors    with strong evidence for the storage experiment data that is mean the correct model 

is mixed one-way repeated measurements model .  
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