Journal of Pharmaceutical, Chemical and Biological Sciences

Research Article

ISSN: 2348-7658 CODEN: JPCBBG Impact Factor (GIF): 0.701 Impact Factor (SJIF): 3.905 March- May 2017; 5(1):56-62 Published on: 24 May 2017

The work is licensed under

The Effect of the Presence or Absence of Carbon on the Accumulation and Bioremediation of Hydrocarbon Compounds in Cyanobacterium Oscillatoria Tenuis

Mariam F. Al-Bidhani

Marine Science Center, Basrah University, Basrah, Iraq

*Corresponding Author: Mariam F. Al-Bidhani, Marine Science Center, Basrah University, Basrah, Iraq

Received: 17 Jan 2017 Revised: 25 April 2017 Accepted: 02 May 2017

ABSTRACT

In this research, the effects of the presence and absence of carbon in the medium of cyanobacterium Oscillatoria tenuis on growth rate and its ability of accumulation and bioremediation of hydrocarbon compounds were investigated. Isolated cyanobacterium treated with different crude oil concentrations (control, 0.25,0.5,1 and 2)% in Chu- 10 medium .The result showed that the dry weight and chlorophyll A of the cyanobacterium was the best in the medium contain carbon than carbonless medium, the best growth was in 0.5% crude oil about 0.20mg/g. The chlorophyll content was the best in 0.25% crude oil about 16.274 μ g/g in the presence of carbon. Both dry weight and chlorophyll A were increased as time increase in the presence and absence of carbon. Hydrocarbon compounds accumulation was the best in the presence of carbon than in the absence of it at the first week, the best accumulation was in 2% crude oil about 1124.728 μ g/g, but these concentrations decreased as time increase untile the third week , and then rise slightly in the fourth week.

Keyword: Cyanobacteria; accumulation; bioremediation; hydrocarbon compounds

INTRODUCTION

Petroleum isanthropogenic ล major contaminant in the aquatic environment and may affect the community composition of the plant, fishes, birds, mammals and phytoplankton [1, 2]. These contamination come from various sources, Oil refinery wastes release high levels of hydrocarbons, natural seepage from ground and industrial activities other than petrochemistry are also considered sources of dangerous pollutants [3, 4, 5] and petroleum derivates (especially diesel and fuel) is an important problem in the water [6], because of their carcinogenic and mutagenic properties [7]. Physical and chemical strategies are used to minimise these effects but these strategies are

more expensive, and in most cases, generate further pollution [8]. Biological strategies are more economical and efficient than chemical and physical ones. In comparison to other biological methods bioremediation through microorganism is more efficient [1], because it is simple to maintain, eco-friendly, cost-effective and may leads to the complete or partial removal of the pollutants [9]. These pollutants can potentially be degraded by the great variety of soil and aquatic microorganisms. Bacteria, filamentous fungi, yeast, and cyanobacteria are known to be important hydrocarbon degraders [10, 11].

Bioremediation of oil spill cleanup is either done by bioaugmentation or biostimulation. Bioaugmentation is the addition of microorganism capable of degrading the toxic hydrocarbons to achieve a reduction of the Some microalgae produce pollutants [1]. enzymes capable of degrading harmful organic compounds to transform $_{\mathrm{the}}$ petroleum hydrocarbons into less toxic compounds [12]. These bioremediation capabilities of microalgae are useful for environmental sustainability [13, 14]. In most studies, degradation of crude oil by various species of cyanobacteria has been reported [15, 16, 17].

The aim of this study was to compare the presence and absence of carbon in the medium on the ability of cyanobacterium *Oscillatoria tenuis* on the accumulation and bioremediation of hydrocarbons compound.

MATERIALS AND METHODS

Cyanobacteria and Culture Conditions

Axenic culture of Cyanobacteria Oscillatoria tenuis was isolated from Shatt Al-Arab River (Basrah-Iraq), and conducted with all experiments. Chu no.10 culture medium was used as specific growing culture of which components were illustrated by [18]. The strain was grown at $27^{\circ}\pm 2$ C and ± 2500 Lux as optimum physical growth conditions were provided by white fluorescent lamps under light/dark regime of 18/6 hours for the duration of the experiments. The stock cultures were continuously recultivated and introduced to the experimental systems at logarithmic phase.

Ten conical flasks (250 ml) were prepared, put in five of them 200 ml of Chu-10 medium contain carbon source. Each flask of them injected with 20 ml of the unialgal stock culture of *O.tenuis*; cultures were left two days for adaptation then added to four of them, four concentrations of crude oil (0.25, 0.5, 1, 2) % and left one as a blank.

Put in the second five conical flask, Chu-10 medium free from the carbon source, also injected with unialgal culture and added to four of them same concentration of crude oil and placed in shaker incubator for a month. Hydrocarbons biodegradation was followed by measuring the concentration of extractable hydrocarbons at the end of each week of the month.

Measurement of dry weight

10 ml samples were filtered on to pre-dried and weighed GF/C fibre filters every week of culture.

Filters were oven dried overnight at 60°C and reweighed using an analytical scale [19]

Measurement of chlorophyll a

The measurement of chlorophyll a was taken at the end of each week of cell cultivation. Sample (10 mL) of the culture was filtered using GF/C filter. The filtered cell was placed into 10 ml centrifuge tube, and 9 ml of 90% acetone was added. The tubes were wrapped in foil and placed in a fridge overnight to extract a chlorophyll. At next day, the samples were centrifuged at 3000 rpm for 10 min. Chlorophylla concentration (μ g/ml) was determined using Spectrophotometer with the wavelength of 665 and 750 [19].

Measurement of hydrocarbon compounds

Ten mL samples were filtered on to pre-dried and weighed GF/C fibre filters every week of culture. Filters were oven dried and reweighed then placed in the cellulose thimble and extracted using Soxhlet intermittent extraction [20] with mixed solvents (100 ml) methanol: benzene (1:1 v/v) for 24-48 hrs. The combined extracts saponified for 2 hrs. By adding (15ml) 4M MeOH(KOH) at the same temperature and cooled to room temperature. The unsaponified matter was extracted with (50 ml) n-hexane using separator funnel. The upper unsaponified matter with hexane (hydrocarbons) was passed through open – chromatographic column separation column. The samples dried and stored until detection with the spectrofluorometer (for Total Petroleum Hydrocarbons (TPHs).

Statistical analysis

Mean comparison were conducted by one-way analysis of variance (ANOVA), followed by LSD test to determine significance. In all cases, comparisons that showed a p-value <0.05 were considered significant.

RESULTS AND DISCUSSION Dry weigh With Carbon

Figure (1) shows algae growth rates in(0.25, 0.5,1, 2)% crude oil compared with blank(B) in the presence of carbon in medium, wich shows the ability of algae to continue to grow untile the end of the 4^{th} week in the presence of crude oil in varying degrees, but less than blank where the

biggest growth rate in the 4th week about 0.27 mg/g . Among the add crude oil concentration, the best growth was in 0.5% crude oil about 0.20 mg/g at the end of the 4th week. There is a significant difference (P>0.05) between blank and add crude oil concentrations (LSD= 0.098). Another significant differences (P>0.05) between

the 1^{st} week and other three weeks (LSD= 0.032). Petroleum compounds, in general, have been shown to either inhibit or stimulate algal growth, depending on the type and level of petroleum product and the algal species concerned [21, 22].

Fig.1: Dry weigh amounts in different crude oil concentration (0.25, 0.5, 1 and 2)% and Blank with carbon

Without carbon

At the absence of carbon in the medium (fig. 2), the algae continue to growth in all add crude oil concentration (0.25, 0.5, 1, 2)% but in lower levels than in the presence of carbon. The best growth was in 2% crude oil about 0.17 mg/g at

 4^{th} week. Our result is in agreement with Simona Ghita *et al.* [23] who exhibit that the filamentous cyanobacteria grown for one week in sea water, supplemented with diesel (2% v/v) a much stronger than the populations grown in the absence of diesel.

Fig.2: Dry weigh amounts in different crude oil concentration (0.25, 0.5, 1 and 2)% and Blank without carbon

Chlorophyll a With carbon

Chlorophyll a content in different crude oil treatments is shown in (Table 1). There was an increase in this content to increase the period for each crude oil treatment, especially in 0.25%

crude oil concentration which appears the high concentrations in all weeks , the highest concentration was in the $4^{\rm th}$ week about 16.274 μ g/g. There are significant differences between blank culture and adding crude oil

grown in the presence of carbon						
Conc.	1st. Week	2nd.	3d.	4th.	Mean	SD
		Week	Week	Week		
В	3.499	5.540	7.984	19.604	9.157	7.202
0.25%	3.693	4.155	8.310	16.274	8.108	5.826
0.5%	3.231	3.273	5.540	15.855	6.975	6.018
1%	1.694	2.216	4.924	15.513	6.087	6.442
2%	.395	2.014	4.155	14.399	5.241	6.297
mean	2.502	3.440	6.183	16.329	7.113	
SD	1.417	1.456	1.863	1.959	5.842	
LSD(concentration)(P<0.05)				1.734		
LSD (period) (P<0.05)				2.743		

concentrations, inhibition of chlorophyll a biosynthesis was not occurred [24].

Table 1: Chlorophyll (a) µg/g content in different crude oil concentrations in *O.tennuis* grown in the presence of carbon

Without carbon

In the absence of carbon, we notice a decrease in chlorophyll a content rather than in the presence of carbon (Table 2).The highest content was in 0.25% crude oil treatment in all weeks. Chlorophyll a content is decreased to increase the added crude oil concentration, at the end of the period of the experiment , we find the highest content in 0.25 % crude oil about 16.206 μ g/g and less content was in 2% crude oil about 13.389% μ g/g at the same time. The amount of accessory photosynthetic pigment depended on crude oil concentrations [25].

Table 2: Chlorophyll (a) µg/g content in different crude oil concentrations in *O.tennuis* grown in the absence of carbon

Conc.	1st.	2nd. Week	3d.	4th.	Mean	SD
	Week		Week	Week		
В	0.307	1.187	5.540	12.146	4.795	5.408
0.25%	1.917	3.139	4.986	16.206	6.560	6.552
0.5%	0.923	3.047	4.617	15.023	5.903	6.266
1%	0.461	2.770	4.001	14.312	5.386	6.129
2%	0.415	0.325	2.770	13.389	4.225	6.213
mean	0.805	2.094	4.383	14.215	5.374	
\mathbf{SD}	0.665	1.266	1.061	1.548	5.507	
LSD(concentration)(P<0.05)				1.677		
LSD (period) (P<0.05)				1.289		

Total hydrocarbons With carbon

Table 3 elucidate total hydrocarbon concentrations in *O.tennuis* in the presence of carbon which we observed high concentrations of total hydrocarbon compounds, which increased with increasing add the concentration in the first week. The lowest value in concentrate 0.25% crude oil about 632.972 μ g/g, while the highest value in the concentrate 2% crude oil about 1124.728 μ g/g, Cerniglia *et al.* [26] and Raghu Kumar *et al* [10] found that filamentous cyanobacteria remove efficiently alkanes and polycyclic aromatic hydrocarbons (PAHs).

Conc.	1st. Week	2nd.	3d.	4 th .	Mean	SD	
		Week	Week	Week			
0.25%	632.972	427.143	245.907	406.080	428.026	158.800	
0.5%	906.782	716.005	242.924	131.211	499.231	371.583	
1%	1033.475	347.935	197.665	321.934	475.252	377.882	
2%	1124.728	282.429	183.377	389.802	495.084	428.143	
mean	924.489	443.378	217.468	312.257	474.398		
\mathbf{SD}	213.908	191.140	31.681	126.078	314.214		
LSD(concentration)(P<0.05)				NS			
LSD (period))(P<0.05)				481.111			

Table 3: Total hydrocarbons µg/g content in different crude oil concentrations in O.tennuis
grown in the presence of carbon

NS (No significant)

Total hydrocarbon concentrations in algae decreased with increasing the period until the third week of experience for all add crude oil concentrations, some algae like Prototheca zopfi was capable of utilising crude oil and mixed hydrocarbons substrate and exhibited extensive degradation of n- alkanes and iso-alkanes as well as aromatic hydrocarbons [27]. However, it rebound again in the fourth week, a period in which the algae reach to a stationary phase and I think that at this phase algae starts producing hydrocarbon compounds. Cells in the early stationary phase could produce more hydrocarbon compounds [28]. As confirmed Kojima and Zhang [29] that the maximum hydrocarbons productivity in algae during exponential and stationary phases of growth.

Without carbon

Total hydrocarbons in the absence of carbon illustrated in the table (4) which shows the ability of the alga to accumulate hydrocarbon compounds which decrease as an increase in the period where there are significant differences among weeks (P<0.05).In the 0.25% crude oil treatment, the alga accumulates at 1st week about 533.136 μ g/g and these value decrease until 187.951 μ g/g at 4th week; this may be related to that some cyanobacteria which have the ability to fix nitrogen could be contributing to degrade oil hydrocarbons [23]. In 0.5, 1 and 2% crude oil treatment, the values begin to decrease until 3rd week then return to rise slightly in the 4th week. This may be due to the ability of the alga on the production of hydrocarbon compounds in this period of the life cycle (stationary phase), the algae production rate of hydrocarbons varies during the growth cycle of the alga Botryococcus braunii and the maximum production rate recorded during the early stationary phase [30, 31].

Table 4: Total hydrocarbons µg/g content in different crude oil concentrations in *O.tennuis* grown in the absence of carbon

grown in the assence of carson								
Conc.	1st.	2nd.	3d.	4th.	Mean	SD		
	Week	Week	Week	Week				
0.25%	533.136	332.655	220.134	187.951	318.469	155.979		
0.5%	671.840	247.665	202.392	379.432	375.332	211.456		
1%	722.430	195.842	188.617	476.421	395.828	255.666		
2%	587.647	497.260	200.771	313.872	399.888	174.911		
mean	628.763	318.356	202.979	339.419	372.379	Total		
SD	84.586	131.932	12.984	121.059	184.732			
LSD(concentration)				NS				
LSD (period)				289.344				
$NC(\Delta I_{2}, i) = i = i + i$								

NS (No significant)

If we note the hydrocarbon compounds concentrations in the alga in the presence and absence of carbon, we find it to be higher in the presence of carbon than in the absence of carbon and this leads us to believe that the medium containing carbon stimulate alga to produce more hydrocarbon compounds than in the medium does not contain it . This result agreement with Han et al. [32] result which says that the adding organic carbon into heterotrophic microalgal cultures can increase both lipid content and microalgal biomass productivity.

CONCLUSION

This study showed that growth rate and chlorophyll A content of cyanobacterium *Oscillatoria tennuis* was the best in the presence of carbon than in the absence of carbon and they were increasing as the period increased in all treatments.

The accumulation of hydrocarbon compounds in the cyanobacterium was the best in the presence of carbon than in the absence of it and the concentration hydrocarbon compounds decrease with increase period untile the third week of the experiment which shows the ability of the algae on degradation of hydrocarbon compounds and these compounds increase in the fourth week which shows the ability of cyanobacterium to produce hydrocarbons compound.

CONFLICT OF INTEREST STATEMENT

The authors declare that they have no conflict of interests.

REFERENCES

- Raja S, Dinesh KPE, Kesavan K. Bioremediation by using of microbes and algae with special reference to Coastline Environment. Int J Biosci Nanosci 2014; 1(6):130-140.
- Sullivan MJ, Currin CA. Community Structure and Functional Dynamics of Benthic Microalgae in Salt Marshes. In, Weinstein MP, Kreeger DA, eds. Concepts and Controversies in Tidal Marsh Ecology, Dordrecht, Kluwer Academic Publishers, 2000; p 81.
- Vaajasaari K, Joutti A, Schultz E, Selonen S, Westerholm H. Comparisons of Terrestrial and Aquatic Bioassays for Oil-

Contaminated Soil Toxicity. J Soil Sedi 2002; 2:194-202.

- Booth L, Heppelthwaite V, O'Halloran K. Effects-Based Assays in the Earthworm Aporrectodea caliginosa: their Utilisation for Evaluation of Contaminated Sites before and after Remediation. J Soil Sedi 2005; 5: 87-94.
- Grote M, Schuurmann G, Altenburger R. Modeling Photoinduced Algal Toxicity of Polycyclic Aromatic Hydrocarbons. Environ Sci Technol 2005; 39: 4141-4149.
- López-Rodas V, Costas E, Maneiro E, Marvá F, Rouco M, Delgado A, Flores-Moya A. Algal adaptation to stressful geothermal ponds on Vulcano Island (southern Italy) as a result of pre-selective mutations. Phycol Res 2009; 57:111–117.
- Kafilzadeh F, Shiva AH, Malekpour R. Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in water and sediments of the Kor River, Iran. Middle-East J Scient Res 2011;10(1):1-7.
- 8. Morales AR, Paniagua-Michel J. Bioremediation of hexadecane and diesel oil is enhanced by photosynthetically produced marine biosurfactants. Bioremed Biodegrad 2014; S4:1-5.
- Frankenberger Jr WT. The need for a laboratory feasibility study in bioremediation of petroleum hydrocarbons. In, Hydrocarbon Contaminated Soils and Groundwater, Calabrese EJ, Kostecki PT, eds, Boca Raton, FL, Lewis, 1992.
- Raghu kumar, Vipparty V, David JJ, Chandramohan D. Degradation of crude oil by marine cyanobacteria. Appl Microb Biotechnol 2001; 57: 433-436.
- Das N, Chandran P. Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011; 2011: 1-13.
- Davies JS, Westlake DWS. Crude oil utilization by fungi. Can J Microbiol 1979; 25:146-156.
- Ellis JT, Hengge NN, Sims RC, Miller CD. Acetone, butanol, and ethanol production from wastewater algae. Bioresour Technol 2012; 111:491-495.
- 14. Lim SL, Chu WL, Phang SM. Use of *Chlorella vulgaris* for bioremediation of

textile wastewater. Bioresour Technol 2010; 101:7314-7322.

- Agbozu IE, Opuene K. Occurrence and diagenetic evolution of perylene in the sediments of Oginigba Creek, Southern Nigeria. Int J Environ Res 2009; 3(1): 117-120.
- Atlas R, Bragg J. Bioremediation of marine oil spills: When and When not – the Exxon Valdes experience. Microb Biotechnol 2009; 2(2): 213-221.
- Dubey SK, Dubey J, Mehra S, Tiwari P, Bishwas AJ. Potential use of cyanobacterial species in bioremediation of industrial effluents. African J Biotechnol 2011; 10(7): 1125-1132.
- Chu SP. The Influence of the Mineral Composition of the Medium on the Growth of Planktonic Algae: Part I. Methods and Culture Media. J Ecol 1942; 30: 284-325.
- Stein JR. Handbook of phycological methods. Cambridge, UK: Cambridge University Press; 1973.
- Goutx M, Saliot A. Relationship between dissolved and Particulate fatty acid and hydrocarbons, Chlorophyll (a) and zooplankton biomass in Ville Franche Bay, Mediterranean sea. Mar Chem 1980; 8: 299-318.
- 21. Margesin R, Labbe D, Schinner F, Greer CW, Whyte LG. Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl Environ Microbiol 2003; 69, 3085-3092.
- 22. De Oteyza TG, Grimalt JO, Diestra E, Sole T, Esteve I. Changes in the Composition of the Polar and Apolar Crude Oil Fractions under the Action of Microcoleus Consortia. Appl Microbiol Biotechnol 2004; 66: 226-232.
- 23. Simona Ghita, Iris Sarchizian, Ioan I Ardelean. Microscopic investigation and automated image analysis of hydrocarbontolerant marine cyanobacteria mixed populations cultivated in the absence and presence of gasoline or diesel. Int J Biol Biomed Eng 2013; 4 (7):164-170.

- 24. Sundaram S, Soumya KK. Study of physiological and biochemical alterations in cyanobacterium under organic stress. Am J Plant Physiol 2011; 6(1) : 1-16.
- 25. Amirlatifi F, Soltani N, Saadatmand S, Shokravi Sh, Dezfulian M. Crude oil-induced morphological and physiological Responses in Cyanobacterium *Microchaete tenera* ISCI3. Int J Environ Res 2013; 7(4):1007-1014.
- 26. Cerniglia C, Gibson D, Van Baalen C. Naphthalene metabolism by diatoms isolated from the Kachemak bay region of Alaska. J Gen Microbiol 1980; 128: 987-990.
- Walker JD, Colwell RR, Vaituzis Z, Meyer SA. Degradation of Petroleum by an Alga, *Prototheca zopfii*. Appl Microbiol 1975; 30(1):79-81.
- 28. Frenz J, Largeau C, Casadevall E. Hydrocarbon recovery by extraction with a biocompatible solvent from free and immobilized cultures of *Botryococcus braunii*. Enzyme Microb Technol 1989; 11: 717-724.
- Kojma, E. and Zhang, K. Growth and hydrocarbon of microalga B. braunii in bubble column photobioreactors. J. Biosci. Bioeng.1999; 87: 811-815.
- 30. Casadevall, E.; Dif, D.; Largeau, C.; Gudin, C.; Chaument, D. and Desantit, O. Studies on batch and continuous cultures of Botryococcus braunii: hydrocarbon production in relation to physiological state, cell ultra structure, and phosphate nutrition. Biotechnology and Bioengineering 1985; 27: 286-295.
- Villarreal-Rosales E, Metzger P, Casadevall
 E. Either lipid production in relation to growth in *Botryococcus braunii*. Phytochemistry 1992; 31(9): 3021-3027.
- 32. Han X, Miao XL, Wu QY. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 2006; 126: 499-507.

Cite this article as:

Mariam F. Al-Bidhani. The Effect of the Presence or Absence of Carbon on the Accumulation and Bioremediation of Hydrocarbon Compounds in Cyanobacterium *Oscillatoria Tenuis*. J Pharm Chem Biol Sci 2017; 5(1):56-62