Irreducible modular spin characters of the symmetric group S_{19} modulo p = 11

Saeed Abdul-Ameer Taban and Ahmed Hussein Jassim Math.Dept. College of Science /Basrah University

Abstract:

The main result of this paper is to find the irreducible modular spin characters of the symmetric group S_{19} modulo p=11.

Section (1):

Introduction (1.1):

The symmetric group S_n has a representation group $\overline{S_n}$ of order2(n!)[I.Schur 1911], this group $\overline{S_n}$ it has two kinds of characters, the first kind called ordinary characters which are indexed by the partitions of n. The second kind called spin (projective)characters of S_n which are indexed by the partitions of n with distinct parts which are called bar partitions of n [A.O.Morris and A.K.Yaseen 1988]. Finding irreducible modular spin characters equivalent to calculate the decomposition matrix[A.K.Yaseen 1987]. For p=11 Yaseen [A.K.Yaseen 1987] was found the modular spin characters of S_n for $11 \le n \le 14$ and for n = 15,16 also calculated by Yaseen[A.K.Yaseen1995, see also Maas 2011], for n = 17 and 18 was calculate by Jassim and Taban[A.H. Jassimand S.A.Taban 2012]. In this paper we continue the works and we success to find the irreducible modular spin characters for n = 19 which we give in the appendix II.

Method for calculation(1.2):

There is no general method for a finding the Brauer characters for any non-abelian group, her we used several techniques as in [G.D. James and A. Kerber 1981],[A.H. Jassim and S.A.Taban 2012],[S.A.Taban1989],[A.K.Yaseen1987] and [A.K.Yaseen1995]. For the theory and back ground of a modular spin (projective) representation we refer to references [C.W. Curtis and I. Reiner 1966],[L. Dornhoff 1971,1972] and [B.M.Puttaswamaiah and J.D.Dixon 1977]. We give below some basic result which we used several times in calculations:

1. The degree of the spin characters $\langle \alpha \rangle = \langle \alpha_1, ..., \alpha_m \rangle$ is:

 $deg\langle \alpha \rangle = 2^{\left[\frac{n-m}{2}\right]} \prod_{i=1}^{n!} \prod_{1 \le i < j \le m} (\alpha_i - \alpha_j) / (\alpha_i + \alpha_j) [A.O.Morris \ 1962], \ [A.O.Morris \ and A.K.Yaseen \ 1988].$

- 2. Let *B* be the block of defect one and let *b* be the number of *p*-conjugate characters to the irreducible ordinary character χ of *G*. Then:
 - a) There exists a positive integer number N such that the irreducible ordinary characters of G are lying in the block B divided into two disjoint classes: B₁={χ ∈ B |b deg x ≡ N mod p^a}, B₂={χ ∈ B |b deg x ≡ −N mod p^a}
 - b) Each coefficient of the decomposition matrix of the block B is 1 or 0.
 - c) If α_1 and α_2 are not p -conjugate characters and are belong to the same class (B_1, B_2) above, then they have no irreducible modular character in common.
 - d) For every irreducible ordinary character χ in B_1 , there exists irreducible ordinary character φ in B_2 such that they have one irreducible modular character in common with one multiplicity [B.M.Puttaswamaiah and J.D.Dixon 1977].
- 3. If C is a principal character of G for an odd prime p and all the entries in C are divisible by a non-negative integer q, then $(1\backslash q)C$ is a principal character of G[G.D.James and A.Kerber 1981].
- 4. Let p be odd then:
 - a) If n odd and $p \nmid n$ then $\langle n \rangle$ is irreducible modular spin character.
 - b) If n is odd and p ∤ nor p ∤ (n − 1), then ⟨n − 1,1⟩ and ⟨n − 1,1⟩' are distinct irreducible modular spin characters [A.K.Yaseen 1987].
 - 5. If C is a principal character of G for a prime p, then deg $C \equiv 0 \mod p^A$, where $o(G) = p^A m$, (p,m) = 1[S.A.Taban 1989], [J.F.Humphreys 1977].
- 6. If the decomposition matrix $D_{n-1,p} = (d_{ij})$ for S_{n-1} is known, then we can induced columns $(\psi_j \uparrow^{(r,\bar{r})} S_n)$ for S_n , these columns are a linear combination with non-negative coefficients from the columns of $D_{n,p}$ [G.D.James and A.Kerber 1981].

Notation(1.3):

p.s.	principle spin character.
p.i.s.	principle indecomposable spin character.
m.s.	modular spin character.
i.m.s.	irreducible modular spin character.
$(<\lambda>)^{no}$	(<i>no</i>) mean the number of i.m.s. in $< \lambda >$
≡	equivalencemod11.

Section (2)Brauer trees to the symmetric group S_{19} , p=11:

The decomposition matrix for S_{19} modulo p=11 of degree (81,72) [A.O.Morris 1962],[A.O.Morris and A.K.Yaseen 1988]. There are 33 blocks six of them B_1 , B_2 , ..., B_6 , are of defect one and the others B_7 ,..., B_{33} of defect zero.

<u>Lemma (2.1)</u>

The Brauer tree for the block B_1 is:

$$(19)^* (11,8) = (11,8)' (10,8,1)^* (9,8,2)^* (8,7,4)^* (8,6,5)^*$$

Proof:

On 11-regular classes we have $\langle 11,8 \rangle = \langle 11,8 \rangle'$

- a) $\deg(\langle 11,8 \rangle + \langle 11,8 \rangle') \equiv \deg \langle 9,8,2 \rangle^* \equiv \deg \langle 8,6,5 \rangle^* \equiv 5$.
- $\deg\langle 19 \rangle^* \equiv \deg \langle 10,8,1 \rangle^* \equiv \deg \langle 8,7,4 \rangle^* \equiv -5$
- b) By using (8,4)-inducing of p.i.s D_1 , D_3 , D_5 , D_7 and D_9 for S_{18} (see appendix I) to S_{19} we have respectively :
 - 1. $\langle 19 \rangle + \langle 11,8 \rangle + \langle 11,8 \rangle'$
 - 2. $\langle 11,8 \rangle + \langle 11,8 \rangle' + \langle 10,8,1 \rangle^*$
 - 3. $(10,8,1)^* + (9,8,2)^*$
 - 4. $(9,8,2)^* + (8,7,4)^*$
 - 5. $(8,7,4)^* + (8,6,5)^*$

we have the Braure tree for this $blockB_1$.

Lemma(2.2)

The Brauer tree for the block B_2 is:

$$\begin{array}{c} \langle 18,1\rangle - \langle 12,7\rangle \\ \langle 18,1\rangle' - \langle 12,7\rangle' \end{array} \right\rangle \langle 11,7,1\rangle^* \\ \langle 9,7,2,1\rangle - \langle 8,7,3,1\rangle - \langle 7,6,5,1\rangle \\ \langle 9,7,2,1\rangle' - \langle 8,7,3,1\rangle' - \langle 7,6,5,1\rangle' \\ \end{array}$$

Proof:

a) deg{ $\langle 18,1 \rangle, \langle 18,1 \rangle', \langle 11,7,1 \rangle^*, \langle 8,7,3,1 \rangle, \langle 8,7,3,1 \rangle' \} \equiv 7$

 $\deg\{\langle 12,7 \rangle, \langle 12,7 \rangle', \langle 9,7,2,1 \rangle, \langle 9,5,2,1 \rangle', \langle 7,6,5,1 \rangle, \langle 7,6,5,1 \rangle'\} \equiv -7.$

b) By using (1,0)-inducing of p.i.s

 D_5 , D_6 , D_7 , D_8 , D_9 , D_{10} , D_{11} , D_1 , D_2 and D_3 for S_{18} (see appendix I) to S_{19} we have p.s. c_5 , c_6 , c_7 , c_8 , c_9 , c_{10} , k_1 , k_2 , k_3 , k_4 respectively.

So we have the approximation matrix(Table (1))

(18,1)	1	1								
(18,1)′	1		1							
(12,7)	1	1	1	1						
(12,7) ΄	1	1	1	1						
(11,7,1)*		1	1	2	1	1				
(9,7,2,1)					1		1			
〈9,7,2,1〉 ΄						1		1		
(8,7,3,1)							1		1	
〈8,7,3,1〉 ′								1		1
(7,6,5,1)									1	
<7,6,5,1) [΄]										1
	k_1	<i>k</i> ₂	<i>k</i> ₃	k_4	<i>C</i> ₅	<i>C</i> ₆	C ₇	<i>C</i> ₈	C9	<i>C</i> ₁₀

(Table (1))

 $\langle 18,1 \rangle \neq \langle 18,1 \rangle$ so k_1 splits to c_1 and c_2 .

$$k_4 = k_2 + k_3 - c_1 - c_2$$
, this give p.i.s. $k_2 - c_1$, $k_3 - c_2$.

Hence we have the Braure tree for this $blockB_2$.

<u>Lemma(2.3)</u>

The Brauer tree for the block B_5 is:

 $\langle 16,2,1\rangle^* _ \langle 13,5,1\rangle^* _ \langle 12,5,2\rangle^* _ \langle 11,5,2,1\rangle = \langle 11,5,2,1\rangle' _ \langle 8,5,3,2,1\rangle^* _ \langle 7,5,4,2,1\rangle^*$

Proof:

on11-regular classes we have $\langle 11,5,2,1 \rangle = \langle 11,5,2,1 \rangle'$

- a) deg $(13,5,1)^* \equiv$ deg $(11,5,2,1) + (11,5,2,1)') \equiv$ deg $(7,5,4,2,1)^* \equiv 7$ deg $(16,2,1)^* \equiv$ deg $(12,5,2)^* \equiv$ deg $(8,5,3,2,1)^* \equiv -7$
- b) By using (r, \bar{r}) -inducing ofp.i.s. $D_{16}, D_{18}, D_{19}, D_{20}$ and D_{28} , for S_{18} (see appendix I) to S_{19} we get respectively.
 - 1) $(16,2,1)^* + (13,5,1)^*$.
 - 2) $2(12,5,2)^* + 2(11,5,2,1) + 2(11,3,2,1)' = 2k$.sok is p.i.
 - 3) $(11,5,2,1) + (11,5,2,1)' + (8,5,3,2,1)^*$.
 - 4) $(8,5,3,2,1)^* + (7,5,4,2,1)^*$.
 - 5) $(13,5,1)^* + (12,5,2)^*$.

So, we get the Brauer tree for the block $B_5 \blacksquare$.

Lemma(2.4)

The Brauer tree for the block B_6 is:

$$\langle 15,3,1 \rangle^* _ \langle 14,4,1 \rangle^* _ \langle 12,4,3 \rangle^* _ \langle 11,4,3,1 \rangle = \langle 11,4,3,1 \rangle' _ \langle 9,4,3,2,1 \rangle^* _ \langle 6,5,4,3,1 \rangle^* = \langle 11,4,3,1 \rangle' _ \langle 11,4,3,1 \rangle' _ \langle 11,4,3,1 \rangle^* = \langle 11,4,3,1 \rangle$$

Proof:

on11-regular classes we have $\langle 11,4,3,1 \rangle = \langle 11,4,3,1 \rangle'$

- a) $\deg(14,4,1)^* \equiv \deg(11,4,3,1) + (11,4,3,1)') \equiv \deg(6,5,4,3,1)^* \equiv 8$ $\deg(15,3,1)^* \equiv \deg(12,4,3)^* \equiv \deg(9,4,3,2,1)^* \equiv -8$
- b) By using (r, \bar{r}) -inducing of p.i.s. $D_{21}, D_{23}, D_{24}, D_{25}, D_{28}$, for S_{18} (see appendix I) to S_{19} we get respectively:
 - 1) $(15,3,1)^* + (14,4,1)^*$.
 - 2) $2(12,4,3)^* + 2(11,4,3,1) + 2(11,4,3,1)' = 2l$.sol is p.i.
 - 3) $(11,4,3,1) + (11,4,3,1)' + (9,4,3,2,1)^*$.
 - 4) $(9,4,3,2,1)^* + (6,5,4,3,1)^*$.
 - 5) $(14,4,1)^* + (12,4,3)^*$.

So, we get the Brauer tree for the block $B_6 \blacksquare$.

Lemma(2.5)

The Brauer tree for the block B₃is:

$$\begin{array}{c} \langle 17,2 \rangle - \langle 13,6 \rangle \\ \langle 17,2 \rangle' - \langle 13,6 \rangle' \end{array} / \begin{array}{c} \langle 11,6,2 \rangle^* \\ \langle 10,6,2,1 \rangle - \langle 8,6,3,2 \rangle - \langle 7,6,4,2 \rangle \\ \langle 10,6,2,1 \rangle' - \langle 8,6,3,2 \rangle' - \langle 7,6,4,2 \rangle' \end{array}$$

Proof:

a)
$$\deg\{\langle 17,2 \rangle, \langle 17,2 \rangle', \langle 11,6,2 \rangle^*, \langle 8,6,3,2 \rangle, \langle 8,6,3,2 \rangle'\} \equiv 9$$

 $\deg\{\langle 13,6 \rangle, \langle 13,6 \rangle', \langle 10,6,2,1 \rangle, \langle 10,6,2,1 \rangle', \langle 7,6,4,2 \rangle, \langle 7,6,4,2 \rangle'\} \equiv -9.$

b) By using (r, \bar{r}) -inducing we have (see appendix I):

 $D_{11}\uparrow^{(2,10)}S_{19}{=}k_1$, $D_{12}\uparrow^{(2,10)}S_{19}=k_2$, $D_{14}\uparrow^{(2,10)}S_{19}=k_3$ $D_{15}\uparrow^{(2,10)}S_{19}=k_4,\ \langle 10,6,2\rangle\uparrow^{(0,1)}S_{19}=c_5,\ \langle 10,6,2\rangle'\uparrow^{(0,1)}S_{19}=c_6.$

Thus, we have the approximation matrix(Table (2))

	Ψ ₁	Ψ_2	φ_5	φ_6	Ψ ₃	Ψ_4	φ_1	φ_2
(17,2)	1						a	
(17,2)′	1							а
(13,6)	1	1					b	
(13,6)′	1	1						b
(11,6,2)*		2	1	1			c	с
(10,6,2,1)			1		1		d	
(10,6,2,1)'				1	1			d
(8,6,3,2)					1	1	f	
(8,6,3,2)′					1	1		f
(7,6,4,2)						1	h	
(7,6,4,2)′						1		h
	<i>k</i> ₁	<i>k</i> ₂	<i>C</i> ₅	<i>C</i> ₆	<i>k</i> ₃	k_4	<i>Y</i> ₁	<i>Y</i> ₂

Table(2)

Since $\langle 17,2 \rangle \neq \langle 17,2 \rangle'$ on $(11, \alpha)$ -regular classes then either k_1 is split or there are another two columns. Suppose there are two columns such as Y_1 and Y_2

To describe columns Y_1 and Y_2

- 1. $(17,2) \downarrow S_{18} = ((16,2)^*)^1 + ((17,1)^*)^1$ has 2 of i.m.s (*see appendix I*) and form (Table(2))we have $a \in \{0,1\}$.
- 2. $(13,6) \downarrow S_{18} = ((12,6)^*)^2 + ((13,5)^*)^2$ has 4 of i.m.s. we have $b \in \{0,1,2\}$.
- 3. $(11,6,2)^* \downarrow S_{18} = ((10,6,2))^1 + ((10,6,2)')^1 + ((11,5,2))^2 + ((11,5,2)')^2 + ((11,6,1))^2 + ((11,6,1)')^2$ has10 of i.m.s. we have $c \in \{0,1,2,3,4,5,6\}.$
- 4. $(10,6,2,1) \downarrow S_{18} = ((9,6,2,1)^*)^2 + ((10,5,2,1)^*)^2 + ((10,6,2))^1$ has 5
- of i.m.s. we have $d \in \{0, 1, 2, 3\}$.
- 5. $\langle 8,6,3,2 \rangle \downarrow S_{18} = (\langle 7,6,3,2 \rangle^*)^1 + (\langle 8,5,3,2 \rangle^*)^2 + (\langle 8,6,3,1 \rangle^*)^2$ has 5of i.m.s. we have $f \in \{0,1,2,3\}$
- 6. $(7,6,4,2) \downarrow S_{18} = ((7,5,4,2)^*)^1 + ((7,6,3,2)^*)^1 + ((7,6,4,1)^*)^1$ has 3 of i.m.s. we have $h \in \{0,1,2\}$.

If a = 0 then k_1 splits to give (17,2) + (13,6) and (17,2)' + (13,6)'If a = 1:

1) Since $\langle 17,2 \rangle \downarrow S_{18} \cap \langle 13,6 \rangle \downarrow S_{18} = 2$ of i.m.s for S_{18} , then $\langle 17,2 \rangle \cap \langle 13,6 \rangle = \Psi_1 + \varphi_1$ if $b \in \{1,2\}$ $= \varphi_1$ if b = 0;

- 2) There is no i.m.s. in $(17,2) \downarrow S_{18} \cap (11,6,2)^* \downarrow S_{18}$, so c = 0;
- 3) There is no i.m.s. in $\langle 17,2 \rangle \downarrow S_{18} \cap \langle 10,6,2,1 \rangle \downarrow S_{18}$ so d = 0;
- 4) There is no i.m.s. in $\langle 17,2 \rangle \downarrow S_{18} \cap \langle 8,6,3,2 \rangle \downarrow S_{18}$, so f = 0;
- 5) There is no i.m.s. in $(17,2) \downarrow S_{18} \cap (7,6,4,2) \downarrow S_{18}$, so h = 0.

Wehave the possible columns

 $Y_1 = \langle 17, 2 \rangle + b \langle 13, 6 \rangle ,$

 $Y_2 = \langle 17, 2 \rangle' + b \langle 13, 6 \rangle'; b \in \{0, 1, 2\}$

 $\deg Y_1 \equiv 0$ and $\deg Y_2 \equiv 0$ only when b = 1

So k_1 splits to $\langle 17,2 \rangle + \langle 13,6 \rangle$, and $\langle 17,2 \rangle' + \langle 13,6 \rangle'$

Since $(13,6) \neq (13,6)'$ on $(11, \alpha)$ -regular classes then either k_2 is splits or there are two columns. If we suppose there are another two columns such as Y_1 and Y_2 (as in Table (2)); to describe these two columns:

1) Since
$$\langle 13,6 \rangle \downarrow S_{18} \cap \langle 11,6,2 \rangle^* \downarrow S_{16}$$
 has 2 of i.m.s for S_{18} ,
 $\langle 13,6 \rangle \cap \langle 11,6,2 \rangle^* = \Psi_2 + \varphi_3$ if $c \in \{1,2,3,4,5,6\}$ and $b = 1$ or $c = 1$ and $b \in \{1,2\}$
 $= \Psi_2 + 2\varphi_3$ if $c \in \{2,3,4,5,6\}$ and $b = 2$
 $= \Psi_2$ if $c = 0$;

- 2) There is no i.m.s. in $(13,6) \downarrow S_{18} \cap (10,6,2,1) \downarrow S_{18}$, so d = 0;
- 3) There is no i.m.s. in $(13,6) \downarrow S_{18} \cap (8,6,3,2) \downarrow S_{18}$, so f = 0;
- 4) There is no i.m.s. in $(13,6) \downarrow S_{18} \cap (7,6,4,2) \downarrow S_{18}$, so h = 0.

We get the possible columns

$$Y_1 = b\langle 13,6 \rangle + c \langle 11,6,2 \rangle^*$$

 $Y_2 = b\langle 13,6 \rangle' + c \ \langle 11,6,2 \rangle^* \ , \ b \in \{1,2\}, \ c \in \{0,1,2,3,4,5,6\}$

 $\deg Y_1 \equiv 0$ and $\deg Y_2 \equiv 0$ only when b = c.

So k_2 splits to give $\langle 13,6 \rangle + \langle 11,6,2 \rangle^*$ and $\langle 13,6 \rangle' + \langle 11,6,2 \rangle^*$ which is the same when b = 0.

Since $\langle 7,6,4,2 \rangle \neq \langle 7,6,4,2 \rangle'$ on $(11, \alpha)$ -regular classesthen k_4 splitsor there are two columns. If we suppose there are two columns such as Y_1 and Y_2 (as in Table (2)). To describe Y_1 and Y_2 :

If $h \in \{1,2\}$:

- 1) There is no i.m.s. in $(7,6,4,2) \downarrow S_{18} \cap (11,6,2)^* \downarrow S_{18}$, so c = 0;
- 2) There is no i.m.s. in $(7,6,4,2) \downarrow S_{18} \cap (10,6,2,1) \downarrow S_{18}$, so d = 0;
- 3) Since $(7,6,4,2) \downarrow S_{18} \cap (8,6,3,2) \downarrow S_{18}$ has 2 of i.m.s for S_{18} $(7,6,4,2) \cap (8,4,3,2) = \Psi_4 + \varphi_9$ if $f \in \{1,2,3\}$ and h = 1 or f = 1 and $h \in \{1,2\}$ $= \Psi_4 + 2\varphi_9$ if $f \in \{2,3\}$ and h = 2 $= \Psi_4$ if f = 0.

We get the possible columns

$$\begin{split} Y_1 &= f \ \langle 8, 6, 3, 2 \rangle + \langle 7, 6, 4, 2 \rangle, \\ Y_2 &= f \ \langle 8, 6, 3, 2 \rangle' + \langle 7, 6, 4, 2 \rangle' \quad , f \in \{0, 1, 2, 3\}, h \in \{1, 2\} \\ \deg Y_1 &\equiv 0 \text{ and } \deg Y_2 \equiv 0 \quad \text{only when } f = h. \end{split}$$

So, k_4 splits to $(8,6,3,2) + \langle 7,6,4,2 \rangle$ and $\langle 8,6,3,2 \rangle' + \langle 7,6,4,2 \rangle'$ which is the same when h = 0. Now, since $\langle 8,6,3,2 \rangle \neq \langle 8,6,3,2 \rangle'$ on $(11, \alpha)$ -regular classes, then k_3 splitsor there are two columns. If we suppose there are another two columns such as Y_1 and Y_2 (as in Table (2));to describe Y_1 and Y_2 :

If $f \in \{1,2,3\}$:

1) There is no i.m.s. in $(8,6,3,2) \downarrow S_{18} \cap (11,6,2)^* \downarrow S_{18}$, so c = 0;

2) Since
$$(8,6,3,2) \downarrow S_{18} \cap (10,6,3,1) \downarrow S_{18}$$
has 2 of i.m.s for S_{18}
 $(8,6,3,2) \cap (10,6,3,1) = \Psi_3 + \varphi_7$ if $d \in \{1,2,3\}$ and $f = 1$ or $d = 1$ and $f \in \{1,2,3\}$
 $=\Psi_3 + 2\varphi_7$ if $d \in \{2,3\}$ and $f = 2$
 $=\Psi_3 + 3\varphi_7$ if $d = 3$ and $f = 3$
 $=\Psi_3$ if $d = 0$.

We get the possible columns

 $Y_1 = d\langle 10, 6, 2, 1 \rangle + f \langle 8, 6, 3, 2 \rangle,$ $Y_2 = d\langle 10, 6, 2, 1 \rangle' + f \langle 8, 6, 3, 2 \rangle', d \in \{0, 1, 2, 3\}, f \in \{1, 2, 3\}$ $\deg Y_1 \equiv 0 \text{ and } \deg Y_2 \equiv 0 \text{ only when } d = f.$ So, k_4 splits to $\langle 10, 6, 2, 1 \rangle + \langle 8, 6, 3, 2 \rangle$ and $\langle 10, 6, 2, 1 \rangle' + \langle 8, 6, 3, 2 \rangle'$ which is the same when f = 0. So we get the Brauer tree for the block $B_3 \equiv .$

<u>Theorem</u>

The decomposition matrix of the spin characters for S_{19} modulo p = 11 as given in appendix II

Proof:

We determine the decomposition matrices for all blocks of S_{19} except the block B_4 to complete the proof we calculate the decomposition matrix for the block B_4 .

- a) deg{ $\langle 16,3 \rangle$, $\langle 16,3 \rangle'$, $\langle 11,5,3 \rangle^*$, $\langle 9,5,3,2 \rangle$, $\langle 9,5,3,2 \rangle'$ } = 9 deg{ $\langle 14,5 \rangle$, $\langle 14,5 \rangle'$, $\langle 10,5,3,1 \rangle$, $\langle 10,5,3,1 \rangle'$, $\langle 7,5,4,3 \rangle$, $\langle 7,5,4,3 \rangle'$ } = -9.
- b) By using (r, \bar{r}) -inducing we get:

 $D_{16} \uparrow^{(3,9)} S_{19} = k_1$, $D_{17} \uparrow^{(3,9)} S_{19} = k_2$, $D_{19} \uparrow^{(3,9)} S_{19} = k_3$ $D_{20} \uparrow^{(3,9)} S_{19} = k_4$, $\langle 10,5,3 \rangle \uparrow^{(0,1)} S_{19} = c_5$, $\langle 10,5,3 \rangle' \uparrow^{(0,1)} S_{19} = c_6$. Thus, we have the approximation matrix (Table (3))

66

	Ψ_1	Ψ_2	$arphi_5$	$arphi_6$	Ψ_3	Ψ_4	$arphi_1$	$arphi_2$
(16,3)	1						а	
(16,3)′	1							а
(14,5)	1	1					b	
(14,5)	1	1						b
(11,5,3)*		2	1	1			с	с
(10,5,3,1)			1		1		d	
(10,5,3,1)'				1	1			d
〈 9,5,3,2〉					1	1	f	
〈 9,5,3,2〉'					1	1		f
(7,5,4,3)						1	h	
(7,5,4,3)′						1		h
	k_1	<i>k</i> ₂	<i>C</i> ₅	<i>C</i> ₆	<i>k</i> ₃	k_4	<i>Y</i> ₁	<i>Y</i> ₂

Table(3)

Since $(16,3) \neq (16,3)'$ on $(11, \alpha)$ -regular classes then either k_1 is split or there are two columns. Suppose there are two columns such as Y_1 and Y_2 ; to describe columns Y_1 and Y_2

- 1. $(16,3) \downarrow S_{18} = ((15,3)^*)^1 + ((16,2)^*)^1$ has 2 of i.m.s (*see appendix I*) and form (Table(2))we have $a \in \{0,1\}$.
- 2. $(14,5) \downarrow S_{18} = ((13,5)^*)^2 + ((14,4)^*)^2$ has 4of i.m.s. we have $b \in \{0,1,2\}$.
- 3. $(11,5,3)^* \downarrow S_{18} = ((10,5,3))^1 + ((10,5,3)')^1 + ((11,4,3))^2 + ((11,4,3)')^2 + ((11,5,2))^2 + ((11,5,2)')^2$ has 10 of i.m.s. we have $c \in \{0,1,2,3,4,5,6\}.$
- 4. $(10,5,3,1) \downarrow S_{18} = ((9,5,3,1)^*)^1 + ((10,4,3,1)^*)^2 + ((10,5,2,1))^2 + ((10,5,3))^1$ has 6of i.m.s. we have $d \in \{0,1,2,3,4\}$.
- 5. $(9,5,3,2) \downarrow S_{18} = (\langle 8,5,3,2 \rangle^*)^2 + (\langle 9,4,3,2 \rangle^*)^2 + (\langle 9,5,3,1 \rangle)^1$ has 5of i.m.s. we have $f \in \{0,1,2,3\}$

6. $(7,5,4,3) \downarrow S_{18} = ((6,5,4,3)^*)^1 + ((7,5,4,2)^*)^1$ has 2of i.m.s. we have $h \in \{0,1\}$.

If a = 0 then k_1 splits to give (16,3) + (14,5) and (16,3)' + (14,5)'If a = 1:

1) Since $\langle 16,3 \rangle \downarrow S_{18} \cap \langle 14,5 \rangle \downarrow S_{18}$ has 2 of i.m.s for S_{18} $\langle 16,3 \rangle \cap \langle 14,5 \rangle = \Psi_1 + \varphi_1$ if $b \in \{1,2\}$ $= \varphi_1$ if b = 0;

2) There is no i.m.s. in $(16,3) \downarrow S_{18} \cap (11,5,3)^* \downarrow S_{18}$, so c = 0;

- 3) There is no i.m.s. in $(16,3) \downarrow S_{18} \cap (10,5,3,1) \downarrow S_{18}$ so d = 0;
- 4) There is no i.m.s. in $(16,3) \downarrow S_{18} \cap (9,5,3,2) \downarrow S_{18}$, so f = 0;
- 5) There is no i.m.s. in $(16,3) \downarrow S_{18} \cap (7,5,4,3) \downarrow S_{18}$, so h = 0.

Now, we get the possible columns

 $Y_1 = \langle 16, 3 \rangle + b \langle 14, 5 \rangle,$

 $Y_2 = \langle 16,3 \rangle' + b \langle 14,5 \rangle', b \in \{0,1,2\}$

 $\deg Y_1 \equiv 0$ and $\deg Y_2 \equiv 0$ only when b = 1

So k_1 splits to $\langle 16,3 \rangle + \langle 14,5 \rangle$, and $\langle 16,3 \rangle' + \langle 14,5 \rangle'$

Since $\langle 14,5 \rangle \neq \langle 14,5 \rangle'$ on $(11, \alpha)$ -regular classes then either k_2 is splits or there are two columns . If we suppose there are two columns such as Y_1 and Y_2 (as in Table (3)); to describe these two columns:

If $b \in \{1,2\}$:

1) Since $\langle 14,5 \rangle \downarrow S_{18} \cap \langle 11,5,3 \rangle^* \downarrow S_{18}$ has 2 of i.m.s for S_{18} $\langle 14,5 \rangle \cap \langle 11,4,2 \rangle^* = \Psi_2 + \varphi_3$ if $c \in \{1,2,3,4,5,6\}$ and b = 1or if c = 1 and $b \in \{1,2\}$ $= \Psi_2 + 2\varphi_3$ if $c \in \{2,3,4,5,6\}$ and b = 2

$$=\Psi_2$$
 if $c = 0;$

- 2) There is no i.m.s. in $(14,5) \downarrow S_{18} \cap (10,5,3,1) \downarrow S_{18}$, so d = 0;
- 3) There is no i.m.s. in $\langle 14,5 \rangle \downarrow S_{18} \cap \langle 9,5,3,2 \rangle \downarrow S_{18}$, so f = 0;
- 4) There is no i.m.s. in $(14,5) \downarrow S_{18} \cap (7,5,4,3) \downarrow S_{18}$, so h = 0.

We get the possible columns

$$\begin{split} Y_1 = & \langle 14,5 \rangle + c \ \langle 11,5,3 \rangle^* \ , \\ Y_2 = & \langle 14,5 \rangle + c \ \langle 11,5,3 \rangle^* \ , c \in \{0,1,2,3,4,5,6\} \\ \deg Y_1 \equiv 0 \ \text{and} \ \deg Y_2 \equiv 0 \ \text{only when} \ b = c \end{split}$$

So k_2 splits to give $\langle 14,5 \rangle + \langle 11,5,3 \rangle^*$ and $\langle 14,5 \rangle' + \langle 11,5,3 \rangle^*$ which is the same when b = 0. Since $\langle 7,5,4,3 \rangle \neq \langle 7,5,4,3 \rangle'$ on $(11,\alpha)$ -regular classesthen k_4 splitsor there are two columns. If we suppose there are two columns such as Y_1 and Y_2 (as in Table (3)); to describe Y_1 and Y_2 :

If h = 1:

- 1) There is no i.m.s. in $(7,5,4,3) \downarrow S_{18} \cap (11,5,3)^* \downarrow S_{18}$, so c = 0;
- 2) There is no i.m.s. in $(7,5,4,3) \downarrow S_{18} \cap (10,5,3,1) \downarrow S_{18}$, so d = 0;
- 3) Since $(7,5,4,3) \downarrow S_{18} \cap (9,5,3,2) \downarrow S_{18}$ has 2 of i.m.s for S_{18} $(7,5,4,3) \cap (9,5,3,2) = \Psi_4 + \varphi_9$ if $f \in \{1,2,3\}$

$$=\Psi_4 \qquad \text{if } f=0.$$

We get the possible columns

$$\begin{split} &Y_1 = f \ \langle 9,5,3,2 \rangle + \langle 7,5,4,3 \rangle, \\ &Y_2 = f \ \langle 9,5,3,2 \rangle' + \langle 7,5,4,3 \rangle' \quad , \, f \in \{0,1,2,3\} \end{split}$$

 $\deg Y_1 \equiv 0$ and $\deg Y_2 \equiv 0$ only when f = 1

So, k_4 splits to $\langle 9,5,3,2 \rangle + \langle 7,5,4,3 \rangle$ and $\langle 9,5,3,2 \rangle' + \langle 7,5,4,3 \rangle'$ which is the same when h = 0. Now, since $\langle 9,5,3,2 \rangle \neq \langle 9,5,3,2 \rangle'$ on $(11, \alpha)$ -regular classes and we have 9 columns, then k_3 must be a split to $\langle 10,5,3,1 \rangle + \langle 9,5,3,2 \rangle$ and $\langle 10,5,3,1 \rangle' + \langle 9,5,3,2 \rangle'$. So we get the decomposition matrix

for the block $B_4 \blacksquare$.

From lemmas and theorem above we can find the 11-decomposition matrix for the spin characters of S_{19} . We write this decomposition matrix in appendix II

Appendix I

The decomposition matrix	for the spin	$p = characters of S_{18}$, $p = characters$	11[A. H. Jassim and S.A. Taban]

The spin characters		The decomposition matrix for the block B_1								
(18)	1									
(18)'		1								
(11,7)*	1	1	1	1						
(10,7,1)			1		1					
(10,7,1)'				1		1				
(9,7,2)					1		1			
(9,7,2)′						1		1		
(8,7,3)							1		1	
(8,7,3)′								1		1
(7,6,5)									1	
(7,6,5)′										1
	<i>D</i> ₁	<i>D</i> ₂	<i>D</i> ₃	D_4	D_5	<i>D</i> ₆	<i>D</i> ₇	<i>D</i> ₈	D ₉	<i>D</i> ₁₀

The spin characters	The decomposition matrix for the block B_2								
(17,1)*	1								
(12,6)*	1	1							
(11,6,1)		1	1						
(11,6,1)'		1	1						
(9,6,2,1)*			1	1					
(8,6,3,1)*				1	1				
(7,6,4,1)*					1				
	<i>D</i> ₁₁	<i>D</i> ₁₂	D ₁₃	<i>D</i> ₁₄	D_{15}				

The spin characters	The decomposition matrix for the block B_3								
(16,2)*	1								
(13,5)*	1	1							
(11,5,2)		1	1						
(11,5,2)′		1	1						
(10,5,2,1)*			1	1					
(8,5,3,2)*				1	1				
(7,5,4,2)*					1				
	D ₁₆	D ₁₇	D ₁₈	D ₁₉	D ₂₀				

The spin characters	The decomposition matrix for the block B_4									
(15,3)*	1									
(14,4)*	1	1								
(11,4,3)		1	1							
(11,4,3)′		1	1							
(10,4,3,1)*			1	1						
(9,4,3,2) *				1	1					
(6,5,4,3)*					1					
	D ₂₁	D ₂₂	D ₂₃	<i>D</i> ₂₄	D ₂₅					

The spin characters		The decomposition matrix for the block B_5								
(15,2,1)	1									
(15,2,1)′		1								
(13,4,1)	1		1							
(13,4,1)′		1		1						
(12,4,2)			1		1					
(12,4,2)′				1		1				
(11,4,2,1)*					1	1	1	1		
(8,4,3,21)							1		1	
(8,4,3,2,1)′								1		1
(6,5,4,2,1)									1	
(6,5,4,2,1) ′										1
	D ₂₆	D ₂₇	D ₂₈	D ₂₉	<i>D</i> ₃₀	<i>D</i> ₃₁	D ₃₂	D ₃₃	<i>D</i> ₃₄	D ₃₅

Appendix II

The decomposition matrix for the spin characters of S_{19} , p = 11

The spincharacters	The decomposition matrix for the block B_1								
(19) *	1								
(11,8)	1	1							
(11,8)′	1	1							
(10,8,1)*		1	1						
(9,8,2)*			1	1					
(8,7,4) *				1	1				
(8,6,5) *					1				
	d_1	d_2	d_3	d_4	d_5				

The spin characters		The	decor	nposit	tion m	atrix f	or the	block	<i>B</i> ₂	
(18,1)	1									
(18,1)′		1								
(12,7)	1		1							
(12,7)'		1		1						
(11,7,1)*			1	1	1	1				
(9,7,2,1)					1		1			
(9,7,2,1)′						1		1		
(8,7,3,1)							1		1	
(8,7,3,1)′								1		1
(7,6,5,1)									1	
(7,6,5,1)'										1
	d_6	d_7	d_8	d_9	<i>d</i> ₁₀	<i>d</i> ₁₁	<i>d</i> ₁₂	<i>d</i> ₁₃	<i>d</i> ₁₄	<i>d</i> ₁₅

The spin characters	The decomposition matrix for the block B_3								
(17,2)	1								
(17,2)′		1							
(13,6)	1		1						
(13,6)'		1		1					
(11,6,2)*			1	1	1	1			
(10,6,2,1)					1		1		

(10,6,2,1)′						1		1		
(8,6,3,2)							1		1	
(8,6,3,2)′								1		1
(7,6,4,2)									1	
(7,6,4,2)′										1
	<i>d</i> ₁₆	<i>d</i> ₁₇	<i>d</i> ₁₈	<i>d</i> ₁₉	d_{20}	d_{21}	<i>d</i> ₂₂	<i>d</i> ₂₃	<i>d</i> ₂₄	<i>d</i> ₂₅

The spin characters	The decomposition matrix for the block B_4									
(16,3)	1									
(16,3)′		1								
(14,5)	1		1							
(14,5)′		1		1						
(11,5,3)*			1	1	1	1				
(10,5,3,1)					1		1			
(10,5,3,1)′						1		1		
(9,5,3,2)							1		1	
(9,5,3,2)′								1		1
(7,5,4,3)									1	
(7,5,4,3)′										1
	<i>d</i> ₂₆	<i>d</i> ₂₇	<i>d</i> ₂₈	<i>d</i> ₂₉	<i>d</i> ₃₀	<i>d</i> ₃₁	<i>d</i> ₃₂	<i>d</i> ₃₃	<i>d</i> ₃₄	<i>d</i> ₃₅

The spin	The decomposition matrix for the block B_5							
characters								
(16,2,1)*	1							
(13,5,1)*	1	1						
(12,5,2)*		1	1					
(11,5,2,1)			1	1				
(11,5,2,1)′			1	1				
<8,5,3,2,1>*				1	1			
(7,5,4,2,1)*					1			
	d ₃₆	d ₃₇	d ₃₈	d ₃₉	d ₄₀			

The spin characters	The decomposition matrix for the block B_6								
(15,3,1)*	1								
(14,4,1) *	1	1							
(12,4,3)*		1	1						
(11,4,3,1)			1	1					
(11,4,3,1)′			1	1					
(9,4,3,2,1)*				1	1				
(6,5,4,3,1) *					1				
	d ₄₁	d ₄₂	d ₄₃	d ₄₄	d ₄₅				

References

- [1]C.W. Curtis and I. Reiner: Representation theory of finite groups and associative algebras,Sec. Printing, (1966).
- [2] L.Dornhoff: Group representation theory, parts A and B.Marcel Dekker Inc, (1971), (1972).
- [3] J.F.Humphreys: Projective modular representations of finite groups I,J.London Math. Society
 (2), 16 (1977) 51 66.
- [4] G.D.James and A.Kerber: The representation theory of the symmetric group ,Reading, Mass, Aaddiso-Wesley, (1981).
- [5] A. H. Jassim and S.A. Taban: The Brauer trees of the symmetric groups S_{17} and S_{18} modulo p = 11, Basrah Journal of Science v.30, n.2, 2012, 149-165.
- [6] Lukas Maas: Modular Spin Characters of Symmetric Groups, ph.D thesis, Universität Duisburg– Essen, 2011.
- [7] A.O. Morris: The spin representation of the symmetric group, proc. London Math. Soc. (3) 12 (1962), 55 76.
- [8] A.O. Morris and A.K.Yaseen:Decomposition matrices for spin characters of symmetric group, Proc.of Royal society of Edinburgh, 108A, (1988),145-164.
- [9] B.M.Puttaswamaiah and J.D. Dixon:Modular representation of finite groups,Academic Press,(1977).
- [10] I.Schur:Uber die Darstellung der symmetrischen und der alternierendengruppedurchgebrochenelinearesubtituttionen, j.Reineang.Math., 139(1911) 155-250.
- [11] S.A.Taban:On the decomposition matrices of the projective characters of the symmetric groups, M.Sc.Thesis, Basrah University (1989).

- [12] A.K.Yaseen:Modular spin representations of the symmetric groups, Ph.D thesis, Aberystwyth,(1987).
- [13] A.K.Yaseen:Modular Spin Characters of the symmetric Groups $S_n, 15 \le n \le 16$ at Characteristic 11, J.Basrah Researches (1995)