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Abstract 
In this papers, we compare tends speed of some sequences of linear positive operators, 
introduced in the different proofs of Weierstrass approximation theorem, and apply these 
sequences to approximate a test function that we choose. Afterword1S, we explain tends speed 
of the approximation by figures and the CPU time by tables. It turns out that the best tends 
speed and CPU time is occur by using the Bernstein polynomials, and introduced three 
modifications for the sequences (Weierstrass, Landau, Jackson). In addition, we compared 
tends speed of these three modifications with their original sequences. We found that, all of 
these modifications are better than their original sequences and the Bernstein polynomials. 
Keywords 
Weierstrass approximation theorem, Sequence of linear positive operators, Weierstrass 
polynomials, Landau polynomials, Bernstein polynomials, Jackson polynomials. 
AMC 2010: 41A10 
1. Introduction 
Weierstrass 1885, introduced his fundamental approximation theorem stated as follows: 
Iff is a continuous real-valued function on [a, b] and if any e > 0 is given, then there exists 
a sequence of polynomials {pn} on [a, b] such that lf(x)- Pn (x)l < E for all x E [a, b] as n 
sufficiently large. In other words, any continuous function on a closed and bounded interval 
can be uniformly approximated on that interval by polynomials [13]. The sequence of 
Weierstrass has slower tends of speed in applications. 

There are many proofs of this theorem which depend on the definition of sequence which is 
used in the proof of the theorem. Some of these proofs include the technique of the proof 
given by Weierstrass itself. For more reprints in this field, we refer to [2, 5 and 8]. 
Landau 1908, introduced a simpler proof of Weierstrass theorem by using another sequence 
of polynomials [7]. In addition, tends of speed that occur by the application of this sequence is 
very slow. Bernstein 1912, introduced the simplest proof of Weierstrass approximation 
theorem by giving a new sequence of polynomials called Bernstein polynomials [1]. This 

sequence depends on the binomial expansion of the term (x+ (1-x))" = 1 and x E [0,1]. 
Then, the Bernstein polynomials need little mathematical calculations in comparison with the 
sequences of Weierstrass and Landau. Hence, it has fast tends speed in applications. 
Jackson 1934, introduced a proof of Weierstrass approximation theorem by using a new 
sequence of polynomials called Jackson polynomials depending on the integral of the 
polynomials [3]. In addition, tends speed which occurs by the application of this sequence is 
very slow. Stone 1937 has generalized Weierstrass approximation theorem to compact subset 
of the real numbers, then it has been called "Stone-Weierstrass Approximation Theorem" 
[10]. For some researches on this theorem we refer to [9, 11]. 
Kumar and Pathan 2016, introduced a generalization of Weierstrass approximation theorem 
for a general class of polynomials [6]. 

In our work, we apply these sequences, Weierstrass, Landau, Bernstein and Jackson by 
taking a test function f(t) = sin(10t)exp( -3t) + 0.3. And, we compare tends speed and 
CPU time of these sequences. Tends speed of these sequences are explained by figures (4.1-
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4.3) and the CPU time are given by tables (4.1-4.3). We found that any convergence sequence 
of linear positive operators that has polynomial as a limit point forms a proof to Weierstrass 
approximation theorem. In addition, we introduce modifications for the sequences 
Weierstrass, Landau, Bernstein and Jackson, respectively and compare tends speed and CPU 
time of these modifications. Also, we explain tends speed of these sequences by figures (4.4-
4.6) and. CPU time by table (4.4). 
Definition 1.1. (Weierstrass Polynomials) [13] 

where 

For f(x) E C[a, b], the n-th order Weierstrass polynomial to the fimction f is define as: 
bl 

Wn (f; x) = I: J f(t) e-n(t-x)' dt 

al 

In= (c e-ntz dt 
}_, 

a1 =a- B, b1 = b + B, B > 0, and c = b1- a1. 
In [13], shows that the Weierstrass sequence has the following property: 

lim Wn(f; x) = f(x), 
n~~ 

this approximation is uniform in the interval [a, b]. 
Defmition 1.2 (Landau polynomials) 
For f(x) E C[a, b ], the n-th order Landau polynomial to the fimction f is defmed as: 

bl n 

1 J (c2
- (t-x)Z) Ln (f; x) = dn f(t) cZ dt 

al 
where 

J' ( z tz)" dn= c;z dt 
_, 

a1 =a- B, b1 = b + B, B > 0, and c = b1- al. 
The Landau sequence has the following property: [7] 

lim Ln (f; x) = f(x), 
n~~ 

this approximation is uniformly in the interval [a, b]. 
Definition 1.3 (Bernstein polynomials) 

For f (x) E [0, 1], the n-th order Bernstein polynomial to the function f is defined as: 
n k n 

Bn(f;x) =I r(;;) (k)xk(1- x)n-k, 
k=O 

where x E [0, 1]. 
We have the following fact: [I] 

lim Bn(f;x) = f(x), 
n~~ 

this approximation is unifonnly in the interval [0,1]. 
Definition 1.4 (Jackson polynomials) 

Suppose that f(x) be a contiouous and bounded fimction in the rnterval [a, b]. The n-th 
order of Jackson polynomial for f(x) is defined as: 

where 

(1)~1/ ........ 

,. 
Pn(f;x) = j: J f(x+ u) (1- u2)"du 

-1 
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and 
1 

~ f(a) 

f(x) = ~-x f(b) 
1-b 

;x :50 

;O<x<a 

;b <X< 1 

1 

ln = J (1- u2)"du 
-1 

0 ;x;,1 
The Jackson sequence has the following property:[3] 

lim Pn (f; x) = f(x), 
n~oo 

Lemma 1.1 [4] 
Let the function Q(x) satisfies the conditions 

1. Q(x) is continuous the interval -c :::; x :5 c, c > 0; 
2. Q(O) = 1, 0 $ Q(x) < 1, ifx * 0, -c $ x $ c, and if we put 

f ' f• . ~w Zn = _,Q"(x)dx,Zn(6) = _6 Q"(x)dx,O < 6$ c, thenhmn~ooz;;-= 1. 

Theorem 1.1 [4] 
If a function Q(x) satisfies the conditions of Lemma above and Zn = f, Q"(x)dx then the 
sequence of operators 

1 b' 
Ln (f; x) = - f f(t) Q"(t- x)dt, 0 < b - a < c 

Zn ' 
converges uniformly to the function f(x) in [a+ 6, b- 6], 6 > 0, iff(x) is continuous in[a, b]. 
2. Our Modifications 
We introduce three modifications for sequences Weierstrass, Landau and Jackson denote 
them by Wn(f;x), Ln (f;x) and Pn(f;x), respectively. ill addition, we apply these 
modifications by using the same test function. The modifications of Weierstrass, Landau and 
Jackson sequences are defined as follows: 
2.1 Modification of Weierstrass polynomials 
· · We define the modification of Weierstrass polynomials as: 

where 

Wn(f;x) = _1 fb\(t).e-n'(t-x)' dt 
In Jal 

-1 -Jc -n4(t)4d 
n- e t -· a1 = a- 6, b1 = b + 6, 6 > 0 and c = b1- a1. 

2.2 Modification of Landau polynomials 
We define the modification of Landau polynomials as: 

b1 [ 1]" 
Ln (f;x) = l"l f(t) 1- c~~' dt 

where 

a"= 1[1- Gi]" dt, 

a1 = a- 6, b1 = b + 6, 6 > 0, c = b1- al and r = 1,2, .... 
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4.3 Modification of Jackson polynomials 

1 

where 

Pn (f; x) = -
1 J f(x + u) ( 1 - (lui)~)" du, 
Jn 

-1 

1 

ln = J( 1- (lui)~)" du 
-1 

anda<x<b 
0 ;x < 0 

X 
- f(a) ; 0 < x < a 
a 

f(x) = 1-x 

1
_bf(b) ;b<x<1 

0 ;x> 1 
3. The convergence of Modifications polynomials 

The convergence of these modifications polynomials is explained below. 
3.1 The Convergence of Weierstrass Modification. 
f(x) be continuous function on the interval [a, b], the Qn(t- x) = e-n'Ct-x)' and Q(x) = e-x" 
be continuous in every interval. 

So the first condition of Lemma 1.1 holds. 
now Q(O) = 1, 0 < Q(x) < 1, x * 0, from this the second condition of Lemma 1.1 holds. 

Q(x) Satisfies the condition of Theorem 1.1, the sequence of polynomials Wn(f;x) 
converges uniformly with the function f(x). So, the modification of Weierstrass sequence has 
the following property: 

limWn(f; x) = f(x), 
n~oo 

this approximation is uniform in the interval [a, b]. 
3.2 The Convergence of Landau modification 

-· . 1 

f(x) be contiouous function on the interval [a, b ], and Q(t- x) = 1 - (':x)' and Q(x) = 1 -

' 
( (~)) r and this polynomials be continuous in every interval. So, the first condition of Lemma 

1.1 holds. 
now Q(O) = 1, 0 < Q(x) < 1, x * 0, from this the second condition of Lemma 1.1 hold. 

Q(x) Satisfies the condition of Theorem 1.1, the sequence of polynomials Ln(f;x) 
converge unifonnly to the function f(x). So, the modification of Landau sequence has the 
following property: 

limLn(f;x) = f(x), 
n~oo 

this approximation is uniform in the interval [a, b]. 
3.3 The Convergence of Jackson modification 

' f(x) be contiouous function on the interval [a, b], Q(t- x) = 1- (luiF and Q(x) = 1-
' ((I -xi))' and this polynomials be continuous in every interval where u = t- x. So, the first 

condition of Lemma 1.1 holds. 
now Q(O) = 1, 0 < Q(x) < 1, x * 0, from this the second condition of Lemma 1.1 holds. 
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Q(x) Satisfies the condition of Theorem 1.1, the sequence of polynomials Pn(r;"x) 
converges uniformly with the function f(x). So, the modification of Jackson sequence has the 
following property: 

limPu(f; x) ~ f(x), 
n~oo 

this approximation is uniform in the interval [a, b]. 
4. Application 
We apply the sequences Wn (f; x), Ln (f;x), Bn(f; x), Pn(f;x) and Wu(f;x), Ln (f; x), P,(f;x) 
by taking the test function f(t) ~ sin(lOt)exp( -3t) + 0.3. We compare tends speed of the 
approximation of these polynomials by some graphics, we explain the differences in tends 
speed of these sequences in the figures (4.1-4.6) and the differences in CPU time in the tables 
(4.!-4.4). It turns out that the best sequence in application is the Bernstein polynomials; this 
occurs because this sequence has no integral and its summation is finite. So, it needs few 
mathematical calculations in the application. We compare tends speed and CPU time of each 
modification with its original sequence and with the others sequences (Weierstrass, Landau, 
Bernstein and Jackson). We found that these three modifications have tends speed better than 
the four original sequences. 
The figure (4.1), explains tends speed of all original sequences Wn(f;x}, Ln(f;x), Bn(f; x) and 
Pn(f; x), we approximate the test function by applying them. The best tends speed and CPU 
time occurs by Bernstein polynomials to approximating the test function for n = 10. 
The figure ( 4.2), explains tends speed of Wn (f; x}, Ln (f; x}, Bn (f; x) and Pn (f; x) sequences 
for n = 40, and explains if n increases tends speed of Jackson polynomials will fail in 
application and remain best tends speed and CPU time occurs by Bernstein polynomials and 
also the figure (4.3) explains tends speed of these sequences for n = 60. 
The figure (4.4), explains tends speed of the modification of Weierstrass polynomials better 
than all of the original polynomials to approximate the same test function. 
The figure (4.5), explains tends speed of the modification of Landau polynomials better than 
all of the original polynomials to approximate the test function. 
The figure (4.6}, shows tends speed of the modification ofJackson polynomials better than all 
of the ori · al ol omials to a roximate the test function. 

--Weierstrass Polynomials --Landau Polynomials 
-- Bernstein Polynomials Jackson Polynomials 
--Test Function 
!,-----------------, 

0.8 

0.6 

(1) .ol;lllioJQiio ... 

0 0.2 0.4 0.6 0.8 

Figure 4.1: Approximation test function f 
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--Weierstrass Polynomials -- Landau Polynomials 
-- Bernstein Polynomials Jackson Polynomials 
--Test Function 

0 0.2 0.4 0.6 0.8 1 

Figure 4.2: Approximation test function f 
b W. (f;x), L (f;x), B (f;x) and R (f;x) forno40 

-- Weierstrass Polynomials -- Landau Polynomials 
-- Bernstein Polynomials Jackson Polynomials 
--Test Function 

0 0.2 0.4 0.6 0.8 

Figure 4.3: Approximation test function f 
byWn(f;x), Ln(f;x), Bn(f;x) andPn(f;x) forn = 60 
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--Weierstrass Polynomials -- Landau Polynomials 
-- Bcmsrein Polynonunials Jackson Polynomials 
--Modification '\Veicrstrass --Test Function 

,~--------------------, 

0.8 

0.6 

0'~----~~----~----~~--~~----~ 0 0.2 0.4 0.6 0.8 1 

Figure 4.4: Approximation f 
by the modification of Weierstrass and all original polynomials 

eJerstra.ss po ynomta s -- n au po ynom.1a s 
-- Bernstein polynomrni.nls Jackson polynomials 
-- Modification Landau --Test Function 

,~---------------------, 

0.8 

0. 

0~---~~--~r---~~---~-----t 
0 0.2 0.4 0.6 0.8 I 

Figure 4.5: Approximation f 
by the modification of Landau and all original polynomials 
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CICrstrn.ss o ynorm -- an au o y:noiD.l 
-- Bernstein Polynomials Jackson Polynomials 
----Modification Jackson -- Test Function 

1;-------------------------------------------, 

0.8 

0.6 

0~---~---~---~---~----T 
0 0.2 0.4 0.6 0.8 1 

Figure 4.6: Approximation f 
by the modification of Jackson and all ori inal olynomials 

4.1 The CPU Time 
We introduced three tables which explain the CPU time for these sequences Wn(f; x), 
L,(f;x), B,(f; x) and P,(f; x) as ( n =10, 40, 60) respectively. We found the best CPU time 
introduced by Bernstein polynomials by using the same test function and the same Computer . 

.------~~ (4.1): ; the CPU~""'~ ~~~:!Oe:._·· ---, 
W,l ;x: 2.!5s 
L f:x· 7.8 s 
B, f; x~ O.G9 s 
Pn(f;x) 17.78s 
Table ( 4.2): Explains the CPU time for n = 40. 

The sequence CPU time 
W. (f; x) 2.29 s 
L.(f; x) 780.02 s 
B,(f;x) 0.06 s 
P,(f;x) 427.45s 

Table ( 4.3): Explains the CPU time for n-60 
The sequence CPU Time 

Wn (f; x) 2.90 s 
L,(f;x) 1582.70s 

B f;x) 0.62 s 
I 130.41 s 

4.2 The CPU Time 
We introduce the following table which explains the CPU time for all of the modifications of 
polynomials for n=IO and best CPU time introduced by Landau polynomials 

Table (4.4): Explains the CPU time for n=IO 
The Modification sequence CPU Time 

W,(f;x) 251.4!s 

L (f;x) 10.99 s 

P,(f;x) 110.88 s , , 
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Abstract: 
This paper aims to apply the Laplace traru;form for solving Multi-fractional order optimal 
control problems (FOCPs) with a quadratic performance index. The Laplace transform is a 
powerful tool in applied mathematics and engineering. It will allow us to transform fractional 
differential equations into algebraic equations and then by solving this algebraic equations, we 
can obtain the unlmown function by using the Inverse Laplace Transform. The control 
function u(t) is relies on the approximation of the necessary optimality conditions in terms of 
the associated Hamiltonian. An illustrative example demonstrates the simplicity and 
efficiency of proposed method. 
Keywords: Fractional derivative, Fractional optimal control problem, Caputo Fractional 
derivative, Laplace transform and Inverse Laplace Transform, pproximation solution. 

1-lntroduction 
Fractional optimal control problems (FOCPs) are optimal control problems associated with 
fractional dynamic systems. The fractional optimal control theory is a very new topic in 
mathematics. FOCPs may be defined in terms of different types of fractional derivatives. But 
the most important types of fractional derivatives are the Riemann-Liouville and the Caputo 
fractional derivatives. In Agrawal [3], Agrawal and Baleanu [ 4] the authors obtained 
necessary conditions for FOCPs with the Riemann-Liouville derivative and were able to solve 
the problem numerically. Agrawal [1] presented a quadratic numerical scheme for a class of 
fractional optimal control problems (FOCPs). In Agrawal [5], the FOCPs are formulated for a 
class of distributed systems where the fracJ;ional derivative is defined in the Caputo sense,and 
a numerical technique for FOCPs presented. Baleanu et al. [7] used a direct numerical scheme 
to find a solution of the FOCPs. In Biswas and Sen [10], FOCPs with fixed final time are 
considered and a transversely condition is obtained. scheme for FOCPs based on integer order 
optimal controls problem. In Youse et aL 
[8]the usage of Legendre multi wavelet basis and collocation method was proposed for 
obtaining the approximate solution of FOCPs. Tricaud and Chen[9] proposed a rational 
approximation based on the Hankel data matrix of the impulse response to obtain a solution 
for the general time-optimal problem 
In this paper we solving a multi-fractional order optimal control problems by Approximate 
Laplace transform. 
This paper is organized as follows: In section 2, we present some basic defmitions of 
fractional calculus .In section 3, contains the necessary optimality conditions of the FOCP 
model. section 4,present the Laplace transform and inverse Laplace transform for some 
functions .In section S,the proposed method is applied to several examples. Also a 
conclusion is given in the last section. 
2- Basic definitions of fractional calculus. 
2-1 Fractional Derivatives and Integrals. 
Definition 2.1. Let x : [a, b] -+R be a function,a > 0 a real number, and n=[a],where [n] 
denotes the smallest integer greater than or equal to n. The left (left RLFl) and right (right 
RLFl) Riemann-Liouville fractional integrals are defmed by: 

a 1rx(t) = ,,~, J;(t- T)a-l x(T)dT (left RLFl ), ... (1) 
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