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ABSTRACT      In this paper , Bayesian approach to nonparametric regression model described . The nonparametric 
regression model is assumed to be a smooth spline . Bayes approach based on Markov chain Monte 

Carlo (MCMC) employed to make inferences on the resulting spline nonparametric model coefficients under some con-
ditions on the prior and design matrix.  We investigate the posterior density and identify the analytic form of the Bayes 
factors.

1. Introduction
In the Bayesian approach to inference the fixed but un-
known parameters are viewed as a random variables . It 
is well known that the Bayes estimate under squared error 
loss of any subvector of the parameters vector is the mean 
of its posterior distribution,[10],[12].

Markov Chain Monte Carlo (MCMC) method depends on 
partition of difficult and compound models into simple 
ones which can be manipulated and easily analyzed , spe-
cially for the posterior distribution which are not easy to 
find their final formula.

The Bayesian, Bayesian nonparametric and Bayes-
ian Semiparametric regression models , were studied by 
many researchers for example DeRobertis and Hartign in 
(1981) discussed the Bayesian inference using intervals of 
measeres,[7]. Berger in (1985) introduced the statistical 
decision theory and Bayesian analysis,[4] . Lenk in (1999) 
presented the Bayesian inference of a Semiparametric re-
gression model using Fourier representation,[11]. Zhao in 
(2000) studied the Bayesian approach to the nonparamet-
ric function estimation problems such as nonparametric 
regression and signal estimation and he considered the 
asymptotic of Bayes procedures for conjugate (Gauss-
ian) priors,[15]. Angers and Delampady in (2001) used the 
Bayesian approach to the nonparametric regression mod-
el using a wavelet basis and performed the subsequence 
estimations,[1]. Dass and Lee in (2002) presented a note 
on the consistency of Bayes factors for testing point null 
versus nonparametric alternative,[6].Ghosh, J.K. and Rama-
moorthi, R.V. in (2003) studied Bayesian nonparametric,[9]. 
Angers and Delampady in (2004) studied fuzzy sets in hi-
erarchical Bayes and robust Bayes inference,[2]. Ghosh, 
J.K. , Delampady M. and samanta, T. in (2006) presented 
Bayesian analysis and discussed the theory and meth-
ods,[8]. Angers and Delampady in (2008) discussed fuzzy 
sets in nonparametric Bayes regression by using wavelet 
and membership functions and they treated the member-
ship functions as likelihood functions for the model,[3] . 
Choi , Lee and Roy in (2008) investigated the large sample 
property of the Bayes factor for testing the parametric null 
model against the Semiparametric alternative model,[5] .    

Under some conditions on the prior and design matrix , 
and using algebraic smoothing , they identified the ana-
lytic form of the Bayes factor and showed that the Bayes 
factor is consistent. Osaba and Mitaim in (2011) examined 
Bayesian with adaptive fuzzy priors and the likelihoods 
member,[13]. Pelenis in (2012) studied the Bayesian Semip-
arametric regression and considered a Bayesian estimation 
of restricted conditional moment models with linear regres-
sion as a particular example,[14].

This paper came to shed light on the nonparametric re-
gression model which has a nonparametric function is as-
sumed to be a smooth spline , as well as the error term 
which has normal distribution with mean zero and variance 

2
εσ .

In this paper , Bayesian approach based on Markov chain 
Monte Carlo (MCMC) employed to make inferences on 
the resulting spline nonparametric regression model coeffi-
cients under some conditions on the prior distribution and  
design matrix.

We investigate the posterior density and identify the ana-
lytic form of the Bayes factors to choose between a fully 
Bayesian spline nonparametric  regression model with 

)1( ++ kp of parameters against a Bayesian spline non-
parametric regression model with )1( ++ qp of parameters 
, where kq < ,
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2. Description of the problem

     Consider the model:

Where the unobserved errors nεεε ,...,, 21 are known to be i.i.d. normal 
with mean zero and covariance nI2

εσ with 2
εσ unknown and )( ixm is

nonparametric component . By using spline of degree p get :
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where kttt ,...,, 21 are inner knots btta k <<<< ...1 . The model (2) is
rewritten as follows:

)3(,εβ += XY
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The estimation of the parameters β entails minimizing the spline least 
squares criterion :

)4(.2βXY −

The least squares estimators from (4) are :

)5(,)(ˆ 1 YXXX TT −=β

and the fitted valued are:

HYXY == β̂ˆ , where H is the smoothing matrix given by :
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3. The Prior Distribution

To specify a complete Bayesian model , we need a prior distribution 
on . If a proper prior is desired , one could use a ),0( 2 IN βσ prior 
with 2

βσ so large that for all intents and purposes , the normal distribution 
is uniform on the range of β . Therefore , we will use 1)(0 ≡βπ . As well 
as we will assume that the prior on 2

εσ is inverse gamma with parameters 
εα and εβ i.e. 
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where εα and εβ are hyperparameters that determine the priors and must 
be chosen by the statistician . 
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4. Posterior Distribution

From the model (3) we have

Then the likelihood function ),|( 2
εσβYL can be expressed as:
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Then the joint posterior density of the coefficients β and the error 
variance 2

εσ given by the expression
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From this expression , we deduce the following conditional and 
marginal posterior distributions 
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5. Model checking and Bayes factors

We would like to choose between a fully Bayesian spline 
nonparametric  regression model with of parameters against a
Bayesian spline nonparametric regression model with )1( ++ qp of
parameters , where kq < , by using Bayes factors for two hypotheses
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where 0β is 1)1( ×++ qp vectors of parameters , 0X is an )1( ++× qpn
design matrix and kq < . We compute the Bayes factor , 01B , of 0H
relative to 1H for testing problem (15) as follows 
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where )|( 0HYm is the marginal density of Y under model 1,0, =iH i .
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6. Simulation Results
In this section , we  illustrate the effectiveness of our meth-
odology , we generated observations from the model (1) 
with the following regression functions :

The observations for   are generated from uniform distribu-
tion on the interval [0,1] . The sample size taken are  . 

The goodness of fit of the estimated models quantified by 
computing the criterions average mean squared error  and 
average mean absolute error   which are defined as:

where  and  are mean squared error and mean absolute 
error criterions respectively.

Table(1) presents summary values of the   and   for the 
estimation method . From this table we can see that the 
values of   and   when  are smaller than their values for 
the first test function , which were (0.0006407081) and 
(0.000175353) respectively. While the values of   and   
are smaller when  for the second test function were 
(0.0001740030) and (0.000454008) respectively. Figure (1) 
below shows the number for iterations of Gibbs sampler 
which used in this paper , which was (10000) iterations for 
this data . While figure (2) shows density estimates based 

on (10000) iterations of  2
εσ  .
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Table(1) results of the )(AMSE  and )(AMAE criterions 
for Bayesian nonparametric regression model

Test functions Sample size AMSE  AMAE

1y

25 0.0026328022 0.001751402

50 0.0027315742 0.001767563

100 0.0027701751 0.000842594

150 0.0007417182 0.000206646

200 0.0006407081 0.000175353

2y

25 0.0140061711 0.005304077

50 0.0036242210 0.003074504

100 0.0003320234 0.001003220

150 0.0002111566 0.000507663

200 0.0001740030 0.000454008

The model checking approach based on Bayes factors has 
been tested on simulated examples. These Bayes factors 
are given in table (2) . From this table , it can be seen that 
the model corresponding to the first test function obtains 
the largest Bayes factor when )25( =n  followed by that 
the second test function when )25( =n , and the Bayes 
factor favors 1H  with strong evidence with all samples 
sizes for two test functions.

Table(2) shows the values of Bayes factors 

Figure (1) shows (10000) iterations of the Gibbs sampler 
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Figure (2) shows the density estimates based on(10000) 
iterations of 

2
εσ

β

7. Conclusions

The conclusions obtained throughout this paper are as follows:

(1)The posterior of and 2
εσ are respectively:

22 ,ˆ(~,| εε σβσβ NY and 





 −−++ )ˆ()ˆ(

2
1,

2
~,|2 βββαβσ εεε XYXYnIGY T

(2) The marginal density of Y under model 1,0, =iH i are :

       ( ) ( ) ,
2
12

2)(
)2()|(

1
200002

0







 ++−

−






 +−−





 ++Γ

Γ
=

εε α

εε
ε

α
ε βββα
α
β

π

n

T
n

XYXYnHYm

      and

        ( ) ( )






 ++−

−






 +−−





 ++Γ

Γ
=

1
2

2
1 2

12
2)(

)2()|(
εε α

εε
ε

α
ε βββα
α
β

π

n

T
n

XYXYnHYm .

(3) The Bayes factor for testing problem (15) is  given by the    
following form:
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(4) In the simulation results , we concluded the following:

(a) The values of )(AMSE and )(AMAE when )200( =n are smaller than    
      their values for the first test function , which were (0.0006407081)
      and (0.000175353) respectively.

(b) The values of )(AMSE and )(AMAE are smaller when )150( =n for the 
      second test function were (0.0001740030) and (0.000454008) 
      respectively.

(c) The model corresponding to the first test function obtains the largest 
      Bayes factor when )25( =n followed by that the second test function 
      when )25( =n .

(d) The Bayes factor favors 1H with strong evidence with all samples 
      sizes for two test functions.

(4) In the simulation results , we concluded the following:

(a) The values of   and   when  are smaller than their val-
ues for the first test function , which were (0.0006407081) 
and (0.000175353) respectively.

(b) The values of   and   are smaller when  for the sec-
ond test function were (0.0001740030) and (0.000454008) 
respectively.

(c) The model corresponding to the first test function ob-
tains the largest Bayes factor when   followed by that the 
second test function when  .

(d) The Bayes factor favors   with strong evidence with all 
samples sizes for two test functions.
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