Iraqi Journal of Statistical Science (20) 2011
The Fourth Scientific Conference of the College of Computer Science & Mathematics
pp [83-92]

Rate of Convergence for a New Family of Summation-Integral
Beta Operators
Dr.Ali J. Mohammad Ansam A. Abdul-Rahman™

ABSTRACT

In the present paper, we define a new family of summation-integral Beta
operators to approximate a class of unbounded continuous functions of polynomial
growth 0(t"), for some r = 0 and then we estimate the rate of convergence for this

family for functions have derivatives of bounded variation.
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1. Introduction

In the last 30 years, the rate of convergence of certain operators acting on functions
of bounded variation has been investigated. Important papers on this topic are appeared.
Zeng and Chen [13, 2000] estimated the rate of convergence of Durrmeyer-type operators
for functions of bounded variation on the interval [0,1], Vijay Gupta [6,2002] is one of the
researchers who were interested in this topic, where he estimated the rate of convergence
of a new sequence of linear positive operators B, ,( f,x), which is the Bezier variant of

the well-known Baskakov Beta operators, Gupta et al [11, 2003] estimate the rate of
convergence of the recently introduced generalized sequence of linear positive operators
G,.(f,x) with derivatives of bounded variation, Niraj kumar [5, 2004] gives the rate of

convergence for the linear combinations of the generalized Durrmeyer type operators
which includes the well-known Szasz-Durrmeyer operators and Baskakov-Durrmeyer
operators as special cases, Ulrich et al [9, 2005] study the approximation properties of beta
operators of second kind, and they obtain the rate of convergence of these operators for
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absolutely continuous functions having a derivative equivalent to a function of bounded
variation, Jyoti Sinha and V. K. Singh [4, 2006] investigated this problem for a mixed

sequence of summation integral type operators S, ( f,x) for functions having derivatives of

bounded variation. Recently, Vijay Gupta and Harun Karsli [7,2007] extended this
problem for Beézier variant of Durrmeyer type Meyer—Konig and Zeller operators for

functions with derivatives of bounded variation defined on [0,1], P. N. Agrawal and Vijay
Gupta [8,2007] study a certain integral modification of the well-known Baskakov
operators with the weight function of Beta basis function and establish the rate of
convergence for these operators for functions having derivatives of bounded variation.
Harun Karsli and Vijay Gupta [3,2008] study the behavior of nonlinear integral operators
and estimated the rate of convergence at a point x , which has a discontinuity of the first
kind as y = x, , Harun Karsli[2,2008] estimates the rate of pointwise convergence of the

Chlodowsky operators C, for functions, defined on the interval [0,5,] with derivatives of
bounded variation, where limb, =co. In [12,2009] some direct local and global

approximation theorems were given for the g-Bernstein-Durrmeyer operators. Ali Aral
and Vijay Gupta [1,2010] deal with Durrmeyer type generalization of g-Baskakov type
operators using the concept of g-integral, which introduces a new sequence of positive g-
integral operators and estimates for the rate of convergence and weighted approximation
properties are also obtained. Vijay Gupta and Taekyun Kimb [9,2011] investigated this
problem for the g-analogue of the modified Beta operators.

Now, we study new family of summation-integral Beta operators (1.1) and estimate
the rate of convergence for functions having derivatives of bounded variation. For

pE N°={0,1,2,3,....}, we defined a family of summation-integral type Beta operators as:
gral typ p

B (i) =3, (0B, (O (O (1)

W, (x,t)f(t)dt

S =8

(n+k)!

xk 1+.X' —(n+k+1)
kl(n—1)! (I+2)

Where bn’k (x) =

and W, (x,t) = ibn’k(x)bmH L () +(1+x)7"5(0)
k=0

0(t)being the Dirac delta function.
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t 0
We denote 8, (x;t) = .[Wn (x,s)ds then, we have: 3, (x;0) = '[Wn (x,s)ds =1
0 0
In our work we suppose that DB,.(0,00) ;7 >0 means the class of absolutely
continuous functions f* defined on the interval (0,00) such that:

) fO)=001")t >
ii) having a derivative f' on the interval (0,0) coinciding a.e. with a function which is
of bounded variation on every finite subinterval of(0,0) . It can be observed that all

functions f € DB,(0,0) possess for each real value ¢ > 0 the equation:

S0 =f©@+ [y xzc

Our main result is stated as follows:
Theorem: Let f € DB, (0,0),7 € N and x € (0,) . Then for n sufficiently large, we

have

(2n% +8n) x> +(2n” +8n+6p)x+(p° +3p+2)n
(n+1)(n—1)n-2)

_7
‘Bn(f,x)—f(x)‘ S]\/[2}/0(}1 2)\/

‘(2;12 +81)x% +(2n% +8n+6p)x+(p” +3p+2)n N

+H/e (1) (n-D)(n—2)x

f1(x")

Qn? +8n)x% +(2n° +8n+6p)x+(p> +3p+2)n N
(n+1)(n—1)(n—2)

(2n% +8n) X% +(2n° +8n+6p)x+(p> +3p+2)n
(n+DH(n-DH(n—-2)x

2= -5 f ()

+

(22 1832 + (2 +8n+6p)x+(p2 +3p+2)nlL) Tk ixwﬁ
(n+)(n—1)(n—2) 2 V<fx>+f v )

k=1 x no

(2n2 +8n)x2 "‘(2”2+8n+6p)x+(p2+3p+2)n[‘/;] ¥ X X
' (n+D(n-(n-2) kzl v v )
x—; x_ﬁ

where the auxiliary function f) is given by
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fO-f(x ) 0<Zt<x
fe(H)=10 t=x

fO-f(xT) x<t<w

b
v f(x) denotes the total variation of f,. on[a, b]

a
(If fis differentiable and its derivative is integrable, its total variation is the vertical

b b
component of the arc-length of its graph, that is to say: \/ f(x) = j | f '(x)| dx).
a

a

2. Basic Results
We shall use the following lemmas to prove our main theorem.

Lemma: 2.1
Let the function T}, ,, (x) ,m € N U {0} be defined as:

Tn,m<x)=Bn<<z—x)"’;x)=ﬁ > bk (O [ by s p (O =)™ d
k=0 0

2nx+n(p+1)

n
Then T, =, T =
70 ) n+1 n’l(X) (n+1)(n—-1)

(2n% +8n)x2 +(2n” +8n+6p)x+(p +3p+2)n
(n+1)(n—-1)(n-2)

Tn,2 (x)=

T,m(x) is polynomial in x of degree m, T, ,(x) is polynomial in n!of
degree m ; m>0 alsoT, o(x) ,T,;(x) are polynomial in n! of degree 1 and

T,2(x) are polynomial in n~! of degree 2, and there holds the recurrence relation

x(1 +x)T,;,m (xX)+2mx(1+ )T, 1 () + (m—n+DT, 1 (X)+((p+m+1)+2x(m+ )T, 5, (x)=0
m+1

Consequently, for each x €[0,%0) we get T}, ,(x) =O0(n 2 )
Proof: By using the direct computation, the values of T}, o(x), T, (x)and T, ,(x) are

omitted

Now we have:

1 & <
Ty (¥) == D" by o (0) [ By e p (O =) lt
n+1k:0 0
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, R < > < _
T () =—— 2 Bk ) [ By e p O =) dt4m Y By o () [ By e p ()= )" =1 lt
n+l o 0 k=0 0

: L < T
x(x+ DTy () + Ty 1 () :m Z bn’k(x)j(k+p—nt—t—p+nt+t—nx—x)(t—x)mbn’kw(t)dt
k=0 0
Using integration by parts we get:
x(1+ x)T,;’m (xX)+2mx(1+ )T 1 () + (m—n+DT, 1 (X)+((p+m+1)+2x(m+D)T, 5, (x)=0

From above our lemmas are omitted.

Remark 2.1. From Lemma 2.1, using Cauchy-Schwarz inequality, it follows that

By(|t-x|x) <[B,(1;x)]"[B,((t - x)*; 012

. @ +8n%)x* + (20> +8n% +6pn)x + (p* +3p+2)n”
- (n+1)%(n-1)(n-2)

Lemma 2.2. Let x €(0,0) and W, (x,t) be the kernel of defined in (1.1). Then for n

sufficiently large, we have

y
(i) B (x,¥) = [ W, (x, 1) dt
0

§ (2n? +8n) x>+ (2n? +8n+6p)x+(p2 +3p +2)n

,0<
(n+ (1 - D(n—2)(x— 7)? a

(i) 1- B, (x,2) = j W, (x,1)dt

g (2n2 +8n) x> + (2n? +8n+6p)x+ (p2 +3p +2)n

(n+1)(n—1)(n_2)(z_x)2 ,X <z <o
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Proof : First we prove (i), by using Lemma 2.1, we have
jW (xt)dt<j(x W(xt)dt<(x )2
0 (x— J’)
(2n +8n)x +(2n +8n+6p)x+(p +3p+2)n
(n+1D)(n = 1)(n = 2)(x - y)*

0<y<x

The proof of (ii) is similar, we omit the details.

3. Proof of Theorem

Proof: By the application of mean value theorem of integral, we have
0 o f

By (f,x)= f(x) = [W, (e, )(f ()= f(x)dt = [ [W, (x,)(f"(u)du)dt
0 0x

(3.1)
Using the identity [8]

f’(u)=%[f'(x+)+f'()C )] +fx(u)+ FACHENACS )Sgn(u—X)+[f'(X)—%[f'(x+)+
S G ()

It is easily verified that if we substitute the above value f'(x)in (3.1), the last term of the

identity vanishes. Also

o t
JSL7 G = £/ st = )W e = L () = £ OBy =
0 x
o t
and [ (317G = £ GO, (0t =2 11 6) = £ GO (= ),9)
0 x

Thus in view of the above values, Lemma (2.1) and Remark (2.1) equation (3.1)are
reduced to
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B, (f,x) = f(x)] <

T[jfx (u)du }Wn (x,t)dt — T[jfx (u) du }Wn (x,t)dt

x\x 0O\ x

+%[f’(x+)

o @ 480Xt +2nd 480 v 6pn)x+ (PP +3p 20t 1,
fi(x )1\/ T B VACAS
2nx +n(p+1)
(n+1)(n—1)

+ /'(x7)] )

<| Ey(frx)+ Fy(f22)]+ %[f’(x*)— £1x]

3 2 2 3 2 2 2
\/(211 +8n°)x +(2n +28n +6pn)x+(p " +3p+2)n +l[f'(x+)
(n+1)"(n-1)(n-2) 2
., L 2nx +n(p+1)
AR P T
(3.2)

In order to complete the proof of theorem, it is sufficient to estimate the terms
E, (f,x) andF,(f,x). Appling integration by parts, using Lemma (2.2) and

taking y = x—x//n, we have:

x(t
|, (f,%)| = j[jfx(u)du}ﬁn(x,t)dt,
0\ x
J B (x.t) fi(t)dt | < <j+ j W (0| B x| at
0 y

(2n2+8n)x2+(2n2+8n+6p)x+(p2+3p+2)n
- (n+1)(n—1)(n-2) I V() x _t) df+IV(fx)dt

(2n +8n)x +(2n +8n+6p)x+(p +3p+2)n d
(n+1)(n—1)(n-2) {) SRpape) _t) - x(fx>
I
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.Then we have

X
Let u =
x—t

(n+D(n-1H(n-2) t)z

(2n2+8n)x2+(2n2+8n+6p)x+(p2+3p+2)nj-}f/(f) L
) di =
0[ ()C—

(2n2+8n)x2+(2n2+8n+6p)x+(p2+3p+2)n‘/f y ()
X

(n+1)(n—1)(n-2) D x
<<2"2+8n>x2+(2n2+8n+6p>x+(p2+3p+2>n[§] v (fo)
- (n+1)(n-1)(n-2) Pt
Thus
(2n2+8n)x2+(2n2+8n+6p)x+(p2+3p+2)n[\/;] X x ¥
£ (f 0] < DD =2) L VU v 0D
u x_ﬁ
(3.3)

On the other hand, we have

|E,(f.x)|= J{fo(u)du}Wn(x,t)dt
oot 2x( t
=| | { | fx(u)du]Wn(x,t)dt+ | { | fx(u)du](l— B (x,0))dt
2x\x x \x
00 00 2x
< @ = LW Cepdt|+{ 1N [ (e =x ), Cr)dt] +| [ fr (e[l = B (x,2x)
2x 2x by

dt

2x
+ [ 1@ =Bu(x.t)
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< %2{6 W, (x,0t" \t—x{dﬁ‘f;—?‘z{c W, (x,0)(t —x)*di +

N (2n° +8n)x% +(2n° +8n+6p)x+(p> +3p+2)n
(n+D(n-1)(n-2)x

20 )= [

(3.4)

(2n® +8n)x2+(2n2+8n+6p)X+(p2+3p+2)n[\£]x:/ (fo)+— xi}r(f)
X \/_ X

m+D(m-1)(n-2) =l x

For estimation of the first two terms in the right hand side of (3.4), we proceed as follows:

Applying Holder's inequality, Remark 2.1 and Lemma 2.1

—j'W(x e |t - x‘dt+‘f( T [, (e 0 —x)7dt <
2x x 2x
1 1

08} 2 08}
j W, (x,0)%7 dt + j W, (x,0)(t —x)* dt +@ j W, (x,0)(t —x)*dt

2x X

(2n +8n)x +(2n +8n+6p)x+(p +3p+2)n
(n+D)(n-1)(n-2)

<M2"0(n 2)\/

|(2n2 +8m)x% +(2n% +8n+6p)x+(p +3p+2)n

(n+1)(n-1)(n-2)x (3-5)

+[/(x)

Also, by Remark 2.1 the third term of the right side of (3.4) is given by

<

et \/(2n2+8n)x2+(2n2+8n+6p)x+(p2+3p+2)n

(n+)(n—-1)(n-2)

Combining the estimates (3.2)-(3.4), we get the desired result. This completes the proof of
the theorem.
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