ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/313898310

Multi-objective Particle Swarm Optimisation for Robust Dynamic Scheduling
in a Permutation Flow Shop

Conference Paper in Advances in Intelligent Systems and Computing - February 2017

DOI: 10.1007/978-3-319-53480-0_49

CITATIONS READS
2 46
3 authors:

Mohanad Al-Behadili : Djamila Ouelhadj

=
University of Basrah University of Portsmouth
12 PUBLICATIONS 4 CITATIONS 52 PUBLICATIONS 1,308 CITATIONS
SEE PROFILE SEE PROFILE

Dylan F Jones
University of Portsmouth
81 PUBLICATIONS 2,224 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

mawer | Capacitated Vehicle Routing Problem with Multiple Sustainability Impacts View project

rawer | Sustainable supply chain management in Industry 4.0 View project

All content following this page was uploaded by Mohanad Al-Behadili on 26 April 2017.

The user has requested enhancement of the downloaded file.


https://www.researchgate.net/publication/313898310_Multi-objective_Particle_Swarm_Optimisation_for_Robust_Dynamic_Scheduling_in_a_Permutation_Flow_Shop?enrichId=rgreq-6ac717664de5577121bc314274f3a75f-XXX&enrichSource=Y292ZXJQYWdlOzMxMzg5ODMxMDtBUzo0ODczNjQyNjgxNzEyNjRAMTQ5MzIwODEwNDA5NQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/313898310_Multi-objective_Particle_Swarm_Optimisation_for_Robust_Dynamic_Scheduling_in_a_Permutation_Flow_Shop?enrichId=rgreq-6ac717664de5577121bc314274f3a75f-XXX&enrichSource=Y292ZXJQYWdlOzMxMzg5ODMxMDtBUzo0ODczNjQyNjgxNzEyNjRAMTQ5MzIwODEwNDA5NQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Capacitated-Vehicle-Routing-Problem-with-Multiple-Sustainability-Impacts?enrichId=rgreq-6ac717664de5577121bc314274f3a75f-XXX&enrichSource=Y292ZXJQYWdlOzMxMzg5ODMxMDtBUzo0ODczNjQyNjgxNzEyNjRAMTQ5MzIwODEwNDA5NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Sustainable-supply-chain-management-in-Industry-40?enrichId=rgreq-6ac717664de5577121bc314274f3a75f-XXX&enrichSource=Y292ZXJQYWdlOzMxMzg5ODMxMDtBUzo0ODczNjQyNjgxNzEyNjRAMTQ5MzIwODEwNDA5NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-6ac717664de5577121bc314274f3a75f-XXX&enrichSource=Y292ZXJQYWdlOzMxMzg5ODMxMDtBUzo0ODczNjQyNjgxNzEyNjRAMTQ5MzIwODEwNDA5NQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohanad_Al-Behadili2?enrichId=rgreq-6ac717664de5577121bc314274f3a75f-XXX&enrichSource=Y292ZXJQYWdlOzMxMzg5ODMxMDtBUzo0ODczNjQyNjgxNzEyNjRAMTQ5MzIwODEwNDA5NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohanad_Al-Behadili2?enrichId=rgreq-6ac717664de5577121bc314274f3a75f-XXX&enrichSource=Y292ZXJQYWdlOzMxMzg5ODMxMDtBUzo0ODczNjQyNjgxNzEyNjRAMTQ5MzIwODEwNDA5NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Basrah?enrichId=rgreq-6ac717664de5577121bc314274f3a75f-XXX&enrichSource=Y292ZXJQYWdlOzMxMzg5ODMxMDtBUzo0ODczNjQyNjgxNzEyNjRAMTQ5MzIwODEwNDA5NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohanad_Al-Behadili2?enrichId=rgreq-6ac717664de5577121bc314274f3a75f-XXX&enrichSource=Y292ZXJQYWdlOzMxMzg5ODMxMDtBUzo0ODczNjQyNjgxNzEyNjRAMTQ5MzIwODEwNDA5NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Djamila_Ouelhadj?enrichId=rgreq-6ac717664de5577121bc314274f3a75f-XXX&enrichSource=Y292ZXJQYWdlOzMxMzg5ODMxMDtBUzo0ODczNjQyNjgxNzEyNjRAMTQ5MzIwODEwNDA5NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Djamila_Ouelhadj?enrichId=rgreq-6ac717664de5577121bc314274f3a75f-XXX&enrichSource=Y292ZXJQYWdlOzMxMzg5ODMxMDtBUzo0ODczNjQyNjgxNzEyNjRAMTQ5MzIwODEwNDA5NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Portsmouth?enrichId=rgreq-6ac717664de5577121bc314274f3a75f-XXX&enrichSource=Y292ZXJQYWdlOzMxMzg5ODMxMDtBUzo0ODczNjQyNjgxNzEyNjRAMTQ5MzIwODEwNDA5NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Djamila_Ouelhadj?enrichId=rgreq-6ac717664de5577121bc314274f3a75f-XXX&enrichSource=Y292ZXJQYWdlOzMxMzg5ODMxMDtBUzo0ODczNjQyNjgxNzEyNjRAMTQ5MzIwODEwNDA5NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dylan_Jones5?enrichId=rgreq-6ac717664de5577121bc314274f3a75f-XXX&enrichSource=Y292ZXJQYWdlOzMxMzg5ODMxMDtBUzo0ODczNjQyNjgxNzEyNjRAMTQ5MzIwODEwNDA5NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dylan_Jones5?enrichId=rgreq-6ac717664de5577121bc314274f3a75f-XXX&enrichSource=Y292ZXJQYWdlOzMxMzg5ODMxMDtBUzo0ODczNjQyNjgxNzEyNjRAMTQ5MzIwODEwNDA5NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Portsmouth?enrichId=rgreq-6ac717664de5577121bc314274f3a75f-XXX&enrichSource=Y292ZXJQYWdlOzMxMzg5ODMxMDtBUzo0ODczNjQyNjgxNzEyNjRAMTQ5MzIwODEwNDA5NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dylan_Jones5?enrichId=rgreq-6ac717664de5577121bc314274f3a75f-XXX&enrichSource=Y292ZXJQYWdlOzMxMzg5ODMxMDtBUzo0ODczNjQyNjgxNzEyNjRAMTQ5MzIwODEwNDA5NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohanad_Al-Behadili2?enrichId=rgreq-6ac717664de5577121bc314274f3a75f-XXX&enrichSource=Y292ZXJQYWdlOzMxMzg5ODMxMDtBUzo0ODczNjQyNjgxNzEyNjRAMTQ5MzIwODEwNDA5NQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Multi-objective Particle Swarm Optimisation for
Robust Dynamic Scheduling in a Permutation
Flow Shop

Mohanad AL-Behadili''?, Djamila Ouelhadj?, and Dylan Jones?

! University of Basra, Basra, Iraq
mohanad.saad@uobasrah.edu.iqg
2 Department of Mathematics, University of Portsmouth, Lion Gate Building,
Portsmouth PO1 3HF, UK
{djamila.ouelhadj, dylan. jones}@port.ac.uk

Abstract. This paper proposes a multi-objective optimisation model
and particle swarm optimisation solution method for the robust dynamic
scheduling of permutation flow shop in the presence of uncertainties. The
proposed optimisation model for robust scheduling considers utility, sta-
bility and robustness measures to generate robust schedules that min-
imise the effect of different real-time events on the planned schedule. The
proposed solution method is based on a predictive-reactive approach that
uses particle swarm optimisation to generate robust schedules in the pres-
ence of real-time events. The evaluation of both the optimisation model
and solution method are conducted considering different types of disrup-
tions including machine breakdown and new job arrival. The obtained
results showed that the proposed model and solution method gives better
results than a bi-objective model that considers only utility and stability
measures [1] and the classical makespan model.

1 Introduction

Scheduling deals with the assignment of a set of jobs to a set of machines in a
reasonable amount of time in order to optimise one or more objectives [2]. In
the flow shop scheduling problem (FSP) all jobs have to follow the same route.
FSP that do not allow sequence changes between machines is called permuta-
tion flow shop scheduling problem (PFSP). In the PFSP, the minimisation of
the completion time or makespan is the most common criterion that has been
studied in the literature. It has been proven that, the PFSP is an NP-hard prob-
lem [3]. The most traditional classifications of the FSP are static, stochastic
and dynamic scheduling environments [4]. In dynamic scheduling environments,
random disruptions may interrupt the system, which could change the sched-
uled production plans. Noticeable studies of dynamic scheduling are given by
[5], [6] and [7], while a comprehensive survey is given by [8]. Most rescheduling
strategies in the literature to handle the real-time events consider the following
two goals [9]; make the schedule feasible again, and improve the efficiency of
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the schedule in order to minimise the deviation of the current solution from the
pre-planned one. To minimise the deviation between the performance measure
values of the baseline and realised schedules, [10], [11] and [12] propose a bi-
objective function and consider the robustness measure as a linear combination
of utility and stability measures. Rahmani and Heydari [13] propose a multi-
objective optimisation model that considers utility, stability and robustness for
FSP with unexpected new job arrival and uncertain processing times. The model
was designed for the case of m-jobs and 2-machines. An exact method was ap-
plied to obtain the solution for small instances. Most of approaches designed
for rescheduling are mainly focused on machine breakdowns, new job arrivals,
etc. However, the majority of the existing work addresses these disruptions only
independently [14], [15], [16], [17], [18] and [19]. Katragjini et al. [1] introduce
a novel benchmark for PFSP that considers different types of disruptions dur-
ing the time horizon. The authors implement a predictive-reactive approach for
PFSP with three different random disruptions that interrupt the initial schedule
simultaneously. These disruptions are machine breakdown, new job arrival and
job ready time variations. To keep the solution efficient and stable, Katragjini
et al. [1] proposed a bi-objective optimisation model, which takes into account
the makespan and instability measures. Particle swarm optimisation (PSO) is a
stochastic optimisation technique that was introduced by Kennedy et al. [20].
The PSO algorithm has many advantages making it more preferable to be pro-
posed for dynamic combinatorial optimisation problems. Some advantages are
the dynamic nature of the algorithm and its simplicity of implementation [21],
[22] and [23]. Other features are the use of self-information, individual best in-
formation and global best information to generate effective and optimal results,
as well as the fast convergence speed of the swarm [24]. The main advantage of
the PSO algorithm is that, it requires fewer parameters to be adjusted in com-
parison to other meta-heuristic methods [25]. The PSO algorithm was applied
successfully to PFSP for example see in [26] and [27]. The contribution of this
paper is to introduce a multi-objective optimisation model that considers util-
ity, stability and robustness measures for robust dynamic PFSP under different
types of real-time events and to apply an efficient predictive-reactive approach
with PSO algorithm. The remainder of the paper is structured as follows; in
section 2, the optimisation model for robust scheduling is presented. In section
3, the proposed predictive-reactive based PSO algorithm is developed. Section 4
shows numerical experiments and results that illustrate the performance of the
proposed methodology, with a discussion of its results. Finally, conclusions and
future work are presented in section 5.

2 Multi-objective optimisation model

We propose a new multi-objective optimisation model based on the robust
scheduling model introduced by [11] and [13]. This model has been extended
for the case of n jobs and m machines for PFSP, considering three important
measures: makespan measure (utility), stability and robustness. The new model
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for PFSP is given in (1).
Min MSR = aU,(S™) + BL,(S*) + vR,(S*) (1)

Where S* refers to the new schedule after the time of disruption ¢p and
a+pf+y=1
Un(5*) = >_; CR,,; the real makespan in real scheduling.
1,(5%) = 32,225 |CR;; — CPy| the stability measure where CRZ;j is the real
completion time and CP;; is the predicted completion time of job 7 on machine
1 according to the initial schedule.
Rn(S*) =1>2;CR,,; — >2; CP, 5| the robustness measure where > :CP, - is
the predictive makespan according to the initial schedule. n the number of jobs,
m the number of machines, i index for machines {1, 2, ...,n}, j index of jobs that
have not been executed on any machine yet and the newly arrived job at the
time of disruption. We define the partial fixed sequence including the jobs that
have already been processed or are in progress on the first machine before the
time of disruption by mwgp. Similarly, the permutable subsequence containing
the jobs after the time of disruption whose succession order can be modified
is denote by map. The three objective functions of model (1) are normalised
to enable a reasonable comparison with the bi-objective model of [1] and the

classical single objective makespan model. The normalised objective function
(NMSR) in equation (1) is as follows:

NMSR = aNU,(5") + BNL,(S*) + YN R, (S) 2)

Where NU,(S*), NI,(S*)and NR,(S*) represent the normalised makespan,
stability and robustness respectively. The calculations of normalised makespan
NU,(S*) and normalised stability NI, (S*) are given in details in [1], while the
normalised robustness function is defined as follows:

w  Ra(S*) — Min(R,)
NBA(S7) = Maz(R,) — Min(R,,)

3)

Where R, (S*) is the robustness after the time of disruption tp. Maz(R,)
and Min(R,) are the upper and lower robustness bound, respectively. To obtain
these bounds, we solve the problem three times where o = 1,5 = 0, = 0 for the
first solution, a = 0,8 = 1,y = 0 for the second solution and o =0,8=0,v =1
for the last solution. The results are then given in the following 3 x 3 matrix
form:

Uu, I, R,
Uy, (a11 a12 aig3
I [ a2y a2 azs (4)

Ry \asz1 as2 ass

The values of Maz(R,) and Min(R,) are then calculated as follows:
Maz(R,) = maz{ai 3,a23,a33} and Min(R,) = min{a1,s,a23,a33}
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3 Proposed solution methods

3.1 A robust predictive-reactive rescheduling approach

In this paper we consider two different real-time events that may occur at the
same time or separately during the time horizon. These events are machine
breakdown and new job arrival, also the number of disruptions could vary for
each instance. A predictive reactive approach with an evolutionary PSO algo-
rithm is applied to deal with large size PFSP in the presence of real-time. The
predictive reactive approach starts with a robust predictive solution and then it
applies rescheduling at the time of disruption. The rescheduling phase uses the
PSO algorithm for the partial subsequence of jobs 74 p (the sequence of jobs that
have not been executed on the first machine yet after the time of disruption)
with the goal to minimise the partial makespan.

3.2 Particle Swarm Optimisation (PSO)

PSO is a population-based evolutionary computational method [20]. The algo-
rithm simulates a social behaviour such as swarm bird migration. The basic
elements of the PSO algorithm are summarised below where j = {1,2,...,n},
i={1,2,...,p}, p is the number of particles and n is the number of jobs:
Particle: The i'" particle X! in the swarm at iteration ¢ is defined as
X} = {a}), 2}y, ..., 2}, } where zf; is the position value of particle i of job
j at iteration t.

Particle velocity: The " particle velocity V' at iteration ¢ is defined as
Vit = {viy, vk, ..., vf, } Where vl is the velocity of particle i of job j at iteration
t.

Population: The set consisting of p particles in the swarm at iteration ¢ is
called a population po® where po® = {X{, X3,..., X/}.

Permutation: The permutation of job sequence implied by the particle X}
is defined as 7! = {x!;,7ly, ..., 7!, } where 7! is the assignment of job j of the
particle 7 in the permutation at iteration ¢.
Inertia Weight: The inertia weight w’ is used to control the impact of the
velocities from the previous step on the current velocity.

Personal Best: The personal best P! represents the best position of particle
i with the best fitness at iteration ¢ where P/ = {p};,ply,...,p},} and pf; is
the position value of the i personal best with respect to j. In a minimisation
problem with the objective function f(7!), the personal best P! of the i" par-
ticle in the swarm can be obtained such that f(r!) < f(x!~') where 7! is the
corresponding permutation of P! and 77571 is the corresponding permutation of
P!~!. The fitness function of P! is simplified as f*” instead of f(x?).

Global Best: The global best among all the swarm of particles achieved so far
is called global best G*. It is defined as G* = {g}, 45, ..., g%, } where g} is the po-
sition value of G*. To obtain the global best we use the criterion f(n?) < f(r!)
where ! and 7! are the corresponding permutation of global best G and per-
sonal best P! respectively. For simplicity we use f9 for the fitness function of
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the global best instead of f(7?).

Termination Criterion: The search process of PSO algorithm is terminated
after a maximum number of iterations.

PSO particles are used to solve the PFSP as follows; for n jobs in the problem
each particle X! = {z!,,2l,,...,2!,} corresponds to a continuous position value.
The vector of position values is transformed to the permutation of jobs accord-
ing to the SPV rule [28]. The initial population of particles generated randomly
and the initial position values for the particle are generated randomly as follows:

1'9] = Tmin + Tl(xmam - :Emzn) where [xminaxmaz] = [0,4] and r; € (07 ]_) is
a uniform random number. Initial velocities are established similarly as follows:
v?j = Umin + T2 (Vmaz — Umin) Where [Unmin, Umaz] = [—4,4] and ro € (0,1) is a

uniform random number. The fitness function is given as f(n!) = NMSR and
it is rewritten as f! in short. The steps of the PSO algorithm are summarised
as below:

Algorithm 1 Particle Swarm Optimisation Algorithm

1. Set initial iteration ¢t =0 and p =2 X n.

2. Generate p initial particles X{ = {%;, 2%, ..., 3, } where x?j is selected randomly
from the range [0,4].

3. Generate p initial velocities V = {0?171)?2, ...,v?n} where v?j is chosen randomly
from the range [—4,4].

4. Use the SPV rule to detect 7l = {ndy, 7%, ..., 70} of particle X7.

5. Apply the fitness function f2 to evaluate each particle i in the swarm.

6. For each particle set PY = X? where PP = {p%1,p%, ..., p%}, P = 2, p% =
2%, .. pY, = af, together with its best fitness function 1= fo.

7. Detect the best fitness value in the whole swarm such that f? = min{f?} with its
corresponding particle X?2. Set global best to G® = X2 such that ¢ = 2%,,¢3 =
%5, ...,g% = 2%, with its fitness value f9° = f2.

8. Update the iteration t =1t 4 1.

9. Update the inertia weight w' = w'~! x Bpso where Bpso is the decrement factor.

10. Update the velocity as follows vfj = wtfll)f;hrclrl (pﬁ;l fx’;j*l)Jchrg (g;%*l fxﬁ;l)
where c¢1 and ¢ are social and cognitive parameters and 71,72 € (0,1) are uniform
random numbers.

11. Update position values mfj = xf;l + vfj.

12. Use the SPV rule to detect the permutation 7f = {7}y, 7la, ..., Tn }-

13. Use the permutation to evaluate particles by checking if there is any improvement
at iteration ¢ for the personal best. That is, if ff < ffb, then P} is updated as
P! = X!and f*"=ft.

14. Find the minimum value of P} as fi = min{f""}, L € {ili = 1,2,...,p}. If
ft < f9, then update the global best as G* = Xt and f9 = fi.

15. If the number of iteration exceeds the maximum number of iterations, then stop;
otherwise go back to step.
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4 Computational results

We have conducted extensive experiments to evaluate the performance of the
proposed optimisation model and solution methods. The proposed methodol-
ogy has been implemented in Java on Windows7 64bit. An Intel Core i5, 2.30
GHz processor and 6GB of RAM was used. In PSO algorithm the population
size is set to 2 x n, the initial inertia weight is set up to w® = 0.9 and no
less than 0.4, for w the decrement factor Spgo is taken as 0.975; the accel-
eration coeflicients are set to ¢; = co = 2 [28]. The computational experi-
ments were carried out on the Taillard benchmark instances [29], which are
grouped in 12 sets of 10 instances, ranging from 20 jobs and 5 machines to 500
jobs and 20 machines. All instances have been run independently ten times,
and the average is computed. To evaluate the performance of the proposed
model and the solution method, thirteen different set of weights («, 3,) have
been chosen, these sets represent the relative importance of each objective in
model (1). The selection of these weights are based on the practical weight
sensitivity algorithm detailed in [30]. Three weights are used to normalise the
model in equation (1) as described in section 2. These weights are as follows;
(0.999,0.001,0.001), (0.001,0.999,0.001), (0.001,0.001,0.999). The remaining
10 set of weights are examined for this experiment. These sets are arranged
as follows: W; = (0.333,0.0.333,0.333), W, = (0.666,0.166,166), W3 =
(0.499,0.499,0.002), Wy = (0.416,0.416,0.166), W5 = (0.166,0.666,0.166),
Ws = (0.002,0.499,0.499), W7 = (0.166,0.416,0.416), Ws = (0.166,0.166, 0.666),
Wy = (0.499,0.002,0.499), Wi = (0.416,0.166,0.416). On the other hand, the
bi-objective model of [1] is examined for the first components of Wj to Wio.
These components are as follows:

a = 0.333,0.666,0.499, 0.416, 0.166, 0.002, 0.166, 0.166, 0.499, 0.416.

Once the best value is found, we calculate the average relative percentage de-
viation (RPD) over 10 of Taillard instances with the same number of jobs and
machines as follows:

M — Bestgyy

RPD =
Bestgo

x 100 (5)

where M is the solution obtained by the proposed model and PSO algorithm.
Bestg,; is the average of 10 Taillard instances of lower bound solution from the
same size. Table 1 shows the RPD for some Taillard instances according to the
weights where MISR represents the solution obtained from our proposed model,
while bi-obj is the solution obtained by bi-objective model [1].

In this table Ta represents the instance of n jobs and m machines. According
to table 1, the objective functions are sensitive to different sets of weights. The
results show that the stability and robustness measures play an important role
in obtaining better solution. As shown on table 1, the weights Wg, W7 and
Ws produce better solution in comparison with other weights. Furthermore, the
solution corresponding to the weight Wg has the lowest RPD values, this shows
that giving more priority to the robustness measure produces better solutions.
For this reason, the weight Wy is selected in this experiment. Figure 1, shows
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Table 1. RPD for MSR and bi-obj models.

Ta 20x5 50 x 10 100 x 10 200 x 20 500 x 20 Total

MSR 29.446 22.872 23.259  22.559 17.737 115.873
bi-obj 34.345 22.311 30.075  22.860  20.764 130.355
MSR 29.381 22.548 26.133 22.734 17.765 118.561
bi-obj 31.384 22.241 30.012 21.896  23.592 129.125
MSR 29.062 23.539 26.151  22.518 17.960 119.230
bi-obj 31.608 23.612 31.603 21.039  22.355 130.217
MSR 29.512 22775 23.805 22973 17.690 116.755
bi-obj 31.945 24.781 32.556  21.367  20.482 131.131
MSR 30.796 23.369 24.082 22.600 17.440 118.287
bi-obj 32.152 23.562 31.964 24.103  22.382 134.163
MSR 26.871 21.771 21.687 19.088 12.117 101.534
bi-obj 31.278 25.360 34.158  23.554  20.359 134.709
MSR 28.163 22.358 20.920 19.082 13.794 104.317
bi-obj 32.174 22982 33.242 24.001 23.923 136.322
MSR 26.609 21.461 20.831 18.843 12.277 100.021
bi-obj 31.769 23.375 32.380 23.909  24.521 135.954
MSR 29.422 22.184 23.648 22.889 17.177 115.320
bi-obj 32.807 22.308 32.409 20.427  22.800 130.751
Wio MSR 29.798 22.451 24.007 20.303 17.031 113.590

bi-obj 32.611 23.332 33.679  22.830 22.763 135.215

that MSR has the best RPD, compared to bi-obj and Utility. It is clear that the
solution obtained by MSR has the lowest RPD in general compared with the
bi-objective and utility models.

To further investigate the impact of the proposed models on the dependent
variable RPD, the single factor mean of an Analysis of Variance (ANOVA) is
performed. The results of the MSR model corresponding to the weight Wg, bi-
obj model with a = 0.166 and Utility model are statistically tested by ANOVA.
For this analysis, the null and alternative hypotheses in ANOVA are:

Hy: all means are same.

H 4: at least one mean is different.

The F-ratios and the p-values are reported in table 2. Since the p-value is smaller
than 0.05, we reject the null hypothesis of no difference, and conclude these
factors have a statistically significant effect on RPD at the 95% confidence level.
The ANOVA F-test only permits us to reject the null hypothesis, but it does
not give indication about which groups have different mean values. Hence, the
95% confidence interval is used to specify which of the mean RPD differences
are statistically significant. Figure 2 shows that MSR model has significance
difference in comparison with the other two models.
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Fig. 1. RPD for models with the weight Ws.
Table 2. Analysis of Variance.
Groups Count Sum Average Variance
MSR 12 242.196 20.183 22.17
bi-obj 12 308.617 25.718 17.768
Utility 12 307.253 25.604 9.702
ANOVA
Source of Variation SS df MS F  P-value F crit
Between Groups 240.165 2 120.082 7.257 0.002 3.284
Within Groups 546.053 33 16.547
Total 786.218 35
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I 27.565 I 27.334
25.000
L 23514 L 23605
T- 22.003
20.000 I
£ 15.000 26097 ——MSR
——bi-obj
10.000
— | tility
5.000
0.000 T r T !
0 MSR bi-obj  Utility
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Fig. 2. 95% Tukey confidence intervals for all models.
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4.1 Conclusion

This paper proposes a model that considers utility, stability and robustness
to obtain robust and stable schedules of PFSP subject to different real-time
events. Although we proposed a predictive-reactive approach based on generating
robust schedule and reacting to every disturbance. Furthermore, PSO is applied
for rescheduling, which shows the ability to deal with dynamic nature of this
problem successfully. On the other hand, the proposed robust model has been
compared with the bi-objective and the classical makespan model. Statistical
ANOVA analysis have been conducted to compare the efficiency of these models.
The ANOVA results revealed that the MSR model performed best. Also the
sensitivity analysis indicated that giving higher priority to robustness leads to
better solutions. For future work the current proposed model can be explored to
handle other types of real-time events. Another interesting direction is to adapt
the proposed model to other scheduling problems such as flexible flow shop and
job shop scheduling.
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