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ABSTRACT

In [6] Micchelli had introduced a technique of iterative combination to improve the
order of approximation by Bernstein polynomials. In the present paper, we have used his
technique to improve the order of approximation by a new sequence of linear positive
operators introduced by Agrawal and Thamer in [2] called the integral Baskakov-type
operators.

1. INTRODUCTION
Agrawal and Thamer [2] introduced a new sequence of linear positive operators M,
as given below:

Let a>0 and feCa[O,oo)::{feC[O,oo):|f(t)|SM(1+t)0’forsomeM>0}.

Then,

M, (f(1);x)=(n~ 1)anv<x>jpnv1<r>f<t)dt+<1+x)‘ £, (L1

v=l
n+v-1) , Cny
where p,, (x)= y x (1+x) and xe [0, ).

The space C,,[0,%0) is normed by [f| . = sup [f()|A+1)7%, fe Cyl0,00).
Alternatively, the operators (1.1) may be Writfeh asosi<es

M, (f(0);%) = j W, (&%) f (1) di ,
0

where the kernel

W, x)=mn- l)z Py (X) Py () +(1+ x) "),

v=l
0(t) being the Dirac-delta function.

The order of approximation by the operators (1.1) is, at best O(n™') whatsoever
smooth the function may be. Therefore, in order to improve the rate of convergence on™)
by these operators, the technique of linear combination introduced by May [5] and Rathore [7]
has been used [3]. There is yet another approach for improving the order of approximation,
which was offered by Micchelli [6] by considering the iterative combinations
U,,=1-(U-B, )X of the Bernstein polynomials B, , where ke N (the set of positive
integers). He proved some direct and saturation results for these operators U, ; using semi-
group method. Agrawal [1] obtained an inverse theorem in simultaneous approximation for
the operators U, .
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In the present paper, we have considered Micchelli combination for the operators (1.1)
and proved some direct results concerning the degree of approximation.

The iterates of the operator M, are defined by
MP=Tand MF=pm, (M}, keN.
Now, we define the operators Ly, :Cyl0,00) > C *[0,00) (the class of infinitely
differentiable functions on [0, ) ) as:

k k
Ln,k<f(r>;x)=(1—<1—Mn)")<f(r>;x)=2<—1)’“(JMﬁ(f(o;x). (12)

r=l1

Let me N and O<a<b<e, for sufficient small values of >0, the m-th order
modulus of continuity @,,(f,n;[a,b]) for a continuous function f on the interval [a,b] is
defined as:

a)m(f,n;[a,b])=supﬂ AT f(x)‘:| h|<7, x,x+mhe [a,b]},

where A} f(x) is the m-th order forward difference with step length h. For
m=1, @,,(f,n;la,b]) is written simply as @y (17;[a,b]) or @(f,n;la,bl).
Throughout this paper, we denote by C[a,b] the space of all continuous functions on

the interval [a,b],

'”C[a,b] the sup-norm on the space Cla,b], 0<a; <a, <by <b; <o,

I; =[a;,b;],i=1, 2 and C denotes a constant not necessarily the same in different cases.

2. PRELIMINARIES

In the sequel, we shall require the following results:
For fe C,[0,), >0 and me N, the Steklov mean fn,m of m-th order

corresponding to f is defined by:

n/2\" m
Fam@=0"" [ | {fe+E0"" A% feo [y, xel,.
112 D% i=1

i=1

Lemma 1 [8]. For the function fmm (t) defined above, we have

@ fpm@® has derivatives upto order m over [;;

<C.n" o, (f,m1), r=1,2,..., m;

b ‘ (r)
() ff],m C([z)

&3
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© |f = Foml oy, S Const @u(Fom 1)

Cly)

@ [Frnl e, <Cmia Il

© “f 7 Cnss [F ey

e, <
C(Iy)
where C;'s are certain constants that depend on i but are independent of f and 7.
Let the m-th order moment for the operators (1.1) be defined by:
Ty ) =M, ((t-)";x)=(n-1DD_p,, ) f Ppy-1 O =0)"dt +(=0)" 1+ x)7" .
v=l 0

Lemma 2 [2]. For the function 7,

.m (%), there follow

2x

n—

and

Tn70 (.X') =1 N Tn,l (.X') =

(n—m-— 2)Tn7m+1 (x)=x(1+x) Tym (x)+[2x+1)m + 2x]Tn’m (x)
+ 2mx(1 + x)Tn,m_l (x), n>m-—2
Further, we have the following consequences of 7}, ,, (x):
(C) R (x) is polynomial in x of degree m ;

(i) For everyxe [0,) , T, , (x)= O(n_[(m+1)/ 2]), where [(m +1)/ 2] denotes the integer

partof (m+1)/2;

k
k) {x(x+2)} o

(iii)  The coefficients of n™* in T, (x) and T, ,;(x) are 0 d
2k —-1)! _
((kk 1))' {1+ 2k) =1} {x(x + 2)F " respectively.
Lemma 3. [3] Let 0 and y be any positive real numbers. Then for any m >0 we
have:
jWn(z,x) t7 dt =0(n™).
‘t—x‘Zé‘ cy)

For every me N, the m-th order moment Tn{jﬁ for the operator M P where pe N, is

defined by 7\2) (x)=M [ (t — x)"; x) . We denote T'} (x) by T, (x).

Lemma 4. There holds the recurrence relation
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T (x) = Z( Jm ijﬂ(x) D' (Tn{f;j j(x)), @.1)

j=0 i=0

where D = i .
dx

Proof. By the definition, we have

T oy =M, (M2 (@ =)™ uyi)= M, (MP (== )™ i)

= i(n.lJMn((u—X)jM,f((t—u)’"‘j;u);x)
=0\

since M P ((t — W)™ su) isa polynomial in u of degree <m — j, by Taylor’s expansion, we
can write
_; m_j(u — x)i ()
mf (=)= 2P (rin o).
i !
Hence, the equation (2.1) is immediate. [ ]

Lemma 5. FOI‘ every xXe [0, 00) , We haVe
p —[(m+1)/2
] { m} (x) = O(I’L I€ ) ]) . (2.2)

where [(m +1)/ 2] denotes the integer part of (m+1)/2.

Proof. We prove (2.2) by induction on p . For p =1, the result holds from Lemma 2.
Su]%?o the result is. true for p, we shall prove it for p+1. Now,
thn - (=0 ~Lm=+D721y and T, fn} ;(x) is polynomial in x of degree <m— j, it follows

a

Dl( n m ; ()C)) O(I’l_[(m_j+l)/2]) , for every i
Now, by using Lemma 4, we get

m m— ) o
Tn{,lr)nﬂ} (x) = O{Z n [(m—j+1)/2]—[(l+j+1)/2]J
i=0

\.

Jj=0

[i”i —[( +'+1)/2]J
m+i

Therefore, by the induction hypothesis, we obtain the result (2.2). |

Lemma 6. For m-th order moment (me N ) of the operators L, , defined in (1.2) we
find that

L (-0 x)=0@").

53
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Proof. We prove by induction on k. First, for k =1, the result follows from Lemma 2.

Suppose the result is true for k, we shall prove it for k£ +1.

k+1 +1
Ly (@ =0)";0)=> (- 1)’“( . JTJ,C&(x)

r=1

k+1

k k
=Z<—1>’“( j W)+ Y (= 1>’“( J T () =3%,+%, .
r=l1

r=l1

Clearly, > =L, ; ((t—x)";x) . Now, using Lemma 4, we have
k k
==> (D" ( an e
r=0 r
m—1 m—j Di .
[ j Tyt j(x) T(Ln,k ((f—x)m j§x))

j=l1 i=0

Y e If.—,i(Ln,k (e =0m:x))- L= 0msx).
i=1 :

Therefore,
m—1 m—j i )
e 1 (1 D A DI TENEE)
j=1 i=0
m Di .
- T, (x)7 (Lmk ((r —Xx) ;x))
i=1 :
=0~ "),
Hence, the required result follows. ]
3. MAIN RESULTS

First, we establish a Voronoskaja-type asymptotic formula for the operators L, ;
Theorem 1. Let fe C,[0,0). If f(Zk) exists at a point x € [0, o) then

2k (i)
tim 1 {2, (0~ F}= 2 T 00k, G.1)
n—ee i=2
and
lim n*{L, 1 (F:0 = F0}=0. (3.2)

where Q(i, k, x) are certain polynomials in x of degree at most i.

86
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Further, if f k=D exists and is absolutely continuous over the interval [0,b] and

f k) ¢ L.[0,b], then for any [c,d] < (0,b) there holds

R O VA T F S CE)

Proof. By Taylor’s expansion of f, we have

) )
f<r)—2f "0 - 4 ) (- 0

where £(t,x) -0 as r — x and |8(t,x)| < C(1+1)%for some C >0. Therefore,

) .
L, (F @0 = fol=n zf @y (=)

k
+ nkZ(—l)rH( k]M;(e(z,x) (t - x)Zk;x):= Y+,
r

r=l1

Using Lemma 6, we have

@)) ) 2k ()
Zf] O 1l =07:2)= L2 0 ko) + 001,
! Jj!

j=2
Since &(¢,x) -0 as t — x, thus for a given £ >0, there exists a d >0 such that |8(t, x)| <&

whenever |t - x| < 0. Suppose that @s(r) denotes the characteristic function of the interval

(x=30,x+0), then

k (k
|Z,|< nkZ( rjM,j(|a(r,x)| (t -0 g5(1): x)
r=l1

k
+nkz{ kJMmg(”x)' (1= 0% (1= 9500 x)=J, + /5.
r=I\ T

To estimate J;, applying Lemma 5 we have

e kY, 2k
Ji<é€n Z( jMn((t—x) ;x)<8C.
r=I\ T

For an arbitrary s >0, applying Lemma 3 we have

i kY p 2% C
PR . Mn(C(l+t) (t — x) (l—¢5(t));x)<—szo(l).
r=1 n
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Since, £>0 is arbitrary, thus >, —0 as n— c. Combining the estimates of >, and X.,,

we obtain (3.1).

The equation (3.2) can be proved along similar lines by noting the fact that
Ll’l,k+1 ((t - x)j 5 x) = O(H_(k+1) ) , \v/ JE N '

Now, we shall prove (3.3). For this purpose let i be the characteristic function of
[0,b]. Thus,
Ly (f(2);0) = f(x) = L j W (S () = f(X)); %)
+ L, (A=) SO = [0 =23+2y.
The estimate of >, can be found in a manner similar to the estimate of J,. Thus, we have
forall xe[c,d]

Sp<Cn |, .

For t€[0,b] and x€ [c,d], by our hypothesis of f, we can write f

t

(t—x) +

2k-1 ,(i)
[ (%)
2

i=1

f@)—f(x)= —w)2K T @Oy aw .

(2k—1)!~)[<

Thus,

2k=1 £ (i) .
23 = Z / ( ) n,k('//(t)(t_x)l;x)

Teny nk[ <r)j<r )2 £ OO () ds x}

2k—1 (i) . .
= Z f i'(X) {Lmk ((r—x)’;x)+ L, ((w(t)—l)(r—x)’;x)}
i=1
ﬁ nk[w) [=w> £ 0wy dw; xJ
2k—1 p (i)
Zf (X){J3 + 41+ s (3.4)

By Lemma 6, we get J; = on™") uniformly for xe [c,d].
Proceeding as in the estimate of J, and taking account of the fact that x€ [c,d]

J,=0(n™").
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By (1.2) and (2.2), we have
Is _||f(2k)|| Ob] _k)'

Combining the estimates J3 — J5 in (3.4), we obtain

2k—1
—k (@) (2k)
"23”C[c,d] <Cn {; ||f l Cle,d] ||f || Ob]}

Finally, applying Goldberg and Meir's [4, p.5] property, we obtain the required result. H
Theorem 2. Let f e C,[0,), then for sufficient large n, we have

Lo (P30 = F o, < Clom (o™ 1040741, |
where C independent of f and n.

Proof. Let f), 5, be the steklov mean of 2k-th order corresponding to f . Then,

| Lok (P00 = £y <] L O = Fp 010

C(lp) C(lp)

+ ” Ly (o (0:%) = [0k (X)" "fn 2k (X) = f(x)” +20+23.

C(Iy) C(l, )

By using the property (c) of Lemma 1, we have 23 <C w,, (f,7,1;) .

Using Theorem 1, we get >, <Cn™* z H ,;jz)k H :
Cy)

Now, by using Goldberg and Meir's [4, p.5] and properties (d), (b) of Lemma 1, we have

H ) H ciy {”fﬂz"”C(lz) “ ’7(221;3” (12)} (7223, 20

<cnk ("f"ca +H (Zk)H C(1, )j

<Cn™ (”f"ca + 77 oy (f7: 1) )

Let a” and b” be such that a; <a’<a, <b, <b’<b; and ¥ be the characteristic function of

[a’,b’]. Then, by using Lemma 3 and property (c) of Lemma 1 we get

1 < Lk WOF @ = fy.20 ;)|

Ly g (A=) (D) = fy 21 (0): )|

+
C(I) C(1)

SCi”f—fmk” 2" £l },v m>0

b T
Cld'b']

<claoy () +nyl,. |

&9
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Now, choosing m =k and n=n"

172 in the estimates of Zl’ 22 and 23 , the result follows.
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