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Abstract

This study presents a multi-objective optimisation model and a predictive-reactive approach that
uses an Iterated Greedy algorithm for robust dynamic permutation flow shop scheduling under dif-
ferent types of real-time events including machine breakdown and arrival of new jobs. The multi-
objective model considers three important performances, namely; utility, stability and robustness.
The results illustrate that the performance of the new model and the solution method outperform
both of the bi-objective model [1] and the classical makespan model.

1 Introduction

The flow shop scheduling problem is defined as a production problem where a set of n jobs have to be
executed with identical flow patterns on a set of m machines. When the order of jobs processing on
all machines is the same, we have the permutation flow shop scheduling problem (PFSP). This kind of
problem is NP-hard [2]. In the PFSP, the most common criterion that has been studied in the literature
is the minimisation of the total completion time or makespan. PFSP in the presence of disturbances has
been intensively studied in the literature [3–5]. A comprehensive survey on this problem is presented
in [6]. There are two rescheduling strategies to handle the effect of disruptions, including; (1) make
the solution feasible again and (2) improve the efficiency of the schedule so as to reduce the devia-
tion between the initial schedule and the current one. [1, 7, 8] introduce bi-objective models that aim to
minimise the utility and stability performances. Rahmani and Heydari [9] introduce a multi-objective
optimisation model with three measures namely; utility, stability and robustness for a flow shop problem
under uncertain processing times and new jobs arrival. This model has only considered the case of n× 2
(jobs × machines) and the authors apply an exact approach to small size instances. The majority of
rescheduling approaches in the literature focused on a single type of independent disruption only, such
as new job arrival and machine breakdown [10–15]. However, Katragjini et al. [1] simulate a novel
instances for the PFSP considering three different types of events simultaneously. They use a predictive-
reactive procedure with different heuristics and an Iterated Greedy algorithm (IG) for the PFSP under
three different real-time events, which are; machine breakdown, arrival of new jobs and job ready time
variations. According to [1], the IG algorithm shows the best performance comparing to other heuristic
algorithms. Li and Mao [16] propose a discrete teaching-learning-based optimisation to solve the flow
shop rescheduling problem under five types of uncertainties including machine breakdown, arrival of
new jobs, cancellation of jobs, job processing variation and job release variation. The authors use the bi-
objective model that was proposed by [1] to minimise the makespan and instability measures. There are
few successful techniques that have been proposed in the literature to solve the dynamic PFSP due to the
NP-hard nature of the problem. These methods are classified into exact, heuristics, meta-heuristics, and
hybrid methods. Ruiz and Stützle [17] proposed an IG algorithm, which has been successfully used for
many combinatorial optimisation problems and subsequently for the PFSP. Quan-Ke et al. [18] apply IG
algorithm for the hybrid flow shop scheduling problem with the objective of minimising the bi-objective
function of both of the weighted earliness and tardiness from the due window. They also compare the IG
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algorithm for this problem against nine other competing procedures where the IG algorithm shows the
best performance. The IG algorithm has powerful advantages of fast convergence and simplicity and it
consists of two phases; destruction and construction. The construction procedure is based on the NEH
heuristic insertion [19] with the objective of minimising the total completion time. The contribution of
this work is as follows: (a) introducing a multi-objective optimisation model for the problem of dynamic
PFSP in the presence of different uncertainties. (b) Implement a predictive-reactive technique and the IG
method to solve this problem. (c) The presented multi-objective model is compared against both of the
bi-objective model [1] and the single makespan model. (d) Finally, the multi-objective model is norm-
lised to ensure fair comparison and a practical weight sensitivity algorithm [20] is applied to evaluate
the efficiency of the presented multi-objective model and solution approaches. The remainder of this
paper is organised as follows: In Section 2, the multi-objective model is described. Section 3 provides
the methodology of the proposed predictive-reactive approach and IG algorithm. In Section 4, the com-
putational results and comparisons are provided with a statistical study. Finally, conclusions are drawn
together with future research directions in Section 5.

2 The multi-objective optimisation model for robust dynamic PFSP

In this paper, we present a multi-objective optimisation model based on the models proposed by [21]
and [9]. This model considers three important objectives; utility, stability and robustness. The util-
ity is a classical makespan objective function. The instability performance calculates the deviation of
completion time between the initial (baseline) and the new schedule. Finally, the robustness objective
measures the difference between the total completion time of the baseline and current schedule. The
multi-objective optimisation model is given by the following equation:

MinMO = αUn(S∗) + βIn(S∗) + γRn(S∗) (1)

Where 0 ≤ α, β, γ ≤ 1 and S∗ is the new solution after the time of disruption tD . Un(S∗) =∑
j́ CRmj́ represents the real utility (makespan) in real schedule and In(S∗) =

∑
i

∑
j́ |CRij́ − CPij́ |

refers to the instability performance where CRij́ and CPij́ are the real and predicted completion time
respectively, according to the baseline. Also, Rn(S∗) = |

∑
j́ CRmj́ −

∑
j́ CPmj́ | is the measure of ro-

bustness where
∑

j́ CPmj́ is the predictive value of makespan corresponding to the baseline. Moreover,
n is the total number of jobs and m is the total number of machines. As well as, i = {1, 2, ..., n} refers
to the index for machines and j́ = {1, 2, ..., ń} is the index of jobs which have not been processed at the
time of disruption on the first machine yet and the newly arrived jobs. The subsequence of the jobs that
have already been executed or are in progress on the first machine before the time of disruption is denote
by πBD. Also, the permutable partial fixed list of jobs that arrive after the moment of disruption whose
sequential index can be adjusted is represented as πAD. It should be noted that the model (1) considers
the case of n jobs and m machines. To enable a fair comparison between models, the objectives of the
MO model are normalised as follows:

NMO = αNUn(S∗) + βNIn(S∗) + γNRn(S∗) (2)

where the function (NMO) is the normalised version of MO model. Also, NUn(S∗), NIn(S∗) and
NRn(S∗) are the normalised measures of makespan, instability and robustness respectively. The proce-
dure of normlisation the new objectives NUn(S∗) and NIn(S∗) are explain in details in [1]. However,
the NRn(S∗) measure is calculated as follows:

NRn(S∗) =
Rn(S∗)−Min(Rn)

Max(Rn)−Min(Rn)
(3)

in this equation, the term Rn(S∗) represents the robustness measure after the time of disruption tD.
Also, Max(Rn) is the upper robustness bound and Min(Rn) is the lower robustness bound. These
bounds are obtained by solving the MO model three times where α = 1 for the first solution while both

Barcelona, July 4-7, 2017



MIC/MAEB 2017 id–3

of β and γ are zeros, also, β = 1 for the second solution while both of α and γ are zeros, and finally,
γ = 1 for the last solution while both of α and β are zeros. These values are given in 3× 3 matrix form
as follows:


Un In Rn

U∗
n f1,1 f1,2 f1,3

I∗n f2,1 f2,2 f2,3

R∗
n f3,1 f3,2 f3,3

 (4)

The values of Max(Rn) and Min(Rn) are then calculated as follows: Min(Rn) = min{f1,3, f2,3, f3,3}
and Max(Rn) = max{f1,3, f2,3, f3,3}.

3 The proposed Solution Method

We introduce a robust rescheduling approach of predictive-reactive procedure for the dynamic PFSP
in the presence of machine breakdown and arrival of new jobs. These real-time events could occur
separately or together during the scheduling process. A predictive-reactive technique generates an initial
robust predictive schedule then it reacts at each disruption point (rescheduling point) and it uses an
IG algorithm at the rescheduling point for the subsequence of jobs which have not been processed on
any machine yet after the disruption point (πAD) with the objective of minimising the multi-objective
function of model MO for πAD. Figure (1) explain the procedure of the predictive-reactive approach.

start

Generate a Pre-
dictive Schedule

Scheduling Execution
Trigger a

rescheduling point
Update Sceduling Plan

Execute IG Algorithm

New job arrival
or Machine
breakdown

stop

Yes

No

Figure 1: Predictive-Reactive approach

3.1 Iterated Greedy (IG)

The application of IG algorithm for the PFSP has been proposed by [17]. This method has been used
successfully for many types of scheduling problems since then. The main feature of the IG algorithm is
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its simplicity where it has very few parameters. Also, the IG algorithm has shown the best performance
for different flow shop scheduling problems with different objectives. To construct an initial solution
for the PFSP, the IG algorithm begins with an initial solution as the current solution, this initial solution
is generated by the NEH algorithm of Nawaz, Enscore, and Ham [22]. It is based on the idea that
jobs with high total processing times on all machines should be scheduled as early as possible. The
IG algorithm consists of two phases; destruction and construction. In the destruction phase d jobs are
selected randomly and extracted from the current permutation π and inserted into a list of removed jobs
πR. Then, in their construction phase, the NEH insertion procedure is applied to reinsert all jobs from
πR individually into π again. At the construction phase, there is an optional step of applying a local
search technique to improve the generated solutions. This local search step is based on the insertion
neighborhood technique, which is efficeint and common local search precuedure for the PFSP [17]. For
a permutation of jobs π, the insertion neighborhood is determined by taking in account all possible orders
of pairs r, s ∈ {1, 2, ..., n} of π, r 6= s where the job at location r is removed and reinserted into location
s. Thus, the new list of jobs will be as follows: π́ = (π(1), ..., π(r − 1), π(r + 1), ..., π(s), π(r), π(s+
1), ..., π(n)) if r < s, or π́ = (π(1), ..., π(s − 1), π(r), π(s + 1), ..., π(r − 1), π(r + 1), ..., π(n)) if
r > s. The sequence of insertion moves I is determined as {(r, s) : j 6= s, 1 ≤ r, s ≤ n∧ r 6= s−1, 1 ≤
r ≤ n, 2 ≤ s ≤ n}, also the insertion neighborhood of sequence π is defined as V (I, π) = {πv : v ∈ I}.
The optional local search phase is detailed in Algorithm 1 where Cmax(π) is the total completion time
for the sequence of jobs π.

Algorithm 1 Iterative improvement of neighborhood Local search
1: procedure ITERATIVE IMPROVEMENT INSERTION (π)
2: improve := true;
3: while (improve = true) do
4: for i:=1 to n do
5: remove a job s at random from π (without repetition)
6: π́ := best permutation obtained by inserting s in any possible positions of π;
7: if Cmax(π́) ≤ Cmax(π) then
8: π = π́
9: improve := true;

10: end if
11: end for
12: end while
13: Return π
14: end procedure

The next step is to decide whether to keep the incumbent solution or replace it with the new one, and
to do this, we use an acceptance criterion based on the constant temperature Simulated Annealing-like
criterion [19], which is basically calculates a constant temperature as follows:

Temperature = T

m∑
i=1

n∑
j=1

pij

m× n× 10
(5)

where T is a further value to calibrate. The final proposed IG method is given in Algorithm 2.
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Algorithm 2 Pseudo code of IG Algorithm
1: procedure IG ALGORITHM

2: Generate initial solution π0;
3: Apply Local search to π0, and put modified solution into πs;
4: repeat
5: πd = Destruction(πs)
6: πc = Construction(πd)
7: πl = LocalSearch(πc)
8: πf = AcceptanceCriterion(πs, πl)
9: Until termination condition met

10: end procedure

4 Computational results

To verify the effectiveness of the proposed multi-objective model and approches, we provide the exper-
imental evaluation and comparisons in this section. The proposed multi-objective model and solution
method have been implemented in Java using the eclipse platform and Windows7 64bit, 6GB of RAM
and a processor Intel Core i5, 2.30 ghz, was used for this purpose. The benchmark instances used are the
ones introduced by [1] based on the well-known standard benchmarks of Taillard [23]. Taillard bench-
marks are grouped into twelve sets, and each set has ten different instances from the same size, ranging
from 20 jobs and 5 machines to 500 jobs and 20 machines. In this benchmark, some instances are very
difficult to solve. In this experiment, each instance is run five times, then the average is calculated. To
evaluate the efficiency of the proposed models and approach, a practical weight sensitivity algorithm [20]
is applied; this algorithm gives thirteen different set of weights. These weights represent the relative im-
portance of each objective in the MO model. To obtain the normalised model (2) we chose three weights,
which are; (0.999,0.001,0.001), (0.001,0.999,0.001) and (0.001,0.001,0.999). The remaining weights are
used to evaluate the multi-objective model (MO). These weights are as follows:
W1 = (0.333, 0. 0.333, 0.333), W2 = (0.666, 0.166, 166), W3 = (0.499, 0.499, 0.002),
W4 = (0.416, 0.416, 0.166), W5 = (0.166, 0.666, 0.166), W6 = (0.002, 0.499, 0.499),
W7 = (0.166, 0.416, 0.166), W8 = (0.166, 0.166, 0.666), W9 = (0.499, 0.002, 0.499),
W10 = (0.416, 0.166, 0.416).
Additionally, the following components are used for the bi-objective model of [1];
α = 0.333, 0.666, 0.499, 0.416, 0.166, 0.002, 0.166, 0.166, 0.499, 0.416.
For each instance, the Relative Percentage Deviation (RPD) over the best solution for each compared
model is given as follows:

RPD =
M −BestSol
BestSol

× 100 (6)

Where BestSol is the average lower bound solution of ten Taillard instances that have the same
size n ×m and M is the solution obtained from the presented models and methods. Table 1 illustrates
the values of average RPD for Taillard problems corresponding to the objectives weights where MO
denotes the solution values obtained by using the NMO model and BO is the solution from a bi-objective
model [1].
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Table 1: RPD for MO and BO models
Ta 20× 5 20× 10 20× 20 50× 5 50× 10 50× 20 100× 5 100× 10 100× 20 200× 0 200× 20 500× 20 Total

W1
MO 15.00 15.36 19.07 8.86 15.69 15.09 14.79 13.16 11.80 11.08 10.71 8.38 158.98
BO 14.22 13.99 19.32 9.20 14.44 15.18 16.02 11.45 12.22 10.71 10.74 8.81 156.30

W2
MO 11.77 16.81 20.37 8.16 16.03 14.45 10.89 11.65 11.70 12.00 11.62 8.83 154.26
BO 15.95 16.71 17.71 9.10 16.59 14.30 18.20 12.00 12.35 11.62 10.88 9.62 165.02

W3
MO 12.38 15.29 15.91 10.33 15.00 13.48 14.70 12.30 11.95 13.16 10.77 9.47 154.75
BO 16.00 15.65 19.19 11.54 14.85 14.20 13.72 10.86 12.28 10.77 10.48 8.36 157.89

W4
MO 13.61 8.83 15.87 9.39 15.00 15.02 16.71 11.35 11.70 10.97 11.48 9.47 149.40
BO 12.72 10.64 16.26 9.82 14.85 14.70 15.35 11.70 11.95 11.48 10.75 8.36 148.58

W5
MO 12.95 14.74 15.60 9.47 15.32 14.12 16.78 10.92 11.99 15.06 10.46 8.91 156.31
BO 14.13 15.71 16.00 10.57 15.71 13.77 15.48 12.15 12.59 10.46 11.10 8.55 156.23

W6
MO 12.37 10.48 15.58 8.23 14.75 14.81 13.36 12.19 11.86 11.78 10.51 8.90 144.79
BO 13.01 11.98 15.97 8.85 17.47 14.22 19.87 11.34 11.93 10.51 10.66 8.99 154.79

W7
MO 12.46 10.19 16.23 9.37 15.21 14.59 12.13 12.08 11.74 13.07 10.36 8.12 145.53
BO 13.37 12.03 16.08 8.74 15.21 14.26 15.00 12.34 12.62 10.36 10.92 8.45 149.38

W8
MO 13.71 13.02 16.68 10.82 15.48 13.72 14.92 11.75 12.35 10.93 10.73 8.83 152.92
BO 15.37 13.30 16.06 8.86 16.58 14.63 14.58 11.98 11.92 10.73 10.91 8.46 153.38

W9
MO 13.05 13.23 16.92 8.76 15.36 13.82 11.76 12.15 12.48 11.07 10.82 8.91 148.32
BO 14.63 13.84 17.06 9.92 15.94 15.83 13.33 10.97 12.09 10.82 10.85 8.40 153.66

W10
MO 12.72 17.37 17.57 7.36 15.34 15.83 16.98 11.66 12.16 11.83 10.71 9.49 159.01
BO 12.43 13.86 16.39 10.88 15.43 14.56 17.41 11.02 11.94 10.71 10.71 8.99 154.31

In the first row of Table (1), Ta is the problem of size of n×m. According to this table, different sets
of weights produce different objective functions values, which means the solution is sensitive to different
weights. It is clear from this table that the stability and robustness performances are key to improve the
solution. As Table 1 shows, the weights W4,W6 and W7 have minimum RPDs in compared with the
other weights. Moreover, the weight W6 produces a solution with lower RPD values, which proves that
giving more priority to the stability and robustness objectives produces minimum RPDs.

Figure 2: RPD for all models corresponding to W6

For this reason, we select the weight corresponding to the lowest RPD value, which is W6. The RPD
for models MO, BO and UT corresponding to weight W6 are given in figure 2 where UT represents
the solution of a classical model of minimising total completion time (makespan). From this figure, it is
clear that the MO model has minimum RPD values in general compared with the other models.
The single factor mean of an Analysis of Variance (ANOVA) is applied for further investigation for the
impact of these optimisation models on the dependent variable RPD. The ANOVA tested statistically the
results of all models where MO corresponding to W6 and BO corresponding to α = 0.449. In ANOVA,
both hypotheses (null and alternative) are given as follows:
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H0: all means are same.
HA: at least one mean is different.
Table 2 shows the p-values and F-ratios; it is clear that the p-values is smaller than 0.05, and hence the
null hypothesis of no difference is rejected. This means statistically, that these factors have a significant
impact on RPD. The p-values only permit to reject the null hypothesis and hence accept the alternative
one. However, it does not show which of models have significant different mean values. So, we perform
a 95% confidence interval test to determine the models that are significantly different. Figure 3 shows
that both of the MO and BO models are significantly different with the UT model.

Table 2: Analysis of Variance.

Groups Count Sum Average Variance

MO 12 141.768 11.814 6.254
BO 12 156.06 13.005 11.145
UT 12 182.842 15.236 11.594

ANOVA

Source of Variation SS df MS F P-value F crit
Between Groups 72.462 2 36.231 3.748 0.034 3.284
Within Groups 318.939 33 9.664
Total 391.401 35

10.255

11.814

10.883

13.005

13.073

15.236

MO BO UT
0

5

10

15

Models

R
P

D

MO
BO
UT

Figure 3: 95% Tukey confidence intervals for all models

5 Conclusion

In this work, a multi-objective optimisation model is developed to generate stable and robust schedules
for the PFSP under two different uncertainties, which are; machine breakdown and new job arrivals. A
new solution method, applying the effective predictive-reactive procedure and an IG method has been
proposed. The obtained results show the high performance of the IG algorithm, which is handling the
dynamic PFSP with large size instances and generating robust solutions. Moreover, the comparison of
the multi-objective model against the bi-objective model [1] and the single objective model of makespan,
indicates that the multi-objective optimisation model outperforms the aforementioned models. The com-
putational results of sensitivity analysis revealed that a higher priority for stability and robustness perfor-
mances resulted in low RPDs. From the statistical test of ANOVA, it can be seen that the multi-objective
optimisation model has a significant difference with classical makespan model. For future works, other
approaches and solution methods can be implemented for the purpose of comparison. Another suggestion
is to use the multi-objective optimisation model for the PFSP under other different types of uncertainties.
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Finally, the presented model and approaches can be adjusted for other scheduling problems, e.g. other
flow shop scheduling problems and job shop scheduling problem.
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[17] R. Ruiz and T. Stützle, “A simple and effective iterated greedy algorithm for the permutation flow-
shop scheduling problem,” European Journal of Operational Research, vol. 177, p. 20332049,
2007.

[18] Q.-K. Pan, R. Ruiz, and P. Alfaro-Fernndez, “Iterated search methods for earliness and tardi-
ness minimisation in hybrid flowshops with due windows,” Computers and Operations Research,
vol. 80, pp. 50–60, 2017.

[19] I. Osman and C. Potts, “Simulated annealing for permutation flow-shop scheduling,” OMEGA, The
International Journal of Management Science, vol. 17, no. 6, pp. 551–557, 1989.

[20] D. Jones, “A practical weight sensitivity algorithm for goal and multiple objective programming,”
European Journal of Operational Research, vol. 213, no. 1, pp. 238–245, 2011.

[21] P. Cowling, O. Djamila, and S. Petrovic, “Dynamic scheduling of steel casting and milling using
multi-agents,” Production Planning & Control, vol. 15, no. 2, pp. 178–188, 2004.

[22] M. Nawaz, E. E. E. Jr, and I. Ham, “A heuristic algorithm for the m-machine, n-job flow-shop
sequencing problem,” OMEGA, The International Journal of Management Science, vol. 11, no. 1,
pp. 91–95, 1983.

[23] E. Taillard, “Benchmarks for basic scheduling problems,” European Journal of Operational Re-
search, vol. 64, no. 2, pp. 278–285, 1993.

Barcelona, July 4-7, 2017

View publication statsView publication stats

https://www.researchgate.net/publication/318250045

