

Available online at: www.basra-science-journal.org

ISSN -1817 -2695

11- Brauer trees of S₂₀

Ahmed Hussein Jassim

Math.Dept., College of Science /Basrah University
e-mail: ahmedhussein1981@ymail.com
Received 23-4-2013, Accepted 11-1-2014

Abstract:

In this paper we find the Brauer trees of the representation group \overline{S}_{20} of the symmetric group S_{20} modulo p=11 which can give the decomposition matrix for the spin characters of S_{20} .

Key words: Brauer trees, representation group, decomposition matrix for the spin characters

1.Introduction:

Schur showed that the symmetric group S_n has a representation group $\overline{S_n}$ of order 2(n!) and it has a central subgroup $Z = \{1, -1\}$ such that $\overline{S_n}/Z \cong S_n$ [8]. The representations of $\overline{S_n}$ fall into two classes [5], [8]: the first class indexed by the partitions of n, the second class indexed by the partitions of n with distinct parts which are called bar partitions of n these characters in the second class are called spin characters[6].

For p=11Yaseen [12] was found the modular irreducible spin characters of S_n for $11 \le n \le 14$ and for n=15,16 also was found by Yaseen[13], for n=17, 18 and 19 modulo p=11 founded by A. H. Jassim and S.A.Taban [10],[11] in our work we find the modular irreducible spin characters of S_{20} .

We write some theorems which we used. Let G be any group with $o(G) = p^a m$, (p, m) = 1 and p is odd prime:

1. The degree of the spin characters $\langle \alpha \rangle = \langle \alpha_1, ..., \alpha_m \rangle$ is:

$$deg\langle\alpha\rangle = 2^{\left[\frac{n-m}{2}\right]} \frac{n!}{\prod_{i=1}^{m}(\alpha_i!)} \prod_{1\leq i < j \leq m} \left(\alpha_i - \alpha_j\right) / \left(\alpha_i + \alpha_j\right) [5].$$

- 2. Let *B* be the block of defect one and let *b* the number of p —conjugate characters to the irreducible ordinary character χ of *G* then [7]:
 - a) There exists a positive integer number *N* such that the irreducible ordinary characters of *G* are lying in the block
- B divided into two disjoint classes: $B_1 = \{\chi \in B \mid b \deg \chi \equiv N \bmod p^a\}, B_2 = \{\chi \in B \mid b \deg \chi \equiv -N \bmod p^a\}$
- b) Each coefficient of the decomposition matrix of the block *B* is 1 or 0.

- c) If α_1 and α_2 are not p —conjugate characters and are belong to the same class B_1 or B_2 above, then they have no irreducible modular character in common.
- d) For every irreducible ordinary character χ in B_1 , there exists irreducible ordinary character φ in B_2 such that they have one irreducible modular character in common with multiplicity one .
- 3. If C is a principal character of G and all the entries in C are divisible by a nonnegative integer q, then $(1 \setminus q)C$ is a principal character of G [4].
- 4. Let *n*even then [6]:
 - a) If $p \nmid n$ then $\langle n \rangle$ and $\langle n \rangle'$ are irreducible modular spin characters which are denoted by $\varphi(n)$ and $\varphi(n)'$ respectively and $\varphi(n) \neq \varphi(n)'$.
 - b) If $p \nmid n$ and $p \nmid (n-1)$, then (n-1,1) is an irreducible modular spin character which is denoted by $\varphi(n-1,1)^*$.

- 5. If C is a principal character of G then $\deg C \equiv 0 \mod p^a[3], [9].$
- 6. Let β_1^* , β_2 , β_2' , β_3 , β_3' be modular spin characters where ${\beta_1}^*$ is a double character , $\beta_2 \neq {\beta_2}'$ are associate spin modular characters (real), and $\beta_3 \neq {\beta_3}'$ are associate modular spin characters (complex). Let $\varphi_1^*, \varphi_2, \varphi_2', \varphi_3, \varphi_3'$ be irreducible modular spin characters ,where φ_1^* is a double character $, \varphi_2 \neq \varphi_2'$ and $\varphi_3 \neq \varphi_3'$ are associate irreducible modular spin characters (real), (complex)respectively then[12]:
 - a) β_1^* , β_2 , β_2^\prime contains φ_3 and φ_3^\prime with the same multiplicity , β_1^* which contains φ_2 and φ_2^\prime with the same multiplicity .
 - b) β_3 and ${\beta_3}'$ contains ${\varphi_1}^*$, ${\varphi_2}$, ${\varphi_2}'$ with the same multiplicity.
 - c) φ_3 is a constituent of β_3 with the same multiplicity as that of φ_3' in β_3' .

Notation

p.s.	principle spin character.
p.i.s.	principle indecomposable spin character.
m.s.	modular spin character.
i.m.s.	irreducible modular spin character.
$(<\lambda>)^{no}$	(no) mean the number of i.m.s. in $< \lambda >$
≡	equivalence <i>mod</i> 11.

2. Brauer trees to the symmetric group S_{20} , p=11:

The decomposition matrix for S_{20} modulo p=11 of degree (96,84) [5], [6]. There are 32 blocks eight of them B_1 , B_2 , ..., B_8 , are of defect one and the others blocks $\langle 15,4,1\rangle$, $\langle 15,4,1\rangle'$, $\langle 14,3,2,1\rangle^*$, $\langle 13,5,2\rangle$, $\langle 13,5,2\rangle'$, $\langle 13,4,2,1\rangle^*$, $\langle 12,7,1\rangle$, $\langle 12,7,1\rangle'$, $\langle 12,5,2,1\rangle^*$, $\langle 12,4,3,1\rangle^*$, $\langle 10,8,2\rangle$, $\langle 10,8,2\rangle'$, $\langle 10,7,3\rangle$, $\langle 10,7,3\rangle'$, $\langle 10,6,4\rangle$, $\langle 10,6,4\rangle'$, $\langle 10,5,3,2\rangle^*$, $\langle 9,7,3,1\rangle^*$, $\langle 9,6,4,1\rangle^*$, $\langle 8,7,5\rangle$, $\langle 8,7,5\rangle'$, $\langle 8,6,4,2\rangle^*$, $\langle 8,5,4,2,1\rangle$ and $\langle 8,5,4,2,1\rangle'$ (denoted this

blocks by B_9 , B_{10} , ..., B_{32} respectively) of defect zero.

Lemma (2.1)

The Brauer tree for the block B_2 is: $\langle 19,1\rangle^* _ \langle 12,8\rangle^* _ \langle 11,8,1\rangle = \langle 11,8,1\rangle' _ \langle 9,8,2,1\rangle^* _ \langle 8,7,4,1\rangle^* _ \langle 8,6,5,1\rangle^*$ **Proof:** $\deg(19,1)^* \equiv \deg(\langle 11,8,1\rangle + \langle 11,8,1\rangle') \equiv \deg(\langle 8,7,4,1\rangle^* \equiv 9$, $\deg(12,8)^* \equiv \deg(\langle 9,8,2,1\rangle^* \equiv \deg(\langle 8,6,5,1\rangle^* \equiv -9$.

By using (r, \bar{r}) -inducing of p.i.s. for S_{19} (see appendix I)to S_{20} we have p.s.:

$$D_2 \uparrow^{(1,0)} S_{20} = 2d_{12}, \ D_3 \uparrow^{(1,0)} S_{20} = d_{13}, \ D_4 \uparrow^{(1,0)} S_{20} = d_{14}, D_5 \uparrow^{(1,0)} S_{20} = d_{15},$$

 $D_6 \uparrow^{(8,4)} S_{20} = d_{11}$. So we have the Braure tree for this block $B_2 \blacksquare$.

Lemma(2.2)

The Braure tree for the block B_3 is:

$$\langle 18,2\rangle^* _ \langle 13,7\rangle^* _ \langle 11,7,2\rangle = \langle 11,7,2\rangle' _ \langle 10,7,2,1\rangle^* _ \langle 8,7,3,2\rangle^* _ \langle 7,6,5,2\rangle^*$$

Proof:

$$\deg\langle 18,2\rangle^* \equiv \deg(\langle 11,7,2\rangle + \langle 11,7,2\rangle') \equiv \deg\langle 8,7,3,2\rangle^* \equiv 10$$

$$deg(13,7)^* \equiv deg(10,7,2,1)^* \equiv deg(7,6,5,2)^* \equiv -10$$

By inducing of p.i.s for S_{19} to S_{20} we have on p.i.s.:

$$D_6 \uparrow^{(2,10)} S_{20}, D_8 \uparrow^{(2,10)} S_{20}, D_{10} \uparrow^{(2,10)} S_{20}, D_{12} \uparrow^{(2,10)} S_{20}, D_{14} \uparrow^{(2,10)} S_{20}.$$

So we have the Braure tree for this block $B_3 \blacksquare$.

Lemma (2.3)

The Braure tree for the block B_4 is:

$$\langle 17,3 \rangle^* _ \langle 14,6 \rangle^* _ \langle 11,6,3 \rangle = \langle 11,6,3 \rangle' _ \langle 10,6,3,1 \rangle^* _ \langle 9,6,3,2 \rangle^* _ \langle 7,6,4,3 \rangle^*$$

Proof:

$$deg(14,6)^* \equiv deg(10,6,3,1)^* \equiv deg(7,6,4,3)^* \equiv 8$$

$$deg(17,3)^* \equiv deg((11,6,3) + (11,6,3)') \equiv deg(9,6,3,2)^* \equiv -8$$

The inducing: $D_{16} \uparrow^{(3,9)} S_{20}$, $D_{18} \uparrow^{(3,9)} S_{20}$, $D_{20} \uparrow^{(3,9)} S_{20}$, $D_{22} \uparrow^{(3,9)} S_{20}$, $D_{24} \uparrow^{(3,9)} S_{20}$, give the Braure tree for this block $B_4 \blacksquare$.

Lemma(2.4)

The Brauer tree for the block B_5 is:

Proof:

$$\deg\{\langle 13,6,1\rangle,\langle 13,6,1\rangle',\langle 11,6,2,1\rangle^*,\langle 7,6,4,2,1\rangle\;,\langle 7,6,4,2,1\rangle'\}\equiv 9$$

$$deg\{(17,2,1),(17,2,1)',(12,6,2),(12,6,2)',(8,6,3,21),(8,6,3,2,1)'\} \equiv -9$$

By using inducing of p.i.s. for S_{19} to S_{20} we have on p.i.s.:

 $D_{16} \uparrow^{(1,0)} S_{20}, D_{17} \uparrow^{(1,0)} S_{20}, D_{22} \uparrow^{(1,0)} S_{20}, D_{23} \uparrow^{(1,0)} S_{20}, D_{24} \uparrow^{(1,0)} S_{20}, D_{25} \uparrow^{(1,0)} S_{20}$ (no sub sum of them $\equiv 0$).

and p.s.

$$D_{18} \uparrow^{(1,0)} S_{20} = k_2, D_{19} \uparrow^{(1,0)} S_{20} = k_3, D_{37} \uparrow^{(6,6)} S_{20} = k_1.$$

Since (12,6,2,1) and (12,6,2,1)' are p.i.s. of S_{21} (of defect 0 in S_{21} , p=11) and:

$$\langle 12,6,2,1 \rangle \downarrow_{(1,0)} S_{20} = \langle 12,6,2 \rangle + \langle 11,6,2,1 \rangle^* = h_1$$

$$\langle 12,6,2,1\rangle' \downarrow_{(1,0)} S_{20} = \langle 12,6,2\rangle' + \langle 11,6,2,1\rangle^* = h_2$$

Since $k_1 = k_2 + k_3 - h_1 - h_2$, either $(k_2 - h_2 \ and k_3 - h_1)$ or $(k_3 - h_2 \ and k_2 - h_1)$ are p.s.In any case we have k_2, k_3 are not p.i.s.so we take $c_3 = k_2 - h_2$, $c_4 = k_3 - h_1$. Hence, we have the Braure tree for this block $B_5 \blacksquare$.

Lemma (2.5)

The Braure tree for the block B_6 is:

$$\langle 16,4\rangle^* _ \langle 15,5\rangle^* _ \langle 11,5,4\rangle = \langle 11,5,4\rangle' _ \langle 10,5,4,1\rangle^* _ \langle 9,5,4,2\rangle^* _ \langle 8,5,4,3\rangle^*$$

Proof:

$$deg(16,4)^* \equiv deg((11,5,4) + (11,5,4)') \equiv deg(9,5,4,2)^* \equiv 7$$

$$deg(15,5)^* \equiv deg(10,5,4,1)^* \equiv deg(8,5,4,3)^* \equiv -7$$

The inducing $D_{26} \uparrow^{(4,8)} S_{20}$, $D_{28} \uparrow^{(4,8)} S_{20}$, $D_{30} \uparrow^{(4,8)} S_{20}$, $D_{32} \uparrow^{(4,8)} S_{20}$, $D_{34} \uparrow^{(4,8)} S_{20}$, give the Braure tree for this block $B_6 \blacksquare$.

Lemma(2.6)

The Brauer tree for the block B_7 is:

$$\langle 16,3,1 \rangle _ \langle 14,5,1 \rangle _ \langle 12,5,3 \rangle \setminus \langle 11,5,3,1 \rangle^* \setminus \langle 16,3,1 \rangle' _ \langle 14,5,1 \rangle' _ \langle 12,5,3 \rangle' \setminus \langle 15,3,1 \rangle^* \setminus \langle 15,3,1 \rangle' _ \langle 15,3,1 \rangle' _$$

 $deg\{(14,5,1),(14,5,1)',(11,5,3,1)^*,(7,5,4,3,1),(7,5,4,3,1)'\} \equiv 6$

 $deg\{(16,3,1), (16,3,1)', (12,5,3), (12,5,3)', (9,5,3,21), (9,5,3,2,1)'\} \equiv -6$

By using (r, \bar{r}) -inducing of p.i.s. for S_{19} to S_{20} we haveon p.i.s. $D_{26} \uparrow^{(1,0)} S_{20}, \ D_{27} \uparrow^{(1,0)} S_{20}, \ D_{32} \uparrow^{(1,0)} S_{20}, D_{33} \uparrow^{(1,0)} S_{20}, D_{34} \uparrow^{(1,0)} S_{20}, D_{35} \uparrow^{(1,0)} S_{20}$

 $D_{37} \uparrow^{(3,9)} S_{20} = k_1, D_{28} \uparrow^{(1,0)} S_{20} = k_2, D_{29} \uparrow^{(1,0)} S_{20} = k_3,$

Since (12,5,3,1) and (12,5,3,1)' are p.i.s. of S_{21} (of defect 0 in S_{21} , p=11) and:

 $\langle 12,5,3,1 \rangle \downarrow_{(1,0)} S_{20} = \langle 12,5,3 \rangle + \langle 11,5,3,1 \rangle^* = m_1$

 $\langle 12,5,3,1 \rangle' \downarrow_{(1,0)} S_{20} = \langle 12,5,3 \rangle' + \langle 11,5,3,1 \rangle^* = m_2$

Now since $k_1 = k_2 + k_3 - m_1 - m_2$, either $(k_2 - m_2 \text{ and } k_3 - m_1)$ or

 $(k_3 - m_2 \text{ and } k_2 - m_1)$ are p.s.

In any case we have k_2,k_3 are not p.i.s. so we take $c_3 = k_2 - m_2$,

 $c_4 = k_3 - m_1$. Hence, we have the Braure tree for this block $B_7 \blacksquare$.

Lemma(2.7)

The Brauer tree for the block B_8 is:

$$\langle 15,3,2 \rangle _ \langle 14,4,2 \rangle _ \langle 13,4,3 \rangle$$
 $\langle 11,4,3,2 \rangle^*$ $\langle 10,4,3,2,1 \rangle _ \langle 6,5,4,3,2 \rangle$ $\langle 15,3,2 \rangle' _ \langle 14,4,2 \rangle' _ \langle 13,4,3 \rangle'$

Proof:

 $deg\{(14,4,2),(14,4,2)',(11,4,3,2)^*,(6,5,4,3,2),(6,5,4,3,2)'\} \equiv 8$

 $\deg\{\langle 15,3,2\rangle,\langle 15,3,2\rangle',\langle 13,4,3\rangle,\langle 13,4,3\rangle',\langle 10,4,3,2,1\rangle,\langle 10,4,3,2,1\rangle'\} \equiv -8$.

By using (r, \bar{r}) -inducing of p.i.s. for S_{19} to S_{20} we haveon:

$$\begin{array}{c} D_{41} \uparrow^{(2,10)} S_{20} = k_1 \ , \ D_{42} \uparrow^{(2,10)} S_{20} = k_2 \ , \ D_{43} \uparrow^{(2,10)} S_{20} = k_3 \\ D_{45} \uparrow^{(2,10)} S_{20} = k_4 \ , \ \langle 10,4,3,2 \rangle \uparrow^{(0,1)} S_{20} = c_7 \ , \ \langle 10,4,3,2 \rangle' \uparrow^{(0,1)} S_{20} = c_8. \end{array}$$

Thus, we have the approximation matrix (Table (1))

	Ψ_1	Ψ_2	Ψ_3	φ_7	$arphi_8$	Ψ_4	$arphi_1$	$arphi_2$
(15,3,2)	1						a	
(15,3,2)'	1							a
(14,4,2)	1	1					b	
(14,4,2)'	1	1						b
(13,4,3)		1	1				d	
(13,4,3)'		1	1					d
(11,4,3,2)*			2	1	1		f	f
(10,4,3,2,1)				1		1	h	
(10,4,3,2,1)'					1	1		h
(6,5,4,3,2)						1		
(6,5,4,3,2)'						1		
	k_1	k_2	k_3	c_7	c_8	k_4	Y_1	Y_2

Since $(6,5,4,3,2) \neq (6,5,4,3,2)$ on $(11,\alpha)$ -regular class and

 $(6,5,4,3,2) \downarrow S_{19} = ((6,5,4,3,1)^*)^{1}$ is one of i.m.s in S_{19} (see appendix I)

and from (Table (1)) then k_4 splits to d_{59} and d_{60} .

Since $\langle 15,3,2 \rangle \neq \langle 15,3,2 \rangle'$ on $(11,\alpha)$ -regular classes then either k_1 is split or there are two columns. Suppose there are two columns such as Y_1 and Y_2 (Table (1)). To describe columns Y_1 and Y_2 :

- 1. $\langle 15,3,2 \rangle \downarrow S_{19} = (\langle 14,3,2 \rangle^*)^1 + (\langle 15,3,1 \rangle^*)^1$ has 2 of i.m.s. so $a \in \{0,1\}$. If a = 1, k_1 must have a conjugate p.s.so $\langle 15,3,2 \rangle$ have three m.s. contradiction since $\langle 15,3,2 \rangle$ has at most two m.s.so a = 0 and k_1 split to give $d_{51} = \langle 15,3,2 \rangle + \langle 14,4,2 \rangle$ and $d_{52} = \langle 15,3,2 \rangle' + \langle 14,4,2 \rangle'$.
- 2. $\langle 14,4,2 \rangle \downarrow S_{19} = (\langle 13,4,2 \rangle^*)^1 + (\langle 14,3,2 \rangle^*)^1 + (\langle 14,3,1 \rangle^*)^2$ has 4 of i.m.s. we have $b \in \{0,1\}$, if b = 2 we have a contradiction.
- 3. $\langle 13,4,3 \rangle \downarrow S_{19} = (\langle 12,4,3 \rangle^*)^2 + (\langle 13,4,2 \rangle^*)^1$ has 3 of i.m.s. we have d=0 (d=1 give a contradiction) so k_3 splits to $d_{55} = \langle 13,4,3 \rangle + \langle 11,4,3,2 \rangle^*$ and $d_{56}\langle 13,4,3 \rangle' + \langle 11,4,3,2 \rangle^*$.
- 4. $\langle 11,4,3,2 \rangle^* \downarrow S_{19} = (\langle 10,4,3,2 \rangle)^1 + (\langle 10,4,3,2 \rangle')^1 + (\langle 11,4,3,1 \rangle)^2 + (\langle 11,4,3,1 \rangle')^2$ has 6 of i.m.s. we have $f \in \{0,1\}$.
- 5. $\langle 10,4,3,2,1 \rangle \downarrow S_{19} = (\langle 9,4,3,2,1 \rangle^*)^2 + (\langle 10,4,3,2 \rangle^*)^1$ has 3 of i.m.s. we have. h = 0so k_4 must split to $d_{59} = \langle 10,4,3,2,1 \rangle + \langle 6,5,4,3,2 \rangle$ and $d_{60} = \langle 10,4,3,2,1 \rangle' + \langle 6,5,4,3,2 \rangle'$.

Since $\langle 14,4,2 \rangle \neq \langle 14,4,2 \rangle'$ on $(11,\alpha)$ -regular classesthen either k_2 is split or there are two columns. If we suppose that there are two columns such as Y_1 and Y_2 , with $\alpha = d = h = 0$ and $a_1, b_2 \in \{0,1\}$.

If b = 1

There is no i.m.s. in $(14,4,2) \downarrow S_{19} \cap (11,4,3,2)^* \downarrow S_{19}$, then f = 0;

We, get $Y_1=\langle 14,4,2\rangle$, $Y_2=\langle 14,4,2\rangle'$ which is not p.s.since deg $Y_1\not\equiv 0$ and deg $Y_2\not\equiv 0$, so b=0 and k_2 is splits to give $d_{53}=\langle 14,4,2\rangle+\langle 13,4,3\rangle$ and $d_{54}=\langle 14,4,2\rangle'+\langle 13,4,3\rangle'$ (also if f=1 then $Y_1,Y_2,=\langle 11,4,3,2\rangle^*$ is not p.s.since deg $Y_1\not\equiv 0$ and deg $Y_2\not\equiv 0$ so f=0)

So we have the Brauer tree for the block $B_8 \blacksquare$.

Lemma(2.8)

The Brauer tree for the block B_1 is:

$$\langle 20 \rangle$$
 $\langle 11,9 \rangle^*$
 $\langle 10,9,1 \rangle = \langle 9,8,3 \rangle = \langle 9,7,4 \rangle = \langle 9,6,5 \rangle$
 $\langle 10,9,1 \rangle = \langle 9,8,3 \rangle = \langle 9,7,4 \rangle = \langle 9,6,5 \rangle$

Proof:

$$deg\{\langle 20 \rangle, \langle 20 \rangle', \langle 10,9,1 \rangle, \langle 10,9,1 \rangle', \langle 9,7,4 \rangle, \langle 9,7,4 \rangle'\} \equiv 6$$

$$deg\{(11,9)^*, (9,8,3), (9,8,3)', (9,6,5), (9,6,5)'\} \equiv -6$$
.

By using (r, \bar{r}) -inducing of p.i.s. for S_{19} to S_{20} :

$$d_1 \uparrow^{(9,3)} S_{20} = k_1$$
, $d_3 \uparrow^{(9,3)} S_{20} = k_2$, $d_4 \uparrow^{(9,3)} S_{20} = k_3 d_5 \uparrow^{(9,3)} S_{20} = k_4$, $\langle 10,9 \rangle \uparrow^{(1,0)} S_{20} = c_3$, $\langle 10,9 \rangle \uparrow^{(1,0)} S_{20} = c_4$

 k_1 must be split to c_1 and c_2 [12]. we get the matrix (Table (2))

 Ψ_2 Ψ_3 Ψ_4 φ_1 φ_2 φ_3 φ_4 φ_9 φ_{10} (20) 1 (20) a (10,9,1)b (10,9,1) 1 b (9,8,3)(9,8,3) d (9,7,4) (9,7,4) f h

Table (2)

Since $(9,6,5) \neq (9,6,5)$ 'on $(11,\alpha)$ -regular classes,then either k_4 is splits or there are two columns. Suppose there are two columns Y_1 and Y_2 (as in Table (2)), We, now, describe these columns Y_1 and Y_2

- 1. $\langle 11,9 \rangle^* \downarrow S_{19} = (\langle 10,9 \rangle)^1 + (\langle 10,9 \rangle')^1 + (\langle 11,8 \rangle)^2 + (\langle 11,8 \rangle')^2$ has 6 of i.m.s. and form (Table(2)) we have $a \in \{0,1\}, a \neq 2$ since $\langle 11,9 \rangle^*$ at most six of m.s..
- 2. $\langle 10,9,1 \rangle \downarrow S_{19} = (\langle 10,8,1 \rangle^*)^2 + (\langle 10,9 \rangle^*)^1$ has 3 of i.m.s.so b=0 and k_2 split to $d_5 = \langle 10,9,1 \rangle + \langle 9,8,3 \rangle$ and $d_6 = \langle 10,9,1 \rangle' + \langle 9,8,3 \rangle'$
- 3. $\langle 9,8,3 \rangle \downarrow S_{19} = (\langle 9,7,3 \rangle^*)^1 + (\langle 9,8,2 \rangle^*)^2$ has 3 of i.m.s. so d=0 and k_3 split to $d_7 = \langle 9,8,3 \rangle + \langle 9,7,4 \rangle$ and $d_8 = \langle 9,8,3 \rangle' + \langle 9,7,4 \rangle'$.

This block B_1 has ten columns and we determined nine columns so there is only one column which means k_4 must split to give $d_9 = \langle 9,7,4 \rangle + \langle 9,6,5 \rangle$ and

(9,6,5)

From lemmas above we can find the 11-decomposition matrix for the spin characters of S_{20} . We write this decomposition matrix in appendix II

h

 $d_{10} = \langle 9,7,4 \rangle' + \langle 9,6,5 \rangle'$. Hence, we have the Braure tree for this block $B_1 \blacksquare$.

Appendix I (taken from [S.A.Taban and A. H. Jassim] in appear)

The decomposition matrix for the spin characters of S_{19} , p=11

The accomposit	The decomposition matrix for the spin characters of 519; p 11									
The spin characters		The decomposition matrix for the block B_1								
	1									
	1	1								
	1	1								
		1	1							
			1	1						
⟨8,7,4⟩*				1	1					
					1					
	D_1	D_2	D_3	D_4	D_5					

Journal of Basrah Researches ((Sciences)) Vol. (40). No. (1) (2014)

The spin characters			The c	decompo	sition m	atrix for	the bloc	k B ₂		
(18,1)	1									
(18,1)'		1								
⟨12,7⟩	1		1							
⟨12,7⟩′		1		1						
⟨11,7,1⟩*			1	1	1	1				
(9,7,2,1)					1		1			
(9,7,2,1)'						1		1		
(8,7,3,1)							1		1	
(8,7,3,1)'								1		1
(7,6,5,1)									1	
(7,6,5,1)'										1
	D_6	D_7	D_8	D_9	D_{10}	D_{11}	D_{12}	D_{13}	D_{14}	D_{15}

The spin characters		The decomposition matrix for the block B_3								
⟨17,2⟩	1									
⟨17,2⟩′		1								
(13,6)	1		1							
(13,6)′		1		1						
(11,6,2)*			1	1	1	1				
(10,6,2,1)					1		1			
(10,6,2,1)′						1		1		
(8,6,3,2)							1		1	
(8,6,3,2)′								1		1
(7,6,4,2)									1	
(7,6,4,2)′										1
	D ₁₆	D ₁₇	D ₁₈	D ₁₉	D_{20}	D ₂₁	D ₂₂	D_{23}	D ₂₄	D ₂₅

The spin characters		The decomposition matrix for the block B_4								
⟨16,3⟩	1									
⟨16,3⟩′		1								
(14,5)	1		1							
⟨14,5⟩′		1		1						
⟨11,5,3⟩*			1	1	1	1				
(10,5,3,1)					1		1			
(10,5,3,1)′						1		1		
(9,5,3,2)							1		1	
(9,5,3,2)′								1		1
(7,5,4,3)									1	
(7,5,4,3)′										1
	D ₂₆	D ₂₇	D ₂₈	D ₂₉	D ₃₀	D ₃₁	D ₃₂	D ₃₃	D ₃₄	D ₃₅

Jassim: 11-Brauer trees of \overline{S}_{20}

The spin characters	The decompos	The decomposition matrix for the block B_5							
⟨16,2,1⟩*	1								
(13,5,1)*	1	1							
(12,5,2)*		1	1						
(11,5,2,1)			1	1					
(11,5,2,1)'			1	1					
(8,5,3,2,1)*				1	1				
(7,5,4,2,1)*					1				
	D ₃₆	D ₃₇	D ₃₈	D ₃₉	D_{40}				

The spin characters	The decompos	sition matrix for th	ne block B ₆		
⟨15,3,1⟩*	1				
⟨14,4,1⟩*	1	1			
⟨12,4,3⟩*		1	1		
(11,4,3,1)			1	1	
(11,4,3,1)′			1	1	
(9,4,3,2,1)*				1	1
(6,5,4,3,1)*					1
	D ₄₁	D ₄₂	D ₄₃	D ₄₄	D ₄₅

 $\label{eq:appendix} \mbox{Appendix II}$ The decomposition matrix for the spin characters of S_{20} , p=11

The spin characters	The decomposition matrix for the block B_1									
⟨20⟩	1									
⟨20⟩′		1								
⟨11,9⟩*	1	1	1	1						
(10,9,1)			1		1					
(10,9,1)′				1		1				
(9,8,3)					1		1			
(9,8,3)′						1		1		
(9,7,4)							1		1	
(9,7,4)′								1		1
(9,6,5)									1	
(9,6,5)′										1
	d_1	d_2	d_3	d_4	d_5	d_6	d_7	d_8	d_9	d_{10}

The spin characters	The decomposition matrix for the block B_2							
(19,1)*	1							
⟨12,8⟩*	1	1						
(11,8,1)		1	1					
(11,8,1)′		1	1					
			1	1				
(8,7,4,1)*				1	1			
⟨8,6,5,1⟩*					1			
	d_{11}	d_{12}	d_{13}	d_{14}	d_{15}			

The spin characters	The decomposition matrix for the block B_3							
⟨18,2⟩*	1							
⟨13,7⟩*	1	1						
⟨11,7,2⟩		1	1					
⟨11,7,2⟩′		1	1					
⟨10,7,2,1⟩*			1	1				
(8,7,3,2)*				1	1			
⟨7,6,5,2⟩*					1			
	d_{16}	d ₁₇	d_{18}	d_{19}	d_{20}			

Journal of Basrah Researches ((Sciences)) Vol. (40). No. (1) (2014)

The spin characters		The decomposition matrix for the block B_4							
⟨17,3⟩*	1								
⟨14,6⟩*	1	1							
(11,6,3)		1	1						
(11,6,3)'		1	1						
(10,6,3,1)*			1	1					
(9,6,3,2)*				1	1				
⟨7,6,4,3⟩*					1				
	d_{21}	d_{22}	d_{23}	d_{24}	d_{25}				

The spin characters	The decomposition matrix for the block B_5									
(17,2,1)	1									
⟨17,2,1⟩′		1								
(13,6,1)	1		1							
(13,6,1)'		1		1						
(12,6,2)			1		1					
⟨12,6,2⟩′				1		1				
(11,6,2,1)*					1	1	1	1		
(8,6,3,21)							1		1	
(8,6,3,2,1)'								1		1
(7,6,4,2,1)									1	
(7,6,4,2,1)'										1
	d_{26}			(

The spin characters		The decomposition matrix for the block B_6								
⟨16,4⟩*	1									
⟨15,5⟩*	1	1								
(11,5,4)		1	1							
(11,5,4)'		1	1							
(10,5,4,1)*			1	1						
(9,5,4,2)*				1	1					
(8,5,4,3)*					1					
	d_{36}	d_{37}	d_{38}	d_{39}	d_{40}					

The spin characters	The decomposition matrix for the block B_7									
(16,3,1)	1									
(16,3,1)′		1								
(14,5,1)	1		1							
(14,5,1)'		1		1						
(12,5,3)			1		1					
(12,5,3)′				1		1				
(11,5,3,1)*					1	1	1	1		
(9,5,3,21)							1		1	
(9,5,3,2,1)'								1		1
(7,5,4,3,1)									1	
(7,5,4,3,1)'										1
	d_{41}		d	d	(4			((

The spin characters	The decomposition matrix for the block B_8									
(15,3,2)	1									
⟨15,3,2⟩′		1								
(14,4,2)	1		1							
(14,4,2)′		1		1						
⟨13,4,3⟩			1		1					
(13,4,3)'				1		1				
⟨11,4,3,2⟩*					1	1	1	1		
(10,4,3,2,1)							1		1	
(10,4,3,2,1)'								1		1
(6,5,4,3,2)									1	
(6,5,4,3,2)'										1
	d_{51}									

References

- [1] BessenrodtC.,MorrisA.O.,and Olsson J. B.: Decomposition matrices for spin characters of symmetric groups at characteristic 3; J. Algebra, Vol.164, no.1,(1994), 146 172.
- [2] DornhoffL.: Group representation theory; parts A and B .Marcel Dekker Inc.,(1971), (1972).
- [3] Humphreys J.F.: Projective modular representations of finite groups I; J.London Math. Society (2), 16 (1977) 51 66.
- [4] James G.D.and Kerber A.:The representation theory of the symmetric group; Reading, Mass, Addison-Wesley,(1981).
- [5] Morris A. O.:The spin representation of the symmetric group; proc. London Math. Soc.(3) 12 (1962), 55 76.
- [6] Morris A. O.and Yaseen
 A.K.:Decomposition matrices for spin characters of symmetric group; Proc. of Royal society of Edinburgh, 108A, (1988),145-164.
- [7] Puttaswamaiah B. M. and Dixon J. D.:Modular representation of finite groups; Academic Press, (1977).

- [8] Schur I.: Über die Darstellung der symmetrischen und der alternierendenGruppedurchgebrocheneli neareSubtitutionen; j.Reine Ang. Math.,139(1911),155-250
- [9] TabanS.A.: On the decomposition matrices of the projective characters of the symmetric groups; M.Sc.Thesis,Basrah University (1989).
- [10] Taban S.A. and JassimA. H.:The Brauer trees of the symmetric groups S_{17} and S_{18} modulo p=11; Basrah Journal of Science v.30,n.2,2012,149-165.
- [11] Taban S.A. and Jassim A. H.: Irreducible modular spin characters of the symmetric group S_{19} modulo p=11; to appear in Basrah Journal of Science.
- [12] Yaseen A.K.: Modular spin representations of the symmetric groups; Ph.D thesis, Aberystwyth, (1987).
- [13] Yaseen A.K.: Modular Spin Characters of the symmetric Groups S_n , $15 \le n \le 16$ at Characteristic 11; J.Basrah Researches (1995)

11 شجرات براور لـ \overline{S}_{20} معيار

أحمد حسين جاسم ألرياضيات/كلية العلوم/ جامعة البصرة

الملخص

في هذا البحث وجدنا شجرات براور للزمرة التمثيلية \overline{S}_{20} للزمرة التناظرية S_{20} معيار S_{20} والتي تعطي مصفوفة التجزئة للمشخصات الاسقاطية لـ S_{20}