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Lp-SATURATION THEOREM FOR A LINEAR

COMBINATION OF A NEW SEQUENCE OF LINEAR

POSITIVE OPERATORS

BY

P. N. AGRAWAL AND ALI J. MOHAMMAD

Abstract. The present paper is a continuation of our work in [2] and [3]. In [2], we

studied some direct results in Lp-approximation by a linear combination of a new

sequence of linear positive operators introduced by us in [1]. In [3], we established

an inverse theorem in Lp-norm for the same sequence. Here our object is to discuss

a saturation theorem in Lp-norm for these operators.

1. Introduction

For f ∈ Lp[0,∞), 1 ≤ p < ∞, we [1] introduced a new sequence of linear

positive operators in the following way:

Mn(f(t);x) =

∫ ∞

0
Wn(t, x)f(t)dt, (1.1)

where Wn(t, x) = n
∑∞

v=1 pn,v(x)qn,v−1(t) + (1 + x)−nδ(t), δ(t) being the Dirac-

delta function, pn,v(x) =
(n+v−1

v

)

xv(1 + x)−n−v and qn,v(t) = e−nt(nt)v

v! , where x,

t ∈ [0,∞).

May [4] and Rathore [5] have described a method for forming linear combi-

nations of a sequence of linear positive operators so as to improve the order of

approximation. Following their method, in [1] we established some direct theo-

rems for a linear combination of the operators (1.1). The approximation process

is described as follows:
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For k ∈ N 0 (the set of nonnegative integers), the linear combination

Mn(f, k, x) of the operators Mdjn(f ;x), j = 0, 1, . . . , k is defined as:

Mn(f, k, x) =
k
∑

j=0

C(j, k)Mdjn(f ;x), (1.2)

where d0, d1, . . . , dk ∈ N (the set of positive integers) and are arbitrary and

distinct but fixed and

C(j, k) =
k
∏

i=0
i6=j

dj

dj − di
, k 6= 0 and C(0, 0) = 1. (1.3)

Throughout this paper, let 0 < a < b < ∞, C[a, b] the set all continuous

functions on the interval [a, b], Cm[a, b] the subset of C[a, b] having m-times

continuously differentiable functions, C0 the subset of C(0,∞) having a compact

support, Ck
0 the subset of C0 having k-times continuously differentiable functions,

AC[a, b] the class of absolutely continuous functions on [a, b], BV [a, b] the class

of functions of bounded variation over [a, b] and ‖.‖C[a,b], the sup norm on the

space C[a, b].

For m ∈ N and f ∈ Lp[a, b], 1 ≤ p < ∞, the m-th order integral modulus of

smoothness of f is defined as:

ωm(f, τ, p, [a, b]) = sup
0<δ≤τ

‖∆m
δ f(t)‖Lp[a,b−mδ],

where ∆m
δ f(t) is the m-th order forward difference of the function f with step

length δ and 0 < τ ≤ (b − a)/m.

Further we assume that 0 < a1 < a3 < a2 < b2 < b3 < b1 < ∞, Ii = [ai, bi]

(i = 1, 2, 3), 〈h, g〉 :=
∫∞
0 h(x)g(x)dx the inner product on the space Lp[0,∞)

and C denotes a constant not necessarily the same in different cases.

The object of the present paper is to prove the following (saturation the-

orem):

Theorem 1. Let f ∈ Lp[0,∞), 1 ≤ p < ∞. Then, in the following state-

ments, the implications (i) ⇒ (ii) ⇒ (iii) and (iv) ⇒ (v) ⇒ (vi) hold:

(i) ‖Mn(f, k, .) − f‖Lp(I1) = O(n−(k+1));
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(ii) f coincides almost everywhere (a.e.) with a function F on I3 having 2k + 2

derivatives such that:

(a) when p > 1, F (2k+1) ∈ AC(I3) and F (2k+2) ∈ Lp(I3),

(b) when p = 1, F (2k) ∈ AC(I3) and F (2k+1) ∈ BV (I3);

(iii) ‖Mn(f, k, .) − f‖Lp(I2) = O(n−(k+1));

(iv) ‖Mn(f, k, .) − f‖Lp(I1) = o(n−(k+1));

(v) f coincides a.e. with a function F on I3, where F is 2k+2 times continuously

differentiable on I3 and satisfies
∑2k+2

j=k+2
Q(j,k,x)

j! F (j)(x) = 0, where Q(j, k, x)

are the polynomials occurring in Theorem 4;

(vi) ‖Mn(f, k, .) − f‖Lp(I2) = o(n−(k+1)),

where O(n−(k+1)) and o(n−(k+1)) terms are with respect to n, where n → ∞.

2. Preliminary Results

In order to prove the saturation theorem, we shall require the following re-

sults:

Let f ∈ Lp[0,∞), 1 ≤ p < ∞. Then, for sufficiently small η > 0, the Steklov

mean fη,m of m-th order corresponding to f is defined as follows:

fη,m(t) = η−m

(

∫ η/2

−η/2

)m {

f(t) + (−1)m−1∆m
∑m

i=1
ti
f(t)

} m
∏

i=1

dti, t ∈ I1.

Lemma 1.([7]) For the function fη,m(t) defined above, we have

(a) fη,m(t) has derivatives upto order m over I1, f
(m−1)
η,m ∈ AC(I1) and f

(m)
η,m exists

a.e. and belongs to Lp(I1);

(b) ‖f
(r)
η,m‖Lp(I2) ≤ Mrη

−rωr(f, η, p, I1), r = 1, 2, . . . ,m;

(c) ‖f − fη,m‖Lp(I2) ≤ Mm+1ωm(f, η, p, I1);

(d) ‖fη,m‖Lp(I2) ≤ Mm+2‖f‖Lp(I1);

(e) ‖f
(m)
η,m‖Lp(I2) ≤ Mm+3η

−m‖f‖Lp(I1),

where Mi’s are certain constants that depend on i but are independent of f and

η.

Lemma 2.([1]) Let m ∈ N 0, the m-th order moment for the operators (1.1)
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be defined by:

Tn,m(x)=Mn((t−x)m;x)=n
∞
∑

v=1

pn,v(x)

∫ ∞

0
qn,v−1(t)(t−x)mdt+(−x)m(1+x)−n.

Then Tn,0(x) = 1, Tn,1(x) = 0 and

nTn,m+1(x) = x(1 + x)T ′
n,m(x) + mTn,m(x) + mx(x + 2)Tn,m−1(x), m ≥ 1.

Further, we have the following consequences of Tn,m(x):

(i) Tn,m(x) is a polynomial in x of degree m, m 6= 1;

(ii) for every x ∈ [0,∞), Tn,m(x) = O(n−[(m+1)/2]) where [β] denotes the integral

part of β.

Lemma 3.([1]) For m ∈ N 0, we define the function µn,m(t) as:

µn,m(t) = n
∞
∑

v=1

qn,v−1(t)

∫ ∞

0
pn,v(x)(x − t)mdx.

Then µn,0(t) = n
n−1 , µn,1(t) = 2n(1+t)

(n−1)(n−2) and there holds the recurrence relation

(n−m−2)µn,m+1(t) = tµ′
n,m(t) + (m+2mt+2t+2)µn,m(t) + mt(t+2)µn,m−1(t),

where n > m + 2. Consequently:

(i) µn,m(t) is a polynomial in t of degree m;

(ii) for every t ∈ [0,∞), µn,m(t) = O(n−[(m+1)/2]).

Lemma 4.([4]) If C(j, k), j = 0, 1, . . . , k are defined as in (1.3), then

k
∑

j=0

C(j, k)d−m
j =

{

1, m = 0,

0, m = 1, 2, . . . , k.

Lemma 5. Let h ∈ Lp(I1), 1 ≤ p < ∞, with supp h ⊂ I1. If h has 2k + 1

derivatives with h(2k) ∈ AC(I1) and h(2k+1) ∈ Lp(I1), then for each g ∈ C2k+2
0

with supp g ⊂ (0,∞), the following inequality holds:

|〈Mn(h, k, x) − h(x), g(x)〉| ≤
C

nk+1

2k
∑

r=0

‖h(r)‖C(I1).
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Proof. Clearly,

〈Mn(h, k, x) − h(x), g(x)〉 =
k
∑

j=0

C(j, k)〈Mdj n(h(t);x), g(x)〉 − 〈h, g〉. (2.1)

By using Fubini’s theorem and Taylor’s expansion of g at x = t, we have

〈Mdjn(h(t);x), g(x)〉

=

∫ ∞

0

∫ ∞

0
Wdjn(t, x)h(t)g(x)dtdx

=

∫ ∞

0

∫ ∞

0
Wdjn(t, x)h(t)

[

2k+1
∑

i=0

(x − t)i

i!
g(i)(t) +

(x − t)2k+2

(2k + 2)!
g(2k+2)(ξ1)

]

dxdt

( where ξ1 lies between x and t )

=

∫ ∞

0

(
∫ ∞

0
Wdjn(t, x)dx

)

h(t)g(t)dt

+

∫ ∞

0

(
∫ ∞

0
Wdjn(t, x)(x − t)dx

)

h(t)g′(t)dt

+
2k+1
∑

i=2

1

i!

∫ ∞

0

∫ ∞

0
Wdjn(t, x)(x − t)ih(t)g(i)(t)dxdt

+
1

(2k + 2)!

∫ ∞

0

∫ ∞

0
Wdjn(t, x)(x − t)2k+2h(t)g(2k+2)(ξ1)dxdt

= σ0 + σ1 +
2k+1
∑

i=2

σi + σ2k+2.

Applying Lemmas 3 and 4 we obtain
∑k

j=0 C(j, k)σ0 = 〈h, g〉 + O(n−(k+1)) and

by Lemma 3 again, we have

k
∑

j=0

C(j, k)σ1 =
k
∑

j=0

C(j, k)

∫ ∞

0

(
∫ ∞

0
Wdjn(t, x)(x − t)dx

)

h(t)g′(t)dt

=
k
∑

j=0

C(j, k)

∫ ∞

0

2djn(1 + t)

(djn − 1)(djn − 2)
h(t)g′(t)dt.

Thus, by using the compactness of g′ and Lemma 4, we get:

∣

∣

∣

∣

∣

∣

k
∑

j=0

C(j, k)σ1

∣

∣

∣

∣

∣

∣

≤
C

nk+1
‖h‖C(I1) and

∣

∣

∣

∣

∣

∣

k
∑

j=0

C(j, k)σ2k+2

∣

∣

∣

∣

∣

∣

≤
C

nk+1
‖h‖C(I1).
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Now, let hi(t) = h(t)g(i)(t), 2 ≤ i ≤ 2k + 1 then by using Taylor’s expansion of

hi at t = x, we have hi(t) =
∑2k−1

r=0
(t−x)r

r! h
(r)
i (x) + (t−x)2k

(2k)! h
(2k)
i (ξ2) where ξ2 lies

between t and x. Applying Fubini’s theorem and Lemma 4, we have for each

i = 2, 3, . . . , 2k + 1
∣

∣

∣

∣

∣

∣

k
∑

j=0

C(j, k)σi

∣

∣

∣

∣

∣

∣

≤
C

nk+1

{

2k
∑

r=0

‖h
(r)
i ‖C(I1)

}

≤
C

nk+1

{

2k
∑

r=0

‖h(r)‖C(I1)

}

.

Thus,
∑k

j=0 C(j, k)
(

∑2k+1
i=2 σi

)

≤ C
nk+1

∑2k
r=0 ‖h

(r)‖C(I1).

Finally, combining the estimates of
∑k

j=0 C(j, k)σi, i = 0, 1, . . . , 2k+2 with (2.1),

the required result follows.

Lemma 6.([2]) Let 1 < p < ∞ and f ∈ L
(2k+2)
p (I1), then for all n sufficiently

large, the following inequality holds:

‖Mn(f, k, .) − f‖Lp(I2) ≤ C1n
−(k+1)

{

‖f (2k+2)‖Lp(I1) + ‖f‖Lp[0,∞)

}

,

where C1 = C1(k, p).

Let f ∈ L1[0,∞). If f has 2k + 1 derivatives in I1 with f (2k) ∈ AC(I1) and

f (2k+1) ∈ BV (I1), then for all n sufficiently large, the following inequality holds:

‖Mn(f, k, .)−f‖L1(I2)≤C2n
−(k+1)

{

‖f (2k+1)‖BV (I1)+‖f (2k+1)‖L1(I2)+‖f‖L1[0,∞)

}

,

where C2 = C2(k).

Our next result is an inverse theorem in Lp-approximation for Mn(., k, x).

Theorem 2.([3]) Let 0 < α < 2k + 2, f ∈ Lp[0,∞), 1 ≤ p < ∞, and

‖Mn(f, k, .) − f‖Lp(I1) = O(n−α/2) as n → ∞,

then ω2k+2(f, τ, p, I3) = O(τα) as τ → 0.

Theorem 3.([6]) Let 1 ≤ p < ∞, f ∈ Lp[a, b] and there hold

ωm(f, τ, p, [a, b]) = O(τ r+α), (τ → 0),

where m, r ∈ N and 0 < α < 1. Then f(x) coincides a.e. on [c, d] ⊂ (a, b)

with a function F (x) possessing an absolutely continuous derivative F (r−1)(x),
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the rth derivative F (r)(x) ∈ Lp[c, d], and there holds ω(F (r), τ, p, [c, d]) = O(τα),

(τ → 0).

Let α > 0 and f ∈ Cα[0,∞) ≡ {f ∈ C[0,∞) : |f(t)| ≤ Meαt for some M >

0}. We state Voronoskaja type asymptotic result for the operator Mn(f, k, x).

Theorem 4.([1]) Let f ∈ Cα[0,∞) and f (2k+2) exist at a point x ∈ [0,∞).

Then lim
n→∞

nk+1[Mn(f, k, x) − f(x)] =
∑2k+2

m=k+2(f
(m)(x)/m!)Q(m, k, x) and

lim
n→∞

nk+1[Mn(f, k + 1, x) − f(x)] = 0, where Q(m, k, x) are certain polynomials

in x of degree m. Moreover,

Q(2k + 1, k, x) =
(−1)k

∏k
j=0 dj

Cxk(x + 2)k−1(x2 + 3x + 3) and

Q(2k + 2, k, x) =
(−1)k

∏k
j=0 dj

(2k + 1)!!{x(x + 2)}k+1,

where !! denotes the semi-factorial function.

3. Proof of Theorem 1

We assume that a1 < x1 < x2 < a3 < b3 < y2 < y1 < b1, and Ji = [xi, yi]

(i = 1, 2). We get from Theorem 2 and 3 that f coincides a.e. on (x1, y1) with a

function called F such that F (2k) ∈ AC(J1) and F (2k+1) ∈ Lp(J1). Moreover, for

0 < β < 1,

ω(F (2r+1), τ, p, J1) = O(τβ), τ → 0. (3.1)

Let q∈C2k+2
0 with supp q ⊂ (a1, b1) and q(x) = 1 if x ∈ J1. Put f̂(x) = F (x)q(x),

x ∈ [0,∞) then

‖Mn(f̂ , k, .) − f̂‖Lp(J2) ≤ ‖Mn(f, k, .) − f‖Lp(J2) + ‖Mn(f̂ − f, k, .)‖Lp(J2).

Because of f̂ = f on J1, the contribution of the second term of the right hand

side can be made arbitrarily small as n → ∞. Hence, assuming (i), it follows

that

‖Mn(f̂ , k, ·) − f̂‖Lp(J2) = O(n−(k+1)), n → ∞.

Now, if p > 1, using Alaoglu’s theorem there exists a function h(x) ∈ Lp(J2) such

that for some subsequence {nj} and for every g ∈ C2k+2
0 with supp g ⊂ (a1, b1),

lim
nj→∞

nk+1
j 〈Mnj

(f̂ , k, .) − f̂ , g〉 = 〈h, g〉. (3.2)
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When p = 1, the function φn(x) can be defined by:

φn(u) =

∫ u

x2

nk+1{Mn(f̂ , k, x) − f̂(x)}dx

are uniformly bounded and are of uniformly bounded variation. Making use of

Alaoglu’s theorem, it follows that there exists a function φ0(x) ∈ AV (J2) such

that

lim
nj→∞

nk+1
j 〈Mnj

(f̂ , k, .) − f̂ , g〉 = −〈φ0, g
′〉. (3.3)

Now, suppose f̂η,2k+2 is the Steklov mean of (2k +2)th order corresponding to f̂ ,

we have

〈Mnj
(f̂ , k, x) − f̂(x), g(x)〉 = 〈Mnj

(f̂ − f̂η,2k+2, k, x) − (f̂ − f̂η,2k+2)(x), g(x)〉

+〈Mnj
(f̂η,2k+2, k, x) − f̂η,2k+2(x), g(x)〉

= 〈Mnj
(f̂ − f̂η,2k+2, k, x) − (f̂ − f̂η,2k+2)(x), g(x)〉

+
1

nk+1
j

〈P2k+2(D)f̂η,2k+2(x), g(x)〉 + o

(

1

nk+1
j

)

,

in view of Theorem 4, where P2k+2(D) =
∑2k+2

i=k+2
Q(i,k,x)

i! Di and D ≡ ∂
∂x .

Let P ∗
2k+2(D) =

∑2k+2
i=k+2

Q∗(i,k,x)
i! Di denote the differential operator adjoint to

P2k+2(D), thus,

nk+1
j 〈Mnj

(f̂ , k, x) − f̂(x), g(x)〉 − 〈f̂η,2k+2(x), P ∗
2k+2(D)g(x)〉

= nk+1
j 〈Mnj

(f̂ − f̂η,2k+2, k, x) − (f̂ − f̂η,2k+2)(x), g(x)〉 + o(1)

≤ C

{

2k
∑

r=0

‖f̂ (r) − f̂
(r)
η,2k+2‖C(I1)

}

+ o(1)

(in view of property (a) of Lemma 1 and Lemma 7).

Therefore,

lim
nj→∞

nk+1
j 〈Mnj

(f̂ , k, x) − f̂(x), g(x)〉 − 〈f̂η,2k+2(x), P ∗
2k+2(D)g(x)〉

≤ C

{

2k
∑

r=0

‖f̂ (r) − f̂
(r)
η,2k+2‖C(I1)

}

.

Taking limit as η → 0 and using (3.1), we get

lim
nj→∞

nk+1
j 〈Mnj

(f̂ , k, x) − f̂(x), g(x)〉 − 〈f̂(x), P ∗
2k+2(D)g(x)〉 = 0. (3.4)
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Combining (3.2) and (3.4), we have 〈f̂(x), P ∗
2k+2(D)g(x)〉 = 〈h(x), g(x)〉 and

hence

h = P2k+2(D)f̂ (3.5)

as generalized functions.

Now, in view of Theorem 4, we have Q(2k + 2, k, x) 6= 0. Hence, regarding

(3.5) as a genralized first order linear differential equation for f̂ (2k+1) with the

non-homogeneous terms linearly depending on f̂ (i), 0 ≤ i ≤ 2k and h with

polynomial coefficients, as f̂ (i) ∈ C(J2) (0 ≤ i ≤ 2k) and h ∈ Lp(J2) we conclude

that f̂ (2k+1) ∈ AC(J2) and therefore that f̂ (2k+2) ∈ Lp(J2). Since f̂ coincides

with F on J2 it follows that F (2k+1) ∈ AC(I2) and that F (2k+2) ∈ Lp(I2).

When p = 1, proceeding as in the case of p > 1 with (3.2) replaced by (3.3)

we find that F (2k) ∈ AC(I2) and F (2k+1) ∈ BV (I2). This completes the proof of

implication (i) ⇒ (ii).

The implication (ii) ⇒ (iii) follows from Lemma 6.

Assuming (iv), since nk+1‖Mn(f, k, .) − f‖Lp(I1) → 0 as n → ∞, proceeding

as in the proof of (i) ⇒ (ii) it follows that nk+1‖Mn(f̂ , k, .) − f̂‖Lp(J2) → 0 as

n → ∞ and hence we find that h(x) and φ0(x) are zero functions.

Thus, P ∗
2k+2(D)f̂(x) = 0. This implies that f̂ is 2k + 2 times continuously

differentiable function. Now, applying Theorem 4 for the function f̂

lim
nj→∞

nk+1
j 〈Mnj

(f̂ , k, .) − f̂ , g〉 = 〈P2k+2(D)f̂ , g〉. (3.6)

Comparing (3.4) and (3.6), we have P2k+2(D)f̂(x) = 0. Hence, over I2, F is

2k + 2 times continuously differentiable function and P2k+2(D)F (x) = 0.

Finally, (v) ⇒ (vi) follows from Theorem 4.
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