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Comparison of Some Sequences of the Different Proofs for the
First Weierstrass Approximation Theorem
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Dept. Of Mathemahcs, College of Educahon for Pure Sciences, University of Basrah,
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Abstract
In this papers, we compare tends speed of some sequences of linear positive operators,
introduced in the different proofs of Weierstrass approximation theorem, and apply these
sequences to approximate a test function that we choose. Afterword's, we explain tends speed
of the approximation by figures and the CPU time by tables. It turns out that the best tends
speed and CPU time is occur by using the Bemstein polynomials, and introduced three
modifications for the sequences (Weierstrass, Landau, Jackson). In addition, we compared
tends speed of these three modifications with their original sequences. We found that, all of
these modifications are better than their original sequences and the Bemstem polynomials.
Keywords
Weilerstrass approximation theorem, Sequence of linear positive operators, Weiersirass
polynomials, Landau polynomials, Bernstein polynomials, Jackson polynomials.
AMC 2010: 41A10
1. Intreduction
Weierstrass 1885, introduced his fundamental approximation theorem stated as follows:
If f is a continuous real-valued function on [a,b] and if any € > @ is given, then there exists
a sequence of polynomials {p,} on [a, b] such that |f(X) — p, (X)| < eforallx€ [a,b] asn
sufficiently large. In other words, any continuous function on a closed and bounded interval
can be uniformly approximated on that interval by polynomials [13]. The sequence of
Weierstrass has slower tends of speed in applications.

There are many proofs of this theorem which depend on the definition of sequence which is
used in the proof of the theorem. Some of these proofs include the technique of the proof
given by Weierstrass itself. For more reprints in this field, we refer to {2, 5 and 8].

Landau 1908, introduced a simpler proof of Weierstrass theorem by using another sequence
of polynomials [7]. In addition, tends of speed that occur by the application of this sequence is
very slow. Bemstein 1912, introduced the simplest proof of Weierstrass approximation
theorem by giving a new sequence of polynomials called Bernstein polynomials [1]. This

sequence depends on the binomial expansion of the term (x + (1 —x))n =1 and x € [0,1].
Then, the Bemstein polynomials need little mathematical calculations in comparison with the
sequences of Weierstrass and Landau. Hence, it has fast tends speed in applications.
Jackson 1934, introduced a proof of Weierstrass approximation theorem by using a new
sequence of polynomials called Jackson polynomials depending on the integral of the
polynomials [3]. In addition, tends speed which occurs by the application of this sequence is
very slow. Stone 1937 has generalized Weierstrass approximation theorem to compact subset
of the real numbers, then it has been called "Stone-Weierstrass Approximation Theorem"
[10]. For some researches on this theorem we refer to [9, 11].
Kumar and Pathan 2016, introduced a generalization of Weierstrass approximation theorem
for a general class of polynomials [6].

In our work, we apply these sequences, Weierstrass, Landau, Bemstein and Jackson by
taking a test function f(t) = sin(10t)exp(—3t) + 0.3. And, we compare tends speed and
CPU time of these sequences. Tends speed of these sequences are explained by figures (4.1-
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4.3) and the CPU time are given by tables (4.1-4.3). We found that any convergence sequence
of linear positive operators that has polynomial as a limit point forms a proof to Weierstrass
approximation theorem. In addition, we introduce modifications for the sequences
Weierstrass, Landau, Bemstein and Jackson, respectively and compare tends speed and CPU
' time of these modifications. Also, we explain tends speed of these sequences by figures (4.4-
; 4.6) and. CPU time by table (4.4).

Definition 1.1, (Weierstrass Polynomials) [13]

For f(x) € C[a, b), the n-th order Weierstrass polynomial to the function f is define as:
b1

1 z
W) == f f(t) e~y

n
al

¢ 2
I, =f e "V dt
-c

al=a—§,bl=b+6§,6>0,andc=Dbl—al.
In [13], shows that the Weierstrass sequence has the following property:
lim Wy (£ %) = £(x),
this approximation is uniform in the interval [a, b].
Definition 1.2 (Landau polynomials)
For f(x) € C[a, b], the n-th order Landau polynomial to the function f is defined as:

b1
Lo (%) = d—f f()(f—:%_x—)z) dt

n
al

F/cZ —2\"
d, = f ( =z ) dt
—-C
al=a-6bl=b+6,6>0,andc=>bl-—al.
The Landau sequence has the following property:{7]
rllim L (f:x) = f(x),

r this approximation is uniformly in the interval [a, b].

E Definition 1.3 (Bernstein polynomials)

For f (x) € [0, 1], the n-th order Bemstein polynomial to the function fis defined as:

Ba(6%) = Z f(5) (0wt —0m
where x € [0, 1].

We have the following fact: [1]
Iim By (%) = f(x),
this approximation is uniformly in the interval |0,1].
Definition 1.4 (Jackson polynemials)
Suppose that f(x) be a continuous and bounded function in the interval [a, b]. The n-th
order of Jackson polynomial for f(x) is defined as:
T

where

where

P (f:x) = ll f f(x+u) (1 —u?)"du
21

where
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1
Jo = f (1 - w®)"du
-1

and
1 ix<0
Ef(a) ;0<x<a
f(x) =47« .
I_—b'f(b) ib<x<1
0 Xx=1

The Jackson sequence has the foliowing property:[3]
rlll_I.I; P,(Ex) = f(x),
Lemma 1.1 [4]
Let the function Q(x) satisfies the conditions
1. Q(x) is continuous the interval —c < x £ c,c > 0;
2. Q0)=1,0<Qx) <1,ifx+0,—c <x < ¢, and if we put
Zn(®) _

Z, = £ Q"(®)dx, Zy(8) = [°;Q"()dx, 0 < § < c, then limp e 22 = 1.

Theorem 1.1 [4]
If a function Q(x) satisfies the conditions of Lemma above and Z, = ffc Q"(x)dx then the
sequence of operators

Ly(f:x) = zi £ EDQrt-0dL0<b-as<c

converges uniformly to the function f(x) in [a + §,b — 8], 8 > 0, if f(x) is continuous in[a, b].
2. Our Modifications

We introduce three modifications for sequences Weierstrass, Landau and Jackson demnote
them by W,(£x), L,(fx) and P,(fx), rtespectively. In addition, we apply these
modifications by using the same test function. The modifications of Weiersirass, Landau and
Jackson sequences are defined as follows:

2.1 Modification of Weierstrass polynomials

We define the modification of Weierstrass polynomials as:
b1

— 1 4 4
W,(£x) = T f()).e™™ (0% gt

n-<al

c
I = f e (0% g
-C
al=a—§bl=b+4§,6>0andc=bl—al.
2.2 Modification of Landau polynomials
We define the modification of Landau polynomials as:

where

1 7 _—
o~ —_ r
L, (x) = g; f f(o11— (_C)E) dt
a1
where
c 1"
- tr
. fll_(z) i
—c

al=a—6bl=b+§6>0,c=bl—alandr=1,2,...
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4.3 Modification of Jackson polynomials
1

BL(6x) = 11 fl fox+ w) (1 (lul)F) du,

To = f (1~ (uD?) au
21

where

anda<x<b

0 X<0
Ef(a) ;0<x<a
a
f(X)= 1_x .
1_bf(b) b<x<1

0 x21
3. The convergence of Modifications polynomials
The convergence of these modifications polynomials is explained below.
3.1 The Convergence of Weierstrass Modification.
f(x) be continuous finction on the interval [a, b], the Q"(t—x) = e (%% and Q(x) = e
be continuous in every interval.
So the first condition of Lemma 1.1 holds.
now Q(0) =1, 0 < Q(x) < 1,x # 0, from this the second condition of Lemma 1.1 holds.
Q(x) Satisfies the condition of Theorem 1.1, the sequence of polynomials W, (£:x)
converges uniformly with the function f(x). So, the modification of Weierstrass sequence has
the following property:
limW, (f; x) = f(x),

n—+oo
this approximation is uniform in the interval [a, b].

3.2 The Convergence of Landau modification
s 1
—x

f(x) be continuous finction on the interval [a,b], and Q(t —x) = 1 — (—c-)F and Q(x) =1-—

1
((E))r and this polynomials be continuous in every interval. So, the first condition of Lemma

1.1 holds.
now Q(0) =1, 0 < Q(x) < 1, x # 0, from this the second condition of Lernma 1.1 hold.
Q(x) Satisfies the condition of Theorem 1.1, the sequence of polynomials Ly(f;x)
converge uniformly to the function f(x). So, the modification of Landau sequence has the
following property:
limL, (f; x) = f(x),

n—oco

this approximation is uniform in the interval [a, b].
3.3 The Convergence of Jackson modification

1
f(x) be continuous function on the mterval [a,b], Q(t—x)=1— (Ju[)r and Q(x) = 1—
1
(- x[))¥ and this polynomials be continuous in every interval where u = t — x. So, the first

condition of Lemma 1.1 holds.
now Q(0) = 1,0 < Q%) < 1, x # 0, from this the second condition of Lemma 1.1 holds.

(1) adad! /galh dus 586 aant 5l S k0
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Q(x) Satisfies the condition of Theorem 1.1, the sequence of polynomials F,(f;x)
converges uniformiy with the function f(x). So, the modification of Jackson sequence has the
following property:

limB, (£ x) = f(x),

n—
this approximation is uniform in the interval [a, b].
4. Application
We apply the sequences Wq(f;x), Lo(fx), By(£x), Py (%) and W(£x), Ly (), By (Ex)
by taking the test function f(t) = sin(10t)exp(—3t) + 0.3. We compare tends speed of the
approximation of these polynomials by some graphics, we explain the differences in tends
speed of these sequences in the figures (4.1-4.6) and the differences in CPU time in the tables
(4.1-4.4). It tuns out that the best sequence in application is the Bemstein polynomials; this
occurs because this sequence has no integral and its summation is finite. So, it needs few
mathematical calculations in the application. We compare tends speed and CPU time of each
modification with its original sequence and with the others sequences (Weierstrass, Landauy,
Bemstein and Jackson). We found that these three modifications have tends speed better than
the four original sequences.
The figure (4.1), explains tends speed of all original sequences Wy, (£ x), L,(fx), B,(f;x) and
P, (£ x), we approximate the test function by applying them. The best tends speed and CPU
time occurs by Bemstein polynomials to approximating the test function for n = 10.
The figure (4.2), explains tends speed of W,(f;x), L,(f:ix), B,(f;x) and P,(f;x) sequences
for n = 40, and explains if n increases tends speed of Jackson polynomials will fail in
application and remain best tends speed and CPU time occurs by Bernstein polynomials and
also the figure (4.3) explains tends speed of these sequences for n = 60.
The figure (4.4), explains tends speed of the modification of Weierstrass polynomials better
than all of the original polynomials to approximate the same test function.
The figure (4.5), explains tends speed of the modification of Landau polynomials better than
all of the original polynomials to approximate the test function.
The figure (4.6), shows tends speed of the inodification of Jackson polynomnials better than all
of the original polynomials to approximate the test function.

Weilerstrass Polynomials Landan Polynomials
Bemstein Polynomials Jackson Polynomials
—— Test Functon
1_
0.8
0.6
]
0.4+
0.2
0 0.2 0.4 0.6 0.8 i
Figure 4.1: Approximation test function f
by W, (f;x), Lp(f; x), B,(f; x) and P,(f; x) for n = 10
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Weierstrass Polynomials Landau Polynomials
Bernstein Polynomials Jackson Palynomials
— Test Function
1..
0.8
0.6
0.4+
4
0.2
0 U T T L) T T
o) 0.2 0.4 0.6 0.8 1
Figure 4.2: Approximation test function f
by W, (f: x), L (f:x), By(£ x) and P,{F: x) for n=40
Weierstrass Polynomials —— Landau Polynomials
Bemstein Polynomials Jackson Polynomials
— Test Function
l_
0.8
0.6
0.4
{
0.2
o . ; .
) 0z 04 0.8 1

0.6
Figure 4.3: Approximation test function f
by W, (f; %), L,(£x), B,(f; %) and P,(f; x) forn = 60
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Weierstrass Polynomials Landau Polynomials
Bemsteln Polynommials Jackson Polynomials
Modification Weiersirass Test Function

0% T T T T
O 0.2 0.4 0.6 0.8 1

Figure 4.4: Approximation [
by the modification of Weierstrass and all original polynomials

Weiersirass polynomials Landau polynomials
~— Bernstcin polynommmials Jackson polynomials
Modification Landan Test Function

1-
0.8+
0.6
0.4

0.2

0 0.2 0.4 0.6 0.8
Figure 4.5: Approximation f
by the modification of Landau and all original polynomials

et o

(1) aladf /gald aas 589 | S




e e o —— AL ey -

2017 gl 27-26 ik i 3 k] il Sl (i il]§ ol el guinbid] i

Welerstronss Polynomials ——— Landau Polynomaals
Jackson Polynomials
— Test Functon

Bemstein Polynomials
~-———= Modification Jackson

0.4 0.6 0.8
Figure 4.6: Approximation f
by the modification of Jackson and all original polynomials

o 0.2

4.1 The CPU Time

We introduced three tables which explain the CPU time for these sequences W, (f;x),
La(fx), B,(f; x) and P,(f;x) as ( n =10, 40, 60) respectively. We found the best CPU time
intfroduced by Bemnstein polynomials by using the same test function and the same Computer.

Table (4.1): Explains the CPU time for n=10.

The sequence CPU Time
W, (f; x) 2.15s
L.(£x) 7.8s
B (f:x) 0.09 s
2, (f:x) 17.78 s
Table (4.2): Explains the CPU time for n = 40.
The sequence CPU time
W (f: x) 2.29s
Lo (f; x) 780.02 g
B, (f;x) 0.06 s
P, (f; x) 42745 s
Table (4.3): Explains the CPU time for n=60
The sequence CPU Time
W.(£x) 290 s
Lo x) 158270 s
Bp(f:x) 0.62s
P (%) 113041 s
4.2 The CPU Time

We infroduce the following table which explains the CPU time for all of the modifications of

polynomials for n=10 and best CPU time introduced by Landau polynomials
Table (4.4). Explains the CPU time for n=10

The Modification sequence CPU Time
W, (£ %) 25141 s
Lp (£%) 10.99 s
B, (f;x) 110.88 s
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Numerical Solution of Multi- Fractional Order
Optimal Control Problems
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College of Education- Dept. of Mathematics-University of Al-Musstinseryah
dr.sameer-kasim@yahoo.com  moataz.abbass9292@gmail com

Abstract:

This paper aims to apply the Laplace transform for solving Multi-fractional order optimal
control problems (FOCPs) with a quadratic performance index. The Laplace transform is a
powerful tool in applied mathematics and engineering, It will allow us to transform fractional
differential equations into algebraic equations and then by solving this algebraic equations, we
can obtain the unknown function by using the Inverse Laplace Transform. The confrol
function u(t) is relies on the approximation of the necessary optimality conditions in terms of
the associated Hamiltonian. An illustrative example demonstrates the simplicity and
efficiency of proposed method.

Keywords: Fractional derivative, Fractional optimal control problem, Caputo Fractional
derivative, Laplace transform and Inverse Laplace Transform, pproximation solution.

1-Introduction

Fractional optimal control problems (FOCPs) are optimal control problems associated with
fractional dynamic systems. The fractional optimal control theory is a very new topic in
mathematics. FOCPs may be defined in terms of different types of fractional derivatives. But
the most important types of fractional derivatives are the Riemann-Liouville and the Caputo
fractional derivatives. In Agrawal [3], Agrawal and Baleanu [4] the authors obtamed
necessary conditions for FOCPs with the Riemann-Liouville derivative and were able to solve
the problem numerically. Agrawal [1] presented a quadratic numerical scheme for a class of
fractional optimal control problems (FOCPs). In Agrawal [5], the FOCPs are formulated for a
class of distributed systems where the fractional derivative is defined in the Caputo sense,and
a numerical technique for FOCPs presented. Baleanu et al. [7] used a direct numerical scheme
to find a solution of the FOCPs. In Biswas and Sen [10], FOCPs with fixed final time are
considered and a transversely condition is obtained. scheme for FOCPs based on integer order
optimal controls problem. In Youse ef al.
[8]the usage of Legendre multi wavelet basis and collocation method was proposed for
obtaining the approximate solution of FOCPs. Tricaud and Chen[9] proposed a rational
approximation based on the Hankel data matrix of the impulse response to obtain a solution
for the general time-optimal problem .

In this paper we solving a multi-fractional order optimal control problems by Approximate
Laplace transform. ‘

This paper 1s organized as follows: In section 2, we present some basic defmitions of
fractional calculus .In section 3, contains the necessary optimality conditions of the FOCP
model. section 4.present the Laplace transform and inverse Laplace transform for some
functions .In section 5,the proposed method is applied to several examples. Also a
conclusion is given in the last section.

2- Basic definitions of fractional calculus.

2-1 Fractional Derivatives and Integrals.

Definition 2.1. Let x : [a, b] —R be a function,a > 0 a real number, and n=[a],where [a]
denotes the smallest integer greater than or equal to o. The left (left RLFI) and right (right
RLFI) Riemann—Liouville fractional integrals are defined by:

alfx(t) = [[(t—T)* 1x(T)dT (left RLFI ), (1)
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