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LU YN Y A simple Bayesian approach to repeated measurement model which has only one Within units factor and
one between units factor incorporating univariate random effects as well as the experimental error term. is
described using Markov Chain Monte Carlo(MCMC). Bayesian approach is employed to making inferences on the one-

way repeated measurements model.

1. Introduction

In the Bayesian approach to inference, all
unknown quantities contained in a probability
model for the observed data are treated as
random variables. Specifically, the fixed but
unknown parameters are viewed as random
variables under the Bayesian approach.
Bayesian techniques based on Markov chain
Monte Carlo provide what we believe to be the
most satisfactory approach to fitting complex
models as well as the direction that model is
most likely to take in the future

[31.[41,[5].[6].[8],[10],[11] .

Repeated measurements is a term used to
describe data in which the response variable
for each experimental units is observed on
multiple occasions and possible under different
experimental conditions . Repeated measures
data is a common form of multivariate data,
and linear models with correlated error which
are widely used in modeling repeated measures
data. Repeated measures is a common data
structure with multiple measurements on a
single unit repeated over time. Multivariate
linear models with correlated errors have been
accepted as one of the primary modeling
methods for repeated measures data [1],[2]

J[71,[9] .

In this paper, we consider the linear one-
way repeated measurements model which has
only one within units factor and one between
units factor incorporating univariate random
effects as well as the experimental error term.
Inferences about the parameters of the model
such as it is estimation and estimation error as
well as model checking are of interest.

2.Repeated Measurements Model and
Prior Distribution

Consider the model
Vik = L+ 1+ 8y + 7, + (i + e (D)

Where

i=1,...., n is an index for experimental unit
within group j ,

j=1,...,q is an index for levels of the between-
units factor (Group) ,

k=1,...,p is an index for levels of the within-
units factor (Time) ,

yiik  is the response measurement at time k for
unit i within group j,

n is the overall mean ,

t;  is the added effect for treatment group j ,

dij 1is the random effect for due to
experimental unit i within treatment group j ,
¥, 1is the added effect for time k ,

(ty)jk is the added effect for the group j X time
k interaction ,

eijx is the random error on time k for unit i
within group j ,

For the parameterization to be of full rank,
we imposed the following set of conditions

q p
Z,-:l Tj=0 > k=1"Yk=0 >

Z?:l(TY)jk:o for each k=1,...,p

Z£=1(ry)]-k=0 for each j=1,...,q

And we assumed that the e;;; and §;(;) are indepnd
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Cijk ~ iid N (0,02) >
Big) ~ iid N(002) @)

Sum of squares due to groups,
subjects(group), time, group*time  and

residuals are then defined respectively as
follows:

0 (= -\
SS¢ = np Zj=1 (y.]._ - Y) >
SSu() = PRk EL (5 —¥,)°
— — \2
SSiime = nq X (V4 —¥.)",
SSextime nzl'q=1 Z:£=1(yjk - y] - y.k +

y.)?
SSg = XLy Z,g=1 Zizl(ynk —Vik — Vi + }_’.j.)z

Where

n q P
_ Yi=1 Z]-:l Zk=1 Yijk

nqp

is the overall mean.

— TS ik . .
v, = ‘1+p*1y”k is the mean for group j

L
V. = Zk:% is the mean for the i subject
in group j.

n q
Zi=1 Zj=1 Yijk

y_k = is the mean for time k.

n .
yik = Z‘ﬂ% is the mean for group j at

time k.
Tablel:ANOVA table for one-way Repeated
measures model

Source of
df ss MS E(MS)
variation
ss, :
G np 2 2 2

Group q-1 SS¢ — Tz ©? + po? + o2

q-1 @-D&
Unit SSu(e) pot + a2

. qn—-1) SSue
(Group) qn-1)
P

SStime nq ,

Time p—1 SStime — —Z ¥+
—1 — k e
P C-D&
T P
Group*Tim SS, ;z Z(W)z
_ _ G xtime “Da-1 i
. @-D0-1 | Sew| Gopeop | OO VEE
+o?
Residual qp-Dm-1) Ss e o2
ol ae-D-D |

We assume that the prior distribution on one-
way repeated measurements model coefficients
as following

u~N(O,Gﬁ) . 5 ~N(,07) >
7, ~ N(0,62) (M)~ N(0, 6%,
Gg ~ 1G (o, B5) > 0123 ~ 1G(a, Be) 3)
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3.Posterior Calculation
The likelihood function for the model (1)
can derive as follows

L(y|w 7, 85, 7,0 (70)jk, 05, 62)

ik =17 =8 =, (i)

n q p 1 -
i=1 Hj=1 | > €XP [ 252
2ncg €

= L(y|w 1, iy v (i 03, 02) o
_nap_
(2n(c2)) 2 x

=2ty By Tk Ok —h—5 =81y ~v—(@)jk)?
exp 202

since

=1 Z?=1 ZE:l(Yijk —u=T7h— 6i(j) I (M
(W)jk)z =24 Z?:l Z£=1[Yijk +Vik — Yik T
Yk =Yk TV~ Vi TVi. " YVi.—UL—T—
8i) = Ve — (TY)jk]Z

= 4i=1 qu=1 z:§=1[(3’ijk — W2+ i — ) +
W = 8igN® + @y = v )* + G — (p)? —
(Vi +¥.x +¥i. +vi.)?] - Then

L(Y|M,T]', Si(j)P’Ykl (T’Y)jkic(%' Gg) S
oy e P ()’
(2n(0d) * explfi- === 5 ————
2 2
L L T ()T I B IR (i)
2(c2) 2(c?)

n 2
L SR On)T S S B G’
2(c?) 2(c3)

2
S Ty T Gk HY ki YD)

+ 2(c2) ]

4)

Then we have the posterior density of one-
way repeated measurements model coefficients
and the variances (c?) and (c3) as follows

nl(“hj! 6i(j)! ’Yk' (ry)jk' Gg! Gg) S
L(Y|H, T]" 6i(j)r Yk! (W)jk’ Gg' G%) TEO(H)’

where 1y and m; represents prior and posterior
density respectively, then

The posterior of u is p|t;, 8;gy, vy, (TV)jk o2, c?

|
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1 (17, iy, i (@)jic, 03, 62) o

2
_hae e N S (i )
(2n(c?)) 2 expif- ! 2(023 ) —
n a4 P 2 n a4 P 2
Zi:lzj:12k:1(Yi.k_Tj) _Zi:lzj=12k:1(3’..k—5i(j))
2(05) 2('32.)

2
DD D Y DI X0 B SN R Y
2(c?) 2(c2)

2
T N SR ik Yk Y YL 1
+11]1k1(l( Kk 1 1)]x(2ﬂﬁﬁ)2

2(?)
s L 2
eXpi‘ﬁEziﬁ ]

_nap_ 1
= (2n(c?)) ? (2mc?) zexp [—%pz (n:f +
PHEDIRIND VP
"_u hiks (T

i 12 L Zho Vi

:exp - HZ_ZH—H_QZP__'_}Z_— X

o6 op

/ D 121 1% 1yuk\
-

\“_ ngp 1

N

o2 oz
S

= exp
nqp |
v

og  of

n a P
Zi=12j=1 Tk =1 Yijk

1
| )

oS¢ ou oS¢ ou

H|Tj' 5i(j). Yo (W)jkr ng G§~N

By the same way we can find the posterior
of the other parameters is

Tl 8igy, 7, (t1)ji, 05,05 ~ N —1_np+ VAT
2tz 2tz

oe

B vik }
o2 1

Py Z,q 1Yij.
1
g ,
+—7 —z'+

oz

Yk I, T .Si(j),(TY)]‘k'Gg'O'g ~N @)

s St

—1—,—1— ()]
Zt 7 T

¢ Oty

(™jk 10T, 85y Yi, 02,62 ~ N

1(]) “l, T Yk (w)]krcér Ge ~N

Ek 1Y.k
2 1
gurealis ©

oZ «5 of of
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o2 1T, 8iy, Vi (Tjic» 08 ~ 1G[oss, By - (10)
ngp. RSS
cye“’l' T]' i(G)’ Yk (TY)]kIGS IG ((1 +—= B +_) (11)

Where

RSS= 2 12 12]( 1[(YI]k - 2 +
Wik —5)2 + ke — i) + (Yij. - Yk)z +
i — (W)jk)z — ik +yxtyy + Yi..)z]

4. Model checking and Bayes factors

We would like to choose between a Bayesian
mixed repeated measurements model and its
fixed counterpart by the criterion of the Bayes
factor for tow hypotheses :

versus
Hy: yie = p+ 1+ 8igy + v, + (i
+€ijk

Ho: yie = u+ 7 + 7, + (00 + ey
(12)

We compute the Bayes factor, Byq, of H,
relative to H; for testing problem (12) as

following

m (yij [Ho)
BOI(Yijk) = m, (13)
where m(yjj |[H;) is the predictive (marginal)
density of y;j, under model H;,i = 0, 1.
We have

m(yy|H,) = .

1
@ (O"E +02+02 +ci(21,y)+692))§

ex 1 12;7 1Z£ 1yUk
p 2(0"“+0‘T +o +O‘(Ty)+0‘3)

and

m(yi |H,) = -

1
2 2 2 2 2 2\y\2
(ZE(JM +ogtogtaytag, ytog ))2
n P 2
_Zl 12 1Zk 1yljk ]
2

2
Z(UH +ar +og +o2 +U(Ty)+0'e )

exp [

2 2 2 2 2 2
\/(U,u tortos+oy +(7(Ty)+ﬂe )

2 2 2 2 2
J (02 +o2+o2+02 ) +0?)

“ Bo1 (Yijk) =

n q P 2
o X1 2o V=1 Vijik
P 2(0,% +J.%+a}2,+agl_y)+ag)

(14

n q D 2
exp X1 T B Vijk
2 2
2(0’21 +U.L2- +05+0)Z, +o (Ty)+ag)

S5.Example (The storage experiment)

In this section, we illustrate the effectiveness
of the our methodology. We have choosing the
data set which an experiment was conducted
during winter season 2008-2009 in one of
unhted plastic house which belong to tomato
development project in Basrah / Agriculture
directorate of Basrah (Khor Al — zubiar) in
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order to investigate the effect of calcium on
growth and yield of cultivars of cucumber
(Sayff) and the storage temperature on storage
capability and quality. The field experiment
included 84 variable treatments which were the
interaction of three factors of three storage
temperatures, which were room temperature,
5Cand 12 C° and two concentration of
calcium chloride 0, 1, 2, 3 % and three storage
period 0 , 10 , 15, 20 , 25 , 30 day. After
harvest, the fruit was treated with CaCl, .
2H,0 for five minute, then it was stored in
three temperatures. Then the chemical changes
characteristics of the fruit was reviewed during
the storage at 5 days periods. the design of the
experiment was done according to the model
(1). Table (2) below show the results for the
analysis of variance for model, from this table
we can see that the calculated F-values is
greater than the tabulated F-values at 0.05
level significant that is means there is
significant effect for calcium chloride on
storage capability for cucumber fruits under
different temperatures. The values of
parameters (W, Tj, 8i(jy, ¥).» (ty)jk,cg,cg) for the
model (1) based on ANOVA table shown in
table (3).

Table2: ANOVA table for one-way Repeated
measures model

Source of
d.f SS MS EMS) F-Test
variation
Group 2 5.9874 2.9937 4.637 F = M5 _ g9498*
C MSu@)
Unit F(2,9,0.05)=4.26
9 3.0102 0.3345 1.643
(Group)
E2T — 91618+
MSg
Time 6 13.825 2.3042 2.556
F,(6,34,0.05)=2.36
F =201 — 3 0549+
Group™ 12 9.2196 0.7683 1.019 e
Time : i . F,(12,34,0.05)=2.03
Residual
34 8.5518 0.2515 0.252
Total 63 40.594

Table(3) estimation values for parameters
(0 T, 85y, Yie (TY)ji, 03, 62) by ANOVA

table
n T 5y Vi Wik o o2
4162 | 8117 | 36.836 | 25726 | 62.423 | 0.199 | 0.252

We next applied our methodology (Bayesian
method) the
Figure(1) represent the posterior density of
coefficients for the model (1). Figure (2)

to storage experiment data.

shows the number for iterations of the Gibbs
sampler which used in this study, which was

0o

10
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5000 iterations for this data, while figure (3)
density estimates based on 5000
iterations of o2 and o3.Table(4) presents the

shows

values of the parameters(i, 7, 8¢5y, ¥1.r (TV)jk
62,62) based on Bayesian method. From
table(3) and table(4), we can see that the
values of parameters obtained in both ANOVA
and Gibbs sampling are nearly alike and
encouraging.
Table(4)estimation values for parameters(p
, T, 8iGj), Yio (TY)jio 05, 62) by Bayesian

method
n T 8ig) Yo | @i | o o2
4.158 | 9.494 | 37.23 | 2637 | 62.72 | 0.1994 | 0.231
The model checking approach based on
Bayes factor which its value was

Bo1 (i) = 1.5854 x 107> that is mean the
Bayes factor favors H; with strong evidence
for the storage experiment data.

SmET
&L

X

M M3 MI M4 M5

02 4680

T8 aTH a2 4TA aTd ATS

Figure (1) the posterior density of one-way
repeated measurements model coefficients
(I T iy Vie (TV )0

Figuare (I} shows SO iterarions

ol estimates the Gilibs samgpler for
the this data
0.

Figure {1} shows density
Lased om 5000 terationy
of o} and o}

A000  200C 3000 L4000 1 0 1 2

ol |

T ratirems

1000 2000 3000 4000 1 o 1 z

T Sagma of &

340 = INDIAN JOURNAL OF APPLIED RESEARCH



RESEARCH PAPER Volume : 4 | Issue : 10 | October 2014 | ISSN - 2249-555X

6.Conclusions 6- The posterior density of oZ is
1-The posterior density of u is o ol T, 8iys Ve (TY);k:Ge IG[as, By] -
Ziia B B ik
2 2 Oe 1 . . .
ulT, Bigy Vi (Tji 05, 06 ~ N n_:gn'_Jr;lE n_:gp_JrG_% 7- The posterior density of c?2 is
nqp
ol G Bigy ¥, (™), 05 ~1G (O‘e +—B, +

2- The posterior density of 1; is @)

—)-

T Tho i . .
e 8- The Bayes factor for checking the Bayesian

Tl 8i) Yoo (i 03, 02 ~ N [—p ’“pl b repeated measurements model is
e S e 4 P “
e T e T
2 2 2 2 2 2
. . . ojtortos+to,+o +a,
3- The posterior density of v, is Bor (viix) :\/( frotrofroraly,+ol)
ij
\/(0’3+0’3+0’;+0'(ZTV)+0'32)
n q .
Ziz1%-1Yi), [ B DD ]
2 2 1 ex 2
Y I T, 85y, (TV)jx, 05, 66 ~ N —e1—,r1‘ . 2("u+”f+"y+"( y)*tod)
[ o -3 3T 3R v
P 2(0,21+a.%+0(25+a}2,+0%ﬂ,)+05)

4- The posterior density of (ty);, is
P y of (T 9- There is significant effect for calcium

chloride on storage capability for cucumber

DHEEIR . .
) ) ct : 1 fruits under different temperatures.
(Vi 1T, Bigy, Yo 03, 06 ~ N [ L LR T 10- The values of parameters obtained in both

Ttz —z 3z, : - 5
o ANOVA and Gibbs sampling are nearly alike

and encouraging.

5- The posterior density of ;) is 11- The Bayes factor favors H; with strong
ZRo1Y.k evidence for the storage experiment data that is

8iy I T 5 Yie (TV)ji, 05,062 ~ N —":1—,—i1— . mean the correct model is mixed one-way
o3 of of of repeated measurements model .
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