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Abstract :

In this paper we prove w’—stability for certain class of multi-valued maps that
satisfy some general contractive condition in generalized Hausdorff metric space.
Some well known results are also derived as a special cases.
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1- Introduction

Brined [1] introduced a weaker concept of stability, called weak stability. Timis [10]
established weaker notion, named w?-stability because of the restriction of an
approximation sequence. Some fixed point iteration are not weakly stable so it is used
a weaker type sequence named equivalent sequence and gave weak stability results of
Picard iteration for various contractive maps.

However, a formal definition of stability of general iterative procedures has
been studied by Harder in her Ph. D. Thesis [5] and published in the papers [3] and
[4], but the concept of stability is not very precise because of the sequence {y .}
which is arbitrary taken.

In this paper, we give w’—stability results of picard iteration for multi-valued
maps with coincidence points satisfying some contractive type mappings. Since the
stability results for multi-valued contractions have been found useful in the area of
generalized differential equations and other contexts (see, for instance [2], [6], [11]
and [12]).
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2- Preliminaries
Throughout the paper, let (X ,d)be a metric space. We shall follow the following

notions and definitions.
CL(X)={A : Ais non empty closed subset of X }.We consider

H (A,B)=max{supd(@,B); acA,
supd(A,b); beB},
Forall A,B eCL(X)and d (@,B) =inf{d (a,b) ,b €B}.
H is called the generalized Hausdorff metric for CL (X ) induced by d.

In [9] Timis presented some mappings T : X — X satisfying various
contractive conditions for which the associated Picard iteration is w*—stability.
Their corresponding condition in case of a pair (S,T) mapping, where

S:Y — X single-valued map and T ;Y —CL (X ) multi-valued map with x,y €Y
andx =y are in the following form.
(1.1) H@x,Ty)<m(x,y)
Where
m(x,y)=max{d (Sx,Sy),

[d (Sx,Tx)+d (Sy.Ty)]/2,
[d(Sx,Ty)+d (Sy.Tx)]/2}

(12) H@x,Ty)<M(x,y)
Where:
M (x,y)=max{d (Sx,Sy),

d(Sx,Tx),d(Sy,Ty),
[d(Sx.,Ty)+d Sy, Tx)]/2},

13) H@x,Ty)<N(Xx,y)
N (x,y)=max{d (Sx,Sy),

Where: d(Sx,Tx),d(Sy,Ty)
,d (Sx,Ty),d (Sy ,Tx)},
HTx,Ty)<M (x,y)+Ld(Sx,Ty) Where L > 0.

We remarked that in case of single-valued maps with S = identity map in the metric
space (X ,d).
I. Condition (1.1) implies (1.2) that is any mapping which satisfies condition (1.1)
also satisfies condition (1.2).
ii.  (1.2) implies (1.3) and (1.3), (1.4) are independent, and (1.2) implies (1.4) for
more details ( see [7] for instance ).
Definition 2.1 [1]

Let (X ,d) be a metric space and {X , },_, < X be given sequence. We

shall say that {Y ,}.., < X is an approximate sequence of {Xn}if, for any
k e N (Natural numbers), there exists 77 = 77(K ) such that

d(X,,Y,)<nforall n =K.
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Lemma 2.2 [1]
The sequence {Y ,}is an approximate sequence of {X ,}if and only if,

there exists a decreasing sequence of positive numbers {77, } converging to 77 =0
such that

d(xn,yn)SUn,forall nZk

Definition 2.3 [9]
Let (X ,d) be a metric space and let S : X — X . two sequence

X} _oand {y .} _, are called S-equivalent sequences ifd (Sx ,,Sy ,) — O,
as N — oo.
Lemma 2.4 [8]

Let B eCL(X) and aeX, then for any
beB, d(a,b)<H(@,B).
We remarked that any equivalent sequence is an approximate sequence but the reverse
is not true, as it shown in the next example.

Example 2.5 [10]

Let {Xn}:,o:o to be the sequence with X,, = N. first we take an equivalent
o0 o0 1
sequence of X} otobe Y b Yo =N +H- in this case, we have that
1 1
d (yn!Xn) :d (nln +H) :H%O’ as N —> oo0.

Now we take an approximate sequence  of {Xn :Ozo to be

oo_, N =N + , ,
{y. hho ¥ on o1 Then
n
d X )=d|n,
(Yn X,) ( 2n+1)
~_" —>1>0
2n +1 2

asN — oo,

Definition 2.6 [13]
Let (X ,d) be a metric space andY =X letS:Y —> X, T:Y —CL(X) be

such that TY <TX and Z is a coincidence point of S and T , that is

u=Sz Tz.for any X, €Y , let the sequence {Sx, } be generated by the
general procedure,

Sx,,ef(M,x,), n=0L.. (15
Converges to an element u € X . let {Sy }be an approximate sequence of{Sx}, we
have that H (Sy,,,.,f (T,y,)=0 implies limSy_ =u. Then (1.5) is called weakly

(S,T ) -stable or weakly stable with respect to (S,T).
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3- Main Results
We shall introduce the following definition.

Definition 3.1
Let (X ,d)be a metric space. Let S:Y —X and T :Y —CL(X )be such as

TY <SY and z is a coincidence point of S and T, thatis, u =Sz Tz.

For any X, €Y, let the sequence {Sx } be generated by the general iteration
procedure, (1.5) converges to an element u € X . let {Sy . }._, = X be an equivalent
sequence of {Sx_}, and we have that H(Sy,,.f (T,y,))=0implies !‘L‘E‘OSVn =Uu.

then (1.5) is called w-stable with respect to (S,T).

Theorem 3.2
Let (X ,d)be a metric space andY <X .LetT Y —CL(X), S:Y —X such

as TY <SY and one of SY or TY is a complete subspace of X. let z be a
coincidence pointof T and S,thatis, u =Sz €Tz.

For any X, €Y , let the sequence {Sx,} generated by Picard iteration Sx ., €Tx,
converges to U.
Let {Sy,}=X be an equivalent sequence of {Sx,} and define
& =HGy,..Ty,), n=01...
If the pair (S,T) satisfy condition (1.2), and if Tz is singleton, then the Picard
iteration is w’—stable with respect to (S,T).
Proof :

Consider {Sy,} to be equivalent sequence of {Sx,}. Then according to

definition3.1, if limH(Sy,,,,Ty,)=0 implies that limSy =u, then the Picard
iteration is w?- (S ,T ) stable.
In order to prove this, we suppose that limH (Sy ., Ty,) =0,
therefore, Ve >0, 3n,=n(s) suchthat H(Sy, , Ty, )<e¢ Vn=>n,
d(Sy,.,u)<d@Sy,,,,Sx,,,)+d(Sx,,,u)
S d (SX n+l’Tyn)+ H (Tyn 1Sy n+1)
+d (Sx,,,,U).
<HTX,, Ty, )+HTY,.Sy,.)
+d (Sx,,,,U)
<max{d (Sx,,Sy,),d (Sx,,Tx,),

1
d (Syn’Tyn)’ E[d (an’Tyn)

+d (X, Sy )I+HTY,,8Y ,.0)
+d (Sx,,,,U).
SX,., €TX,, we have that
d(Sx,,Tx,)<d(Sx,,Sx, ,)+d (Sx

From the hypothesis, Sx, —u and

TX,)

n+l?
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<d(Sx,,u)+du,Sx,,,,)+d(Sx, ,,Tx,) >0
Now if M (x,y)=d (Sx,,,Tx,) by taking limit we obtain d (Sy,,,,u) —>0.
If M(x,y)=d(Sy,,Ty,) we have
d(Sy,,Ty,)<d(Sy,,Sx,)+d(Sx,,Sx,.,)
+0(5X,1,5Y pg) +A (SY 1y +TY ).
From definition 2.3, we have that d(Sx,,Sy,) —0and by taking limit, we obtain
d(@y,.,,u)—>0
If M(x,y)=d(Sx,,Sy,), from definition 2.3, we have d(Sx,,Sy,)—0and by
taking limit, we obtain d (Sy,,,,u) > 0.If

M (x,y)%[d(SXn,Tyn)+d(Syn,Txn)]

g%[d (5x,,Sy,)+d (Sy,.Ty,)
+d Sy, Tx,)]

Taking limit, we obtain d (Sy ,,,,u) >0
Hence limSy, K =0

This complete the proof of the theorem.
Theorem 3.3
Let (X ,d)be a metric space andY <X .LetT :¥Y —»CL(X), S:Y — X such as

TY <SY and one of SY or TY is a complete subspace of X. Let z be a
coincidence point of T and S, thatis, u =Sz €Tz.
For any X, €Y , let the sequence {Sx,} generated by Picard iteration Sx,, €TX,
converges to U.
Let {Sy,}=X be an equivalent sequence of {Sx,} and define
g =H®OyY,...,Ty,), n=01...
If the pair (S,T) satisfy condition (1.4), and if Tz is singleton, then the Picard
iteration is w’—stable with respect to (S,T).
The following example show that (S,T)is not stable but weakly stable and hence
w’—stable with respect to (S,T).
Example 3.4

Let X =[0,1]and T :X —X, S:X —X suchas TX <SX and

: 1
{0}, if X e{o,ﬂ

X =
{%}, it x e(%,l}
™ :{O}U{%}:{O,%}QSX X =[04]

SX =X
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Where [0,1] endowed with the usual metric T is continuous at each point of [0,1]

except at %.T has a unique fixed point at 0,i. e, 0T (0) ={0}.
T satisfies condition (1.3).

If 0<x s%, 0<y S% and x #y.Then
HTx,Ty)=0<[x —y|
=max{x —y|,[x =Tx|.|ly -Ty|,
%[|x Ty |+|y -Tx[1}
If %<x <1 and %<y <landx =y.then
H(Tx Ty)=0<|x —y|=max{x —y|,[x -Tx|,
y =Ty|.2x =Ty |+]y ~Tx[}

If 0<x s% and %<y <landx =y.then

ay}
=max {|x —Tx|,ly -Ty|},
HTx,Ty)<max{x —y/|,[x -Tx|,
1
ly —TyI,E[Ix “Ty|+|y =Tx[1}

In order to study the (S,T) -stability, let x,<[0,1], Sx
n=01..

H (Tx ,Ty):%<y :max{‘%—x

Thus

n+l

oy if xoe[o,ﬂ

b e

In each case, X, eTx, ={0}and x, =0, Vn=>2.
so, limSx, =limx, =0T {0}

n—oo

Then,  x,eTx, =

To show that the picard iteration is not(S,T ) -stable,

Let Sy, =vy, :%tl , nh=1
&, =H (Syn+1’Tyn):|yn+l _Tyn|
Then {(n+1?+1 1
| 2(n +1)? _E"

because of y 2%, for n >1.
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Therefore, lim g, =0 but limSy , =limy, :%, so the Picard iteration is not (S,T ) -

n—o0

stable.
In order to show that (S,T ) weak stability. We take an approximate sequence {Sy }

of{Sx, }, from lemma (2.3)
SX, =Sy .| =X, —Ya|<7m, n=k.

T SX, =Y, ST,

0<y, <x,+n,, n=k

Since x,=0 for n>2,
0<y,<n, ,nxk,=max{2,k}

We can choose {77, }such that 7, s% , n >k, and therefore, 0<y s%, vn >k,

So Ty, ={0} andtheresultsthat ¢, =H@SY,..,TY,)=SY,u=Y.u
Nowlimeg, =limy =0,

n—o0

So the iteration procedure is weakly stable with respectto (S, T).
Hence, it is w’-stable with respectto (5,T).

Corollary 3.5 [9]
Let (X ,d) be a complete metric space and S,T :X — X such that TX <SX
satisfying the following condition :
d(x,Ty)<max{d (Sx,Tx),d (Sy,Ty),
1 Forall x,y eX and x =y.
d (Sx,Sy )’E[d (Sx,Ty)+d (Sy,Tx)]},

Let{Sy,}._, an iteration procedure defined by X, X and Sx,,, =Tx,, for all

n >0and the sequence {Sx }converge to u, where U is a coincidence point of S and
T, then the Picard iteration is w*—stable with respect to (S,T ).

The following example explains the stability, weakly stability and w*-stability for
some contraction condition in case of single-valued map.

Example 3.5
Let X =[0,1] and let T :X —X be such that Tx =x, where X has the

usual metric, Evidently, every point of X is a fixed point of T .let x, :%.

Then Xn+l:TXn :T n+1X0:%1 n:0;1;21"'1

thus limx :%. let {y,},_, be an arbitrary sequence in X such that y,=x,and

n—o

Yo=—, N=123,....
n

1 1

n+1 n

1
" n(n+)

Thus  limly,,-Ty,|= as n—oo,  however,

. : 1
limy, =0=limx, ==.
n—o0

n—oo
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Therefore, the iterative procedure X ., =TX, is not stable.

Now, if we choose {y,}an approximate sequence of {X,}such that y,=x,and

_an +1.Inthis case, we have d(yn,xn)zn—+1—>1>0

2n 2n 2

n

n—oo

as n —oo, however, Ilim yn=%=|imxn. Therefore, the iterative procedure

X1 =1 X, is weakly stable.

Finally, let{y ,}be an equivalent sequence of {X }such that y,=x,and y =n_+1_

in this case, we have d(yn,xn)zzi—w as N —oo.
n

However, limy, :%: limx, =T (%j

n—oo

Therefore, the iterative procedures x, ., =Tx,, n=012,... . isw? —stable.
Note that T is non expansive, thatis, d (Tx,Ty)<d(x,y),forall x,y eX.

Remark 3.7
I. If S is the identity mapping in corollary 3.4 we have theorem 2.4 [10].

ii. Every stable iteration is weakly stable but the reverse may not true (see [11]).
iii.Every weakly stable iteration is w’—stable but the reverse may not true (see [9]).
iv.There is some mappings that satisfy contraction condition and for which the

Picard iteration is not (S,T ) -stable, it is not (S,T ) -weakly stable but itis (S,T)
-w?stable (see [9] ).
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