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ABSTRACT

In this paper , Bayesian approach to nonparametric regression model described . The nonparametric
regression model is assumed to be a smooth spline .

Bayes approach based on Markov chain Monte

Carlo (MCMC) employed to make inferences on the resulting spline nonparametric model coefficients under some con-
ditions on the prior and design matrix. We investigate the posterior density and identify the analytic form of the Bayes

factors.

1. Introduction

In the Bayesian approach to inference the fixed but un-
known parameters are viewed as a random variables . It
is well known that the Bayes estimate under squared error
loss of any subvector of the parameters vector is the mean
of its posterior distribution,[10],[12].

Markov Chain Monte Carlo (MCMC) method depends on
partition of difficult and compound models into simple
ones which can be manipulated and easily analyzed , spe-
cially for the posterior distribution which are not easy to
find their final formula.

The Bayesian, Bayesian nonparametric and Bayes-
ian Semiparametric regression models , were studied by
many researchers for example DeRobertis and Hartign in
(1981) discussed the Bayesian inference using intervals of
measeres,[7]. Berger in (1985) introduced the statistical
decision theory and Bayesian analysis,[4] . Lenk in (1999)
presented the Bayesian inference of a Semiparametric re-
gression model using Fourier representation,[11]. Zhao in
(2000) studied the Bayesian approach to the nonparamet-
ric function estimation problems such as nonparametric
regression and signal estimation and he considered the
asymptotic of Bayes procedures for conjugate (Gauss-
ian) priors,[15]. Angers and Delampady in (2001) used the
Bayesian approach to the nonparametric regression mod-
el using a wavelet basis and performed the subsequence
estimations,[1]. Dass and Lee in (2002) presented a note
on the consistency of Bayes factors for testing point null
versus nonparametric alternative,[6].Ghosh, J.K. and Rama-
moorthi, R.V. in (2003) studied Bayesian nonparametric,[9].
Angers and Delampady in (2004) studied fuzzy sets in hi-
erarchical Bayes and robust Bayes inference,[2]. Ghosh,
J.K., Delampady M. and samanta, T. in (2006) presented
Bayesian analysis and discussed the theory and meth-
ods,[8]. Angers and Delampady in (2008) discussed fuzzy
sets in nonparametric Bayes regression by using wavelet
and membership functions and they treated the member-
ship functions as likelihood functions for the model,[3] .
Choi , Lee and Roy in (2008) investigated the large sample
property of the Bayes factor for testing the parametric null
model against the Semiparametric alternative model,[5] .

Under some conditions on the prior and design matrix ,
and using algebraic smoothing , they identified the ana-
lytic form of the Bayes factor and showed that the Bayes
factor is consistent. Osaba and Mitaim in (2011) examined
Bayesian with adaptive fuzzy priors and the likelihoods
member,[13]. Pelenis in (2012) studied the Bayesian Semip-
arametric regression and considered a Bayesian estimation
of restricted conditional moment models with linear regres-
sion as a particular example,[14].

This paper came to shed light on the nonparametric re-
gression model which has a nonparametric function is as-
sumed to be a smooth spline , as well as the error term

which has normal distribution with mean zero and variance
a;.

In this paper , Bayesian approach based on Markov chain
Monte Carlo (MCMC) employed to make inferences on
the resulting spline nonparametric regression model coeffi-
cients under some conditions on the prior distribution and
design matrix.

We investigate the posterior density and identify the ana-
lytic form of the Bayes factors to choose between a fully
Bayesian spline nonparametric  regression model with
(p+k+1)of parameters against a Bayesian spline non-
parametric regression model with (p+¢+1)of parameters
, where g <k,
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2. Description of the problem

Consider the model:
yv,=m(x,)+¢g , i=12,..,n . @

Where the unobserved errors ¢,,¢,,...,¢, are known to be i.i.d. normal
with mean zero and covariance o}/, with o unknown and m(x,)is

g n

nonparametric component . By using spline of degree p get :

k
Vo= Byt Bx ot B+ B, (x ) e, 2)
j=1

where ¢,,t,,...,t, are inner knots a<¢, <...<t, <b. The model (2) is
rewritten as follows:

Y=XB+e, 3)
where
_ s, _
B
4 : ol iid
Y=|: s ﬂ: ﬂp s g=|: 5 £~N(090-§I)5
Y nx1 ﬂp“ €,
_ﬂp+k_(p+k+l)><l
Loxy o xf (=)0 - (=1
X = Iox, oxy (=) - (O —1)]
Lox, -—ox) (x,—1)f - (x,—1)7

nx( p+k+1)

The estimation of the parameters B entails minimizing the spline least
squares criterion :

Iy - x8/". (4)
The least squares estimators from (4) are :
B=x"X)"x"Y, )

and the fitted valued are:

Y = XB = HY , where H is the smoothing matrix given by :
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H=XX"X)"'x".
3. The Prior Distribution

To specify a complete Bayesian model , we need a prior distribution
on (B,o0;). If a proper prior is desired , one could use a N(0,0;1) prior

with o so large that for all intents and purposes , the normal distribution
1s uniform on the range of B . Therefore , we will use =,(8)=1. As well

as we will assume that the prior on & is inverse gamma with parameters
a, and B, i.e.

m(aﬁ)—%(a )@ ex p( ﬁf J ©)

4

where a, and g, are hyperparameters that determine the priors and must
be chosen by the statistician .

4. Posterior Distribution

From the model (3) we have
Y|B,0; ~N(Xp,o.1,). (7)

Then the likelihood function L(Y | 8,0;)can be expressed as:

1 1 A
= ——X —_ X
(2rol)"? p{ 20! }

exp{— y } (8)

Then the joint posterior density of the coefficients g and the error
variance o given by the expression

1
LY |B,62)=——— expi—
Y18,0;) ono?)"" p{

7 (8.0, V) LY | B,0,)7,(B,0.;) )
2N-n/2 1 2
o (0-5) exp{— 20_2 }

xexp{——(ﬂ ﬂ) X7 X(ﬂ ﬂ)} rf )(O' ) (ag+1) Xp{—ﬁ—;}
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Oc(o_ez)—(n/zmgu) exp{— . }X

(= XBY (Y - XP)+ B,
exp— > . (10)
(o

&

From this expression , we deduce the following conditional and
marginal posterior distributions
-5 } (1

7 (BlGl.Y) exp{—
Lo—xpy v -xp)+p,
(02| B.Y) o (02) "3 exp— 1 2 . (12)

2
o

&

and

Therefore , it follows that

Blol.Y ~ N(f?,a%XTX)*) (13)

ol | B.Y ~ IG[a + 2B, +— (Y XA (Y - Xﬁ)j (14)

5. Model checking and Bayes factors

We would like to choose between a fully Bayesian spline
nonparametric regression model with (p+k +1)of parameters against a

Bayesian spline nonparametric regression model with (p+¢+1)of
parameters , where ¢ < k, by using Bayes factors for two hypotheses

Hy:y, =By+Bix, +...+ B,x7 +Z,B/+p —t) +¢g or Y=XB"+¢&

vesus

H :y, =B+ Bx +.+f,x +2,3W —t,) +¢& or Y=XB+¢&

SN )

where B°is (p+q+1)x1vectors of parameters , X° is an nx(p+q+1)
design matrix and ¢ <k. We compute the Bayes factor , B, , of H,
relative to H, for testing problem (15) as follows

m(Y |H,)

B )= v (h,)

(16)

where m(Y | H,)1s the marginal density of Y under model H,,i=0,1.
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C i 6. Simulation Results
| 1= ir-xt Eir-xF - ﬂ, In this section , we illustrate the effectiveness of our meth-
=gl = == = + odology , we generated observations from the model (1)
I - I with the following regression functions :
- - (i) 3 = empllm).

(lr-xpTo-rpha|" i

it P g3
i I Fiy— L
1) v = Sl +ix 08y

The observations for are generated from uniform distribu-

P Wl e m T::;_":: : tion on the interval [0,1] . The sample size taken are .
-'—'"'EEE'E'—.EJ'*’}? r-xfFi+A | . {7 L=
v - - AMSE = — 7 M5E(x ) [
and e
w7 15,3 [[] fir| A Bim, (o2 ki, AMAE = = T MU ). n
s dmes | ]n - X --J-xﬁ--ﬂ,
-';I:I:T;."'l E) " - = "'-'-' where and are mean squared error and mean absolute
| i error criterions respectively.
fe 1 — Table(1) presents summary values of the and  for the
..:;r;._;ji[.: ;;.‘-?""'- i-] - xgfir -xﬁ'--,ﬂ, : estimation method . From this table we can see that the
Tia,)’ - values of and when are smaller than their values for
. N + 1= the first test function , which were (0.0006407081) and
”-E']'xﬁ?']'xﬂhﬂ-: = (0.000175353) respectively. While the values of and
) Y __.f . are smaller when for the second test function were
| |5 fr-x80ir- x84 i (0.0001740030) and (0.000454008) respectively. Figure (1)
“?'"_*Tlﬂfﬂl below shows the number for iterations of Gibbs sampler

i | which used in this paper , which was (10000) iterations for
) . this data . While figure (2) shows density estimates based

n (10000) iterations of o,
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Table(1) results of the(4AMSE) and (4MAE) criterions

for Bayesian nonparametric regression model

Test functions Sample size | AMSE AMAE
25 0.0026328022 |0.001751402
50 0.0027315742 |0.001767563

Y 100 0.0027701751 |0.000842594
150 0.0007417182 |0.000206646
200 0.0006407081 [0.000175353
25 0.0140061711 |0.005304077
50 0.0036242210 |0.003074504

2 100 0.0003320234 |0.001003220
150 0.0002111566 |0.000507663
200 0.0001740030 |{0.000454008

The model checking approach based on Bayes factors has
been tested on simulated examples. These Bayes factors
are given in table (2) . From this table , it can be seen that
the model corresponding to the first test function obtains
the largest Bayes factor when (n =3 ) followed by that
the second test function when (l’l =3 , and the Bayes
factor favors Hl with strong evidence with all samples
sizes for two test functions.

Table(2) shows the values of Bayes factors

Test functions | Sample size By, (¥) Evidence
25 1l =107 Btrongly favors &,
5 10342107 Strongly favars A,
¥ 1040 I TTEIL=10" Btrongly favors &,
150 L0744 107 Strongly favens A,
200 4 BE3TI =107 Btrongly favors &,
25 5543244107 Btrongly favors &,
50 TSETEEN= 107 Strongly favons A,
¥z 1040 4 GEEETE~ 107 Btrongly favors &,
150 E e Strongly favors A,
2040 311075 10 Btrongly favors &,

Figure (1) shows (10000) iterations of the Gibbs sampler
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Figure (2) showi the density estimates based on(10000)
iterations of o,

density

7. Conclusions
The conclusions obtained throughout this paper are as follows:

(1)The posterior of g and o are respectively:
Blo2,Y ~N(B,o> and 62 |B.Y ~ lc(a, +%,ﬂ‘ +%(Y—X/§)T(Y—X/§)J

(2) The marginal density of Y under model #,,i=0,1 are :

(n

\
| Sray el |

{2 a o Hrxp V- xp)ep,)

Y|H,)=(2
m(Y |H,)=(2m) @)

and

\

"
( [ Zrapn]

m(Y | H,)=(2m) * r‘(’;' ;

r(zw +2](1(y xg) (v - Xﬁ)+ﬁ]

(3) The Bayes factor for testing problem (15) is given by the
following form:

B, (y)_(%(yf)(ﬂﬂn) (Y X‘)ﬂ )+ﬂ][ au‘

[%(Yf XB) (¥ - Xﬂ)*ﬂﬁji‘\ L)

(4) In the simulation results , we concluded the following:
(@) The values of and when are smaller than their val-
ues for the first test function , which were (0.0006407081)
and (0.000175353) respectively.

(b) The values of and are smaller when for the sec-
ond test function were (0.0001740030) and (0.000454008)
respectively.

(c) The model corresponding to the first test function ob-
tains the largest Bayes factor when followed by that the
second test function when

(d) The Bayes factor favors  with strong evidence with all
samples sizes for two test functions.
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