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ABSTRACT 
 
In this paper, we introduce a family of neural network operators of summation-integral Bernstein type, 
which are define by using some sigmoidal functions. We give pointwise and uniform approximation 
theorems for these operators when are applied for continuous functions. In addition, we discuss the 
approximation for these operators in ��-spaces with 1 ≤ � < ∞. Then we give some applications of the 
sequences of a family of linear positive multivariate neural network operators ��(. ; �), then we describe the 
results by graphics of the error function for some particular values of � = 10, 20, 30 and for two test 
functions in 2-dimensional. 
 
Keywords: Sigmoidal functions; multivariate neural network; uniform approximation; ��-approximation; 

Summation-integral Bernstein-type. 
 

AMC 2010: 41A25, 41A30, 47A58. 
 

1 Introduction 
 
In 1912 [1], Bernstein defined a sequence of linear positive operator called the Bernstein polynomials 
written as: 
 

��(�; �) = ���,�

�

���

(�)� �
�

�
� , � ∈ [0,1], � ∈ �[0,1] 
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where 
 

��,�(�) = �
�

�
� ��(1 − �)���. 

 
In 1967 [2], Durrmeyer defined a sequence of summation-integral of Bernstein polynomial written as: 
 

����(�; �) = (� + 1)���,�(�)� ��,�(�)�(�)��

�

�

�

���

, 

 
to approximate a function � on �[0,1].  
 

Neural networks (��� ) with one hidden layer can represented as  
 

��(�) =�������. � + ���, � ∈

�

���

ℝ �, � ∈ ℕ � , 

 

where, for 0 ≤ �≤ �, the �� ∈ ℝ ,  are the threshold values, the �� ∈ ℝ �, are the weights , and the �� are the 

coefficients. Here  ��. � is the inner product in ℝ �, and � is the activation function of the network, see [3, 

1996], [4,1998] and [5,2013]. The activation function is usually a sigmoidal function. Neural networks are 
extensively used in Approximation Theory [6,1989],[7,2003],[8,1992],[9,2009],[10,2011] and [11,2013]. 
 

Costarelli and Spigler in 2013, introduced a family of linear positive multivariate neural network (�� ) 
operators with sigmoidal activation functions, have the form: [12,13]. 
 

��(�; �) =
∑ … ∑ � �

�
�� ��(�� − �)

⌊���⌋
���⌈���⌉

⌊���⌋
���⌈���⌉

∑ … ∑ ��(�� − �)
⌊���⌋
���⌈���⌉

⌊���⌋
���⌈���⌉

. 

 
For �:ℛ → ℝ  be a bounded function and � ∈ ℕ�  such that ⌈���⌉≤ ⌊���⌋  for every �= 1, …  , �, � ∈ ℛ ⊂
ℝ �, �/� ∶= (��/�, … , ��/�) and ℛ ≔ [��, ��] × … × [��, ��]. In usual, we denote to ℝ  be the real numbers 
and the symbols ⌊. ⌋  and ⌈. ⌉ denote taking the "integer part" and the "ceiling" of a given number, 
respectively. The convergence and order of approximation was study as well as pointwise and uniform 
convergence for the special case of (�� ) operators, activation by logistic, hyperbolic tangent, and ramp 
sigmoidal functions.  
 
In 2014 [14], Costarelli and Spigler introduced and studied pointwise and uniform approximation theorems 
for the family of neural network operators of the Kantorovich type ��(�, �) have the form: 
 

��(�; �) =
∑ … ∑ ��� ∫ �(�)�� 

��
� � ��(�� − �)

⌊���⌋
���⌈���⌉

⌊���⌋
���⌈���⌉

∑ … ∑ ��(�� − �)
⌊���⌋
���⌈���⌉

⌊���⌋
���⌈���⌉

. 

 
For �:ℛ → ℝ  be a locally integrable function and � ∈ ℕ�  such that ⌈���⌉≤ ⌊���⌋− 1, �= 1, … , �, where 

��
� ≔ �

��

�
,
��� �

�
�× … × �

��

�
,
����

�
� , � = (��, … , ��) ∈ ℤ� and � ∈ ℛ ⊂ ℝ � . 

 
For more application, we refer to [15, 16, 17 and 18]. 
 
In this paper, we study pointwise and uniform convergence of sequence ��(�; �) of the summation-integral 
Bernstein-type neural network operators. 
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2 Preliminary Result 
 
In this part, we give some preliminary results where are need in our study. First, we should know a 
measurable function �:ℝ → ℝ  is a sigmonidal if and only if  lim�→ �∞ �(�) = 0 and   lim�→ �∞ �(�) = 1, 
some examples on sigmodal function: [19] 
 

1. Logistic function ��(�) = (1 + ���)�� ,  � ∈ ℝ , 

2. Hyperbolic tangent ��(�) =
�

�
[tanh (�) + 1] , � ∈ ℝ , 

3. Gompertz function ��� (�) = ������  ,  � ∈ ℝ , �, � > 0. 

 
In addition, in [13], for any non-decreasing function, and �(2) > �(0) "which is a merely technical 
condition", also satisfying some assumptions, we state here the following: 
 

1.  ��(�) = (�) − 1/2, is an odd function, 
2.   � ∈ ��(ℝ ) is concave for � ≥ 0, 
3.   �(�) = �(|�|����) as � → −∞, for some � > 0. 

 
For every given non-decreasing function �, satisfying all such assumptions, is defined ��(�) =
�

�
[�(� + 1) − �(� − 1)],  � ∈ ℝ .    

 
The following lemmas give us, a number of important properties for �� . 
 
Lemma 2.1: [14] 
 
For the function, ��(�) we have: 
 

1. ��(�) ≥ 0 for every � ∈ ℝ  and lim�→ ±∞ ��(�) = 0, 
2. ��(�) is an even function, 
3. For every � ∈ ℝ , ∑ ��(� − �) = 1�∈ℤ , 
4. ��(�) is non-decreasing for � < 0 and non-increasing for � ≥ 0, 
5. ��(�) = �(|�|���� ) as � → ±∞, 
6. The series ∑ ��(� − �)�∈ℤ  converges uniformly on compact subsets of ℝ . 
 

 
Note that, the multivariate function ��(�) = ��(��). ��(��) …   ��(��) for the ��  the next lemma, contains 
some properties of the function ��(�), we denote with � = (��, … , ��) ∈ ℤ�. 
 
Lemma 2.2: [13] 
 

1. For every x ∈ ℝ �, ∑ Ψσ(x− k)� = 1. 
2. The series ∑ Ψσ(x− k)�  converges uniformly on compact subsets of ℝ �. 
3. Denote by ‖. ‖ the usual maximum norm of ℝ �, i.e., ‖x‖∞ = max {|x�|, i= 1, … , s}, with  x∈ ℝ �. 

For every γ > 0, we have 

���
�→ ∞

� ��(� − �) = 0

‖���‖���

, 

uniformly with respect to � ∈ ℝ �. In particular, for every � > 0 and 0 < � < �, 

� ��(� − �) = �(���),
‖���‖� ��

 

 
where � > 0 is the constant in condition (3). 
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Lemma 2.3: [12, 13] 
   

1. Let x ∈ [a, b] ⊂ ℝ  , n ∈ ℕ� , so that ⌈na⌉≤ ⌊nb⌋ , then: 
 

 
1

∑ Φσ(nx− k) 
⌊��⌋

��⌈��⌉

≤
1

Φσ(1)
 

 
2. Let x ∈ [a�, b�] × … × [a�, b�] ⊂ ℝ � and n ∈ ℕ�  so that ⌈na⌉≤ ⌊nb⌋ for every i= 1, … , s then: 

 

 
1

∏ ∑ Φσ(nx�− k�)
⌊���⌋

���⌈���⌉
�
���

≤
1

[Φσ(1)]
�
. 

 
Lemma 2.4: [14] 
 
We have the following facts:  
 

1.   ∫ ��(��)���ℝ
= 1 , �� ∈ ℝ , for all �= 1, … , � , 

2.    ∫ ��(�)ℝ �
��= 1, �∈ ℝ �. 

 
We need to state the following definitions: 
 
Definition 2.1: [19]  
 
A measurable function �:ℝ → ℝ  is called "activation function" whenever lim�→ �∞ �(�) = � and  
lim�→ �∞ �(�) = �  with � ≠ �. 
      
The space of all continuous real-value functions define on ℛ , equipped with the sup-norm ǁ . ǁ∞ denoted by 
��(ℛ ). [13]. 
 

3 The Main Results 
 
As usual, we will define the operator ����(�; �) "summation-integral of Bernstein polynomial" in �-
dimensional in the following definition: 
 
Definition 3.1:  
 
Let �:� → ℝ   be a bounded and continuous functions. The linear positive operators ����

� (�; �) for the 
function � in �-dimensional define as:  
 

����
�(�; �) = (� + 1)����,�(�) � ��,�(�)�(�)��

��

 

 
where  � = [0,1] × … × [0,1]  (s-times), � = (��, … , ��) ∈ ℤ� , � ∈ � ⊂ ℝ �  . 
 
The following symbols in the above definition means:  
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�= �

�

����

… �

�

�����

 

� = �

�

�

… �

�

�

, (�− �����)

�

 

�(�) = ��(��), … , �(�� )�, 

��,�(�) = ��,��(��) × … × ��,��(��), 

 

Now, we will make some modifications on the operator ��(�; �) by replacing the terms � �
�

�
� in operator 

��(�; �) by the terms �(� + 1)� ∫ ��,�(�)�(�)d��
� from the operators ����

�(�; �) , as in the following 

definition:  
 
Definition 3.2 
 
Let �:ℛ → ℝ  be a bounded and continuous function, the "Linear positive multivariate Bernstein of 
summation-integral-type (�� ) operators, ��(�; . ) activated by the sigmoidal function � acting on, are 
defined by: 
 

��(�; �) =
(� + 1)� ∑ ��(�� − �)∫ ��,�(�)�(�)����

∑ ��(�� − �)�
 

 
where ℛ = [��, ��] × … × [��, ��], � = [0,1] × … × [0,1], � = (��, … , ��) ∈ ℤ� , � ∈ ℕ� , 
 

 � = �

⌊���⌋

���⌈���⌉

… �

⌊���⌋

���⌈���⌉�

  

� = �

�

�

… �

�

�

, (�− �����)

�

 

 
we observe that ��(1; �) = 1 , for every � ∈ ℛ ⊂ ℝ � and � tends to infinity, such that ⌈���⌉≤ ⌊���⌋,   
�= 1, … , �. 
 
We will study pointwise and uniform convergence of ��(�; �), as the following:  
 
Theorem 3.1 
 
 Let �:ℛ → ℝ  be a bounded and continuous function. Then ��(�; �) convergence to �(�) as � tends to 
infinity  i.e. 

 

 �lim
�→ ∞

��(�; �) = �(�)� 

 
at each point � ∈ ℛ  where � is continuous, if � ∈ ��(ℛ ), then 

 
lim
�→ ∞

sup
�∈ℛ

|��(�; �) − �(�)|= lim
�→ ∞

‖��(�; . ) − �(. )‖∞ = 0.  

 
Proof: Let � ∈ ℛ  the point of continuity of � 
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|��(�; �) − f(�)|= � 
(� + 1)� ∑ ��(�� − �)∫ ��,�(�)�(�)����

∑ ��(�� − �)�

− �(�)� 

 

= �
∑ ��(�� − �) �(� + 1)� ∫ ��,�(�)�(�) − �(�)

�
��

∑ ��(�� − �)�

� 

 
by using lemma 2.3(2),we get 
 

≤
1

[��(1)]�
����(�� − �)

�

�(� + 1)� � ��,�(�)�(�)�� − �(�)

�

�� 

 

≤
1

[��(1)]
�
���(�� − �)�(� + 1)� � ��,�(�)[�(�) − �(�)]��

�

�

�

 

≤
1

[��(1)]�
���(�� − �)�(� + 1)� � ��,�(�)|�(�) − �(�)|��

�

�

�

. 

 
By the continuity of � at �, given � > 0, ∃ � > 0 such that |�(�) − �(�)|< � for every � ∈ ℛ , with 
‖� − �‖� < � ,where ‖. ‖� denoted the Euclidean norm.  
 

|��(�; �) − �(�)| 

≤
1

[��(1)]
�
� � ��(�� − �)�(� + 1)� � ��,�(�)|�(�) − �(�)|��

�

�
‖���‖���

� 

�+ � ��(�� − �)�(� + 1)� � ��,�(�)|�(�) − �(�)|��
�

�
‖���‖���

� 

≔
1

[��(1)]�
 (�� + ��). 

 
Let us estimate ��, for � ∈ ℕ� sufficiently large, then by the continuity of � and  
 
Lemma 2.2(1), we get 
 

�� < � � ��(�� − �)
‖���‖���

≤ �. 

 
Moreover, by the boundedness of � and by Lemma 2.2(2), we get: 

 

�� ≤ 2‖�‖∞ � ��(�� − �)

‖���‖���

 

< 2‖�‖∞ � ��(�� − �)

‖���‖���

 

< 2‖�‖∞ε 
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uniformly with respect to � ∈ ℝ �, since � arbitrarily we obtain the first part of the theorem. When  � ∈
��(ℛ ) , the second part is similarly, by replacing � with the parameter of the uniform continuity                           
of �in ℛ .      ∎  
         
Our next theorem is a result of the previous theorem:  
 
Theorem 3.2  
 
 For every � ∈ ��(ℛ ), we have 

 
lim
�→ ∞

‖��(�; . ) − �(. )‖� = 0 

 
where ‖. ‖� denotes the usual ��(ℛ ) norm, with 1 ≤ � < ∞ . 
 
Proof: Let � > 0 be fixed, we have 

 

‖��(�; . ) − �(. )‖� = �� |��(�; �) − �(�)|���
ℛ

�

�
�

 

 

≤ ��‖��(�; . ) − �(. )‖∞
�
��

ℛ

�

�
�

 

≤
1

|ℛ |�
 ‖��(�; . ) − �(. )‖∞ < �. 

 
For � ∈ ℕ�  sufficiently large, as result of Theorem 3.1. Here |ℛ | denotes the Lebesgue measure of ℛ  in ℝ � , 
by � arbitrarily the proof complete.    ∎  
 
After the following theory, we prove convergence of the family of our operators in  �� .  
 
Theorem 3.3 
  
The inequality 

 

‖��(�; . ) − ��(�; . )‖� ≤
1

[�� (1)]�/� 
‖� − �‖� 

 
holds, for every �, � ∈ ��(ℛ ),1 ≤ � < ∞, where ‖. ‖� is the usual ��(ℛ ) norm.  

 
Proof:  For every �, � ∈ ��(ℛ ),1 ≤ � < ∞, we have 

 

‖��(�; . ) − ��(�; . )‖� = ��|��(�; �) − ��(�; �)|
���

ℛ

�

�
�

 

= �� �
∑ ��(�� − �) �(� + 1)� ∫ ��,�(�)[�(�) − �(�)]

�
����

∑ ��(�� − �)�

�

�

��

ℛ

�

�
� 

. 

 

Being |. |� convex, we infer form Jensenʹs inequality and lemma 2.3(2), that  
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‖��(�; . ) − ��(�; . )‖� 
 

≤ ��
∑ ��(�� − �)� �(� + 1)� ∫ ��,�(�)[�(�) − �(�)]

�
���

�

∑ ��(�� − �)�
ℛ

���

�
�

  

≤
1

[��(1)]
�/�

�����(�� − �)�(� + 1)� � ��,�(�)[�(�) − �(�)]��

�

�

�

d�

�ℛ

�

�
�

 

 

≤
1

[��(1)]
�
�

�� � ��(�� − �)�(� + 1)� � ��,�(�)[�(�) − �(�)]��

�

�

�

��

ℝ��

�

�
�

. 

 
Changing variables, setting � = (�+ �)/�, we obtain 

 
‖��(�; . ) − ��(�; . )‖� 

≤
1

[��(1)]
�
�

��
1

(� + 1)�
� ��(�) �(� + 1)� � ��,�(�)[�(�) − g(�)]��

�

�

�

��

ℝ ��

�

�
�

  

=
1

[��(1)]
�/�

�
1

(� + 1)�
� ��(�)��(� + 1)� � ��,�(�)[�(�) − �(�)]��

ℛ

�

�

��

�ℝ �

�

�
�

. 

 
Using Jensenʹs inequality, again, we obtain 
 

‖��(�; . ) − ��(�; . )‖� 
 

≤
1

[��(1)]�/�
�

1

(� + 1)�
� ��(�)d� �(� + 1)� � ��,�(�)|�(�) − g(�)|���

��ℝ �

�

�
�

 

≤
1

[��(1)]�/�
� � ��(�)d�� ��,�(�)|�(�) − g(�)|���

ℛ

 

ℝ �

�

�
�

 

=
1

[��(1)]
�/�

‖� − �‖� � � ��(�)��

ℝ �

�

�
�

. 

 
Now, from Lemma 2.4 (2) we get, 
 

‖��(�; . ) − ��(�; . )‖� ≤
1

[�� (1)]�/�
‖� − �‖�.    ∎  

 
From Theorem 3.3, we conclude that the maps ��:�

�(ℛ ) → ��(ℛ ) are well-defined. Moreover displays a 
continuity property for the family of (�� ) operators of the Bernstein type, (��)�∈ℕ� , in ��(ℛ ), 1 ≤ � < ∞. 
 
Now we can show the following theorem:  
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Theorem 3.4 
             
For every � ∈ ��(ℛ ), 1 ≤ � < ∞, we have 

 
lim
�→ ∞

‖��(�; . ) − �‖� = 0 

 
Proof: Let be � ∈ ��(ℛ ), and  � > 0 be fixed. Since the space ��(ℛ ) is dense in ��(ℛ ) with respect to 

norm‖. ‖� , there exists � ∈ ��(ℛ ) such that ‖�(. ) − �(. )‖� < ���(1)
��/� + 1�

��
�/2  then by Theorem 

3.3 we write  
 

‖��(�; . ) − �(. )‖� 

≤ ‖��(�; . ) − ��(�; . )‖� + ‖��(�; . ) − �(. )‖� + ‖�(. ) − �(. )‖� 

≤
1

[��(1)]
�/�

‖�(. ) − �(. )‖� + ‖��(�; . ) − �(. )‖� + ‖�(. ) − �(. )‖� 

≤ �
1

[��(1)]
�/�

+ 1� ‖�(. ) − �(. )‖� + ‖��(�; . ) − �(. )‖� 

                           <
�

2
+ ‖��(�; . ) − �(. )‖�. 

 

By Theorem 3.2  
 

‖��(�; . ) − �(. )‖� <
�

�
+

�

�
= � . 

 
The proof end, for � ∈ ℕ� sufficiently large, and � arbitrary.    ∎  
 

4 Application 
 
In this part, we give some applications of the sequences of a family of linear positive multivariate neural 
network operators ��(. ; �), then we analyze the results of these sequences with the sequences of a family of 
linear positive multivariate neural network operators ��

�(. ; �) and ��(. ; �). 
 

We describe the results by graphics of absolute value of the error function for some particular values of 
� = 10, 20, 30 and for two test functions in 2-dimensional �(�� , ��) = ��

� − �� 
�  and  �(��, ��) =

�

�
cos(4����) + 2sin (�� + ��), we define the error function between any test function ℎ and operator �� as 

follows: �(�) = |��(�) − ℎ(�)|,  ∀� ∈ ℝ � . 
 

Example 4.1 
 

For � = 10, 20, 30 the sequence of a family of linear positive multivariate neural network operators ��(�; �) 
convergence to the test function �(�� , ��) = ��

� − ��
�, with error given in the Figs. (4.1-4.3) respectively. 

 

  

Fig. 4.1. The error function 
|��(�; �) − �(�)|, as � = ��. 

CPU time is 17.706587 seconds 

Fig. 4.2. The error 
function|��(�; �) − �(�)|, as 

� = ��. 
CPU time is 55.197249 seconds 

Fig. 4.3. The error 
function|��(�; �) − �(�)|, as 

� = ��. 
CPU time is 215.532575 seconds 
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Example 4.2 
 
For � = 10, 20, 30, the sequence of a family of linear positive multivariate neural network operators 
��
�(�; �) convergence to the test function �(�� , ��) = ��

� − ��
� , with error given in the Figs. (4.4-4.6) 

respectively.  
 

  
 

 

Fig. 4.4. The error function 
|��

� (�; �) − �(�)|, as � = ��. 
CPU time is 12.730782 seconds 

Fig. 4.5. The error 
function|��

� (�; �) − �(�)|,as 
� = ��. 

CPU time is 93.307534 seconds 

Fig. 4.6. The error 
function|��

� (�; �) − �(�)|, as 
� = ��. 

CPU time is 227.053357 seconds 
 

Example 4.3 
 
For � = 10, 20, 30,  the sequence of a family of linear positive multivariate neural network operators 
��(�; �), convergence to the test function �(�� , ��) = ��

� − ��
�, with error given in the Figs. (4.7-4.9) 

respectively. 
 

  
 

 
Fig. 4.7. The error 

function|��(�; �) − �(�)|, as 
� = ��. 

CPU time is 10.798002 seconds 

Fig. 4.8. The error 
function|��(�; �) − �(�)|, as 

� = ��. 
CPU time is 46.376399 seconds 

Fig. 4.9. The error 
function|��(�; �) − �(�)|, as 

� = ��. 
CPU time is 211.845499 seconds 

 
Example 4.4 
 
For � = 10, 20, 30 the sequence of a family of linear positive multivariate neural network operators 

��(�; �) convergence to the test function �(�� , ��) =
�

�
cos(4����) + 2sin (�� + ��), with error given in 

the Figs. (4.10-4.12) respectively. 
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Fig. 4.10. The error 
function|��(�; �) − �(�)|,as 

� = ��. 
CPU time is 20.416746 seconds 

Fig. 4.11. The error 
function|��(�; �) − �(�)|,as 

� = ��. 
CPU time is 101.361674 seconds 

Fig. 4.12. The error 
function|��(�; �) − �(�)|,as 

� = ��. 
CPU time is 445.471572 

seconds 
Example 4.5 
 
For � = 10, 20,30, the sequence of a family of linear positive multivariate neural network operators 

��
�(�; �) convergence to the test  function �(�� , ��) =

�

�
cos(4����) + 2sin (�� + ��),with error given in 

the Figs. (4.13-4-15) respectively. 
 

   
Fig. 4.13. The error 

function|��
� (�; �) − �(�)|,as 
� = ��. 

CPU time is 9.581222 seconds 

Fig. 4.14. The error 
function|��

� (�; �) − �(�)|,as 
� = ��. 

CPU time is 51.313056 seconds 

Fig. 4.15. The error 
function|��

� (�; �) − �(�)|,as 
� = ��. 

CPU time is 272.267879 
seconds 

 

Example 4.6 
 

For � = 10, 20, 30, the sequence of a family of linear positive multivariate neural network operators 

��(�; �), convergence to the test  function �(�� , ��) =
�

�
cos(4����) + 2sin (�� + ��), with error given in 

the Figs. (4.16-4.18)  respectively. 
 

   
Fig. 4.16. The error 

function|��(�; �) − �(�)|,as 
� = ��. 

CPU time is 8.827533 seconds 

Fig. 4.17. The error 
function|��(�; �) − �(�)|,as 

� = ��. 
CPU time is 88.360289 

seconds 

Fig. 4.18. The error 
function|��(�; �) − �(�)|,as 

� = ��. 
CPU time is 373.654205 

seconds 
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The results of applications previous obtained are shown in table next. 
 

Table 4.1. Shows us when � change 10, 20, 30 the CPU time values and the maximum error in figures 
 

Operators � CPU 
time values 

Maximum error in 
figures (approximately) 

Figure 

��(�; �) 10 
20 
30 

17.706587 s 
55.197249 s 
215.532575 s 

0.2 
0.1 
0.06 

4.1 
4.2 
4.3 

��
�(�; �) 10 

20 
30 

12.730782 s 
93.307534 s 
227.053357 s 

0.2 
0.1 
0.06 

4.4 
4.5 
4.6 

��(�; �) 10 
20 
30 

10.798002 s 
46.376399 s 
211.845499 s 

1500 
4 × 10� 
2 × 10� 

4.7 
4.8 
4.9 

��(�; �) 10 
20 
30 

20.416746 s 
101.361674 s 
445.471572 s 

0.2 
0.1 
0.05 

4.10 
4.11 
4.12 

��
�(�; �) 10 

20 
30 

9.581222 s 
51.313056 s 
272.267879 s 

0.2 
0.1 
0.05 

4.13 
4.14 
4.15 

��(�; �) 10 
20 
30 

8.827533 s 
88.360289 s 
373.654205 s 

2000 
15 × 10� 
8 × 10� 

4.16 
4.17 
4.18 

 

5 Conclusions 
 
We give some application of the sequences of linear positive multivariate neural network operators ��(. ; �), 
��
�(. ; �) and ��(. ; �). We take two test functions in 2- dimensional �(��, ��) and �(��, ��), The graphics of 

absolute value of the error function for some particular values of � = 10, 20, 30, we get the following 
results. 
 
The best convergence sequence in ��(. ; �) for the two test function �  and � also when � = 10, 20, 30. On 
the other hand the worst result we got in ��(. ; �) when � = 10, 20, 30, for the two test function �  and �, 
due to the large proceedings required for these effects. 
 
Note that these result for these applications were obtained when � = 30 or less due to slow computer or 
inability to implement higher values to �. These results can not be relied on for � values greater than 30 after 
application and observation of results. 
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