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L,-SATURATION THEOREM FOR A LINEAR
COMBINATION OF A NEW SEQUENCE OF LINEAR
POSITIVE OPERATORS

BY

P. N. AGRAWAL AND ALI J. MOHAMMAD

Abstract. The present paper is a continuation of our work in [2] and [3]. In [2], we
studied some direct results in Lp-approximation by a linear combination of a new
sequence of linear positive operators introduced by us in [1]. In [3], we established
an inverse theorem in Ly,-norm for the same sequence. Here our object is to discuss
a saturation theorem in L,-norm for these operators.

1. Introduction

For f € L,[0,00), 1 < p < oo, we [1] introduced a new sequence of linear

positive operators in the following way:

Ma(f(t)2) = [ Walta) fO)dt (11)
where Wi, (t,x) = nd oo Pnw(T)gnw—1(t) + (1 + 2)7"(t), 6(t) being the Dirac-
delta function, p,,(z) = (""" N2?(1 +2)™ " and g, (t) = %, where x,

t € [0,00).

May [4] and Rathore [5] have described a method for forming linear combi-
nations of a sequence of linear positive operators so as to improve the order of
approximation. Following their method, in [1] we established some direct theo-
rems for a linear combination of the operators (1.1). The approximation process
is described as follows:

Received December 26, 2002; revised July 19, 2004.

AMS Subject Classification. 41A40, 41A36.

Key words. linear positive operators, saturation theorem in L,-space, linear combination,
Steklov mean.

31



32 P. N. AGRAWAL AND ALI J. MOHAMMAD

For k € N (the set of nonnegative integers), the linear combination
My (f,k,z) of the operators My ,(f;x), j =0,1,...,k is defined as:

k
M, (f, k,x) = Z k)Man(f;2), (1.2)
where dy, dy,...,d; € N (the set of positive integers) and are arbitrary and
distinct but fixed and
k d.:
C(j,k) = H 7 _ﬂd kE#0 and C(0,0) = 1. (1.3)
#J

Throughout this paper, let 0 < a < b < oo, C[a,b] the set all continuous
functions on the interval [a,b], C™[a,b] the subset of C[a,b] having m-times
continuously differentiable functions, Cy the subset of C'(0,00) having a compact
support, C¥ the subset of Cp having k-times continuously differentiable functions,
AC]a, b] the class of absolutely continuous functions on [a, b], BV][a,b] the class
of functions of bounded variation over [a,b] and ||.||¢[q,, the sup norm on the
space C|a, b].

For m € N and f € Lyla,b], 1 < p < oo, the m-th order integral modulus of

smoothness of f is defined as:
wm(f,7,p,[a,b]) = sup HAgbf(t)”Lp[a,bfsz],
0<6<r

where AT f(t) is the m-th order forward difference of the function f with step
length § and 0 < 7 < (b —a)/m.

Further we assume that 0 < a1 < ag < ag < be < b3 < by < o0, I; = [a;, b;]
(1 =1,2,3), ( = [ h x)dz the inner product on the space Ly[0,00)
and C denotes a constant not necessarlly the same in different cases.

The object of the present paper is to prove the following (saturation the-

orem):

Theorem 1. Let f € L,[0,00), 1 < p < co. Then, in the following state-
ments, the implications (i) = (ii) = (iii) and (iv) = (v) = (vi) hold:
() 1Mo (f, Ky ) = fllLy ) = On” FF);
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(ii) f coincides almost everywhere (a.e.) with a function F on I3 having 2k + 2
derivatives such that:
(a) when p > 1, FC+) ¢ AC(I3) and FF2) ¢ L,(I3),
(b) when p =1, F®X) € AC(I3) and F*+) ¢ BV (I3);

(i) 1Mo (£ k) = Fll1, 1) = On~*+D);

(V) [ Ma(foks) = flloy) = oln™®F1);

(v) f coincides a.e. with a function F' on I3, where F' is 2k+2 times continuously
differentiable on I3 and satisfies Z?Eﬁz WFU)(QU) =0, where Q(j, k, )
are the polynomials occurring in Theorem 4;

(i) 1My k) = Flliy ey = o(n~ (1),

where O(n~F+tD) and o(n=F+Y) terms are with respect to n, where n — oo.

2. Preliminary Results

In order to prove the saturation theorem, we shall require the following re-

sults:
Let f € Lpy[0,00), 1 < p < oo. Then, for sufficiently small > 0, the Steklov

mean f, , of m-th order corresponding to f is defined as follows:

/2\™ m
Fam(®) =" ( / ) {ro+om1age 0T ten.
i=1

/2 i1t

Lemma 1.([7]) For the function f,mn(t) defined above, we have

(a) fom(t) has derivatives upto order m over Iy, y(,fnm_l) € AC(I) and f,gnﬁrz exists
a.e. and belongs to L,(I1);

(b) Hférr)nHLp(Ig) < Men~"wr(fimp, ), r=1,2,000,m;

©) If = fomllLy () < Mmgrwm(f,n,p,11);

() [fpmllzy) € Mmt2ll fllL, @)

(©) £l () < Mones™™ 1l c10),

where M;’s are certain constants that depend on i but are independent of f and

n.

Lemma 2.([1]) Let m € N°, the m-th order moment for the operators (1.1)
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be defined by:
T (@)= Ma((t =)™ 2) =1 Y- Paal@) | s (O)(t—2) "+ (=) (12)
v=1

Then Ty o(x) =1, Thi(x) =0 and

nTymy1(z) = 2(1 4 2)T;, () + mTym(z) + ma(z + 2)Tym-1(z), m > 1.

Further, we have the following consequences of Ty m(x):
(1) Thm(x) is a polynomial in x of degree m, m # 1;
(i) for every x € [0,00), Tnm(x) = O(n~1"FTV/2l) where [8] denotes the integral
part of 3.

Lemma 3.([1]) For m € N, we define the function finm(t) as:
fm @) =13 no1 (1) /0 Pa(z) (@ — t)"dz.
v=1

Then pino(t) = 25, pn1(t) = % and there holds the recurrence relation

(== 21 (£) = thly o (£) + (424 24 2t (8) + b (E+2) 1 (),

where n > m + 2. Consequently:
(1) pnm(t) is a polynomial in t of degree m;
(ii) for every t € [0,00), pnm(t) = O(n~l"+D/2),

Lemma 4.([4]) If C(j,k), 7 =0,1,...,k are defined as in (1.3), then

Lemma 5. Let h € L,(11), 1 < p < oo, with supp h C Iy. If h has 2k + 1
derivatives with h®*) € AC(Iy) and h®**YD € L,(I)), then for each g € CZFT?
with supp g C (0,00), the following inequality holds:

(M (s by 2) = h(a), 9] < —r - IR oy
r=0
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Proof. Clearly,

k
By using Fubini’s theorem and Taylor’s expansion of g at x = t, we have

<Mdjn(h(t);x)vg(x)>
_ /0 /0 W, n(t, 2)h(t)g(x)dt

[ Wm0 S0+ EZO2 ki v
=) ), Wanlte 2 @ht 2 Y §1)| dz

( where &; lies between x and ¢ )

= [T ([ Wantt.a)ae ) norg(eras
+ [ ([ Wantts)@ — 0o ) g 0y

21 |
! Z i [T Wit o)t~ 009 0 dde
" (2l<: ) /0 /0 Wayn(t,2) (@ = £)* ()2 (€1 dardt
2U+1
:JO+01+ Z Ui+02k+2-
i—2

Applying Lemmas 3 and 4 we obtain Z?:o C(j,k)og = (h,g) + O(n~*+D) and

by Lemma 3 again, we have

k
> C(jk)o

j=0

/ (/ Wan(t, z)(x — t)dx) h(t)g' (t)dt

/Oo (d]sciquj;)_ Q)h(t)g’(t)dt.

Thus, by using the compactness of ¢’ and Lemma 4, we get:

k

Z .77 Ul

C
< k+1 ”hHC(h)

k
Z )o 242

C
< k+1”hHC I) and
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Now, let h;(t) = h(t)g®¥(t), 2 < i < 2k + 1 then by using Taylor’s expansion of
hi at t = x, we have h;(t) = 227! %hy) (x) + ((273' Z(Qk) (&2) where &9 lies

between t and x. Applying Fubini’s theorem and Lemma 4, we have for each
1=2,3,...,2k+1

C C
nk+1 {Z Hh HC(Il)} nk+1 {Z Hh( )HC(Il)}

r=0 r=0

Thus, zgzo C(.k) (S5 01) < =65 X2 10O lleq).
Finally, combining the estimates of Z?:o C(j,k)oi, i =0,1,...,2k+2 with (2.1),

the required result follows.

Lemma 6.([2]) Let 1 <p < oo and f € L;,ka)(h), then for all n sufficiently
large, the following inequality holds:

M (f, k) = fllp, ) < Cin~*HY {||f(2k+2)||Lp(11) + ||f||Lp[O,oo)} :

where C1 = Cy(k,p).
Let f € L1]0,00). If f has 2k 4+ 1 derivatives in I, with f%%) ¢ AC(I) and
fERHD ¢ BYV(I4), then for all n sufficiently large, the following inequality holds:

M (f, ks )= fllLy (12 §C2n7(k+1){”f(2k+1)||BV(11)+||f(2k+1)HL1(12)+||f||L1[0,oo)}a
where Cy = Ca(k).
Our next result is an inverse theorem in Ly-approximation for M,(.,k,z).
Theorem 2.([3]) Let 0 < a <2k +2, f € L,[0,00), 1 <p < o0, and
Mok ) =l = O™/ as n— oo,
then wop+o(f, 7,0, I3) = O(7%) as 7 — 0.
Theorem 3.([6]) Let 1 <p < oo, f € Lpla,b] and there hold
wn(f,7,p.[a,0]) = O™, (T —0),

where m, r € N and 0 < a < 1. Then f(z) coincides a.e. on [c,d] C (a,b)

with a function F(z) possessing an absolutely continuous derivative F(—1(z),
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the v derivative F(")(x) € Ly[c,d], and there holds w(F"), 1, p,[c,d]) = O(1%),
(1 —0).

Let a > 0 and f € C,[0,00) = {f € C[0,00) : | f(t)] < Me* for some M >
0}. We state Voronoskaja type asymptotic result for the operator M, (f,k,x).

Theorem 4.([1]) Let f € C4[0,00) and f**+2) ezist at a point 2 € [0, 00).
Then nli_)rrgonkH[Mn(f,k,a:) — f(2)] = Zifi§+2(f(m)(m)/m!)Q(m,k,a:) and
lim n* M, (f, k+ 1,2) — f(z)] = 0, where Q(m, k,z) are certain polynomials

n—oo
i x of degree m. Moreover,

=0 *J
Q(2k +2,k,x) = Fnkmk+nqﬂx+mﬁﬂ
Y ) - k; i )

j=0%j

Y
Q2k+1,k,x) = (k D CaF(x +2)* " Ya? + 32 +3) and
J

where ! denotes the semi-factorial function.

3. Proof of Theorem 1

We assume that a1 < 1 < 22 < ag < bg < y2 < y1 < by, and J; = [z, yi]
(1 =1,2). We get from Theorem 2 and 3 that f coincides a.e. on (z1,y1) with a
function called F' such that F**) € AC(J;) and F*+Y ¢ L,(J;). Moreover, for
0<p <1,
w(FC+Y) 7 p J)=0(?), 7—0. (3.1)
Let g€ C2¥+2 with supp ¢ C (a1, b1) and g(z) = 1if z € Jy. Put f(z) = F(z)q(x),
x € [0,00) then

1Mo (f k) = Fllny) < IMa(f k) = Fllzy) + 1Ma(f = £.5, )z, ()
Because of f = f on Ji, the contribution of the second term of the right hand
side can be made arbitrarily small as n — oco. Hence, assuming (i), it follows
that
1Mo (fo k) = Fll,m = O(n™* ), n— oo,
Now, if p > 1, using Alaoglu’s theorem there exists a function h(x) € L,(.J2) such
that for some subsequence {n;} and for every g € C’gk+2 with supp g C (a1,b1),

lim ™ (M, (f, k) = f.9) = (h,g). (3:2)
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When p = 1, the function ¢, (z) can be defined by:

b () = / M, (F k) — f(2) Yo

are uniformly bounded and are of uniformly bounded variation. Making use of
Alaoglu’s theorem, it follows that there exists a function ¢g(x) € AV (Jz) such
that

lim (M, (f,k,.) = f,9) = —(¢0,9)- (3.3)

n;—0o0

Now, suppose fn72k+2 is the Steklov mean of (2k + 2)th order corresponding to f ,

we have
(M, (f,k,2) = f(2), g(2)) = (Mn, (f = frons2, k. 2) = (f = froni2)(@), 9(@))
+<Mnj (fn,Zk‘-l—Q,k,x) - fn 2k+2( ) ( )>
= <Mnj(f—fn,2k+2,kaiﬂ) (f — frons2) (@), g(x))
1

+ k1+1<P2k+2( D) fyoni2(x), g(2)) + 0 k+1>

in view of Theorem 4, where Py 2(D) = ka?ﬁ_Q QG@k2) pi and D = %

il

Let Py (D) = Z?kﬁrz & (z,k ) D denote the differential operator adjoint to
Pai42(D), thus,

an(Mnj(f, kox) = f(x),9(x)) — (fn,2k+2(95)7P2*k+2(D)9(33)>
Hl( nj(f - fn ok+2, K, ) — (f - fn,2k+2)(95)79(9?)> +o(1)
{Z 17— nzk+z”0(h)} +o(1)

(in view of property (a) of Lemma 1 and Lemma 7).

Therefore,

lim "N (M, (f,k,2) = f(2),9(2)) = (fron42(2), Popia(D)g(x))

nj—oo J

<C{Z”f(7") n2k+2”C(I1)}

Taking limit as 7 — 0 and using (3.1), we get

lim b (M, (F b 2) — f(2),9(2)) — (), Pria(D)gla)) = 0. (34)

n;—00
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Combining (3.2) and (3.4), we have (f(z), k2 (D)g(x)) = (h(z),g(z)) and

hence

h = Pa12(D) f (3.5)

as generalized functions.

Now, in view of Theorem 4, we have Q(2k + 2,k,x) # 0. Hence, regarding
(3.5) as a genralized first order linear differential equation for f (2k+1) with the
non-homogeneous terms linearly depending on f(i), 0 < ¢ < 2k and h with
polynomial coefficients, as f() € C(Jp) (0 < i < 2k) and h € L,(.J5) we conclude
that f@*+1) e AC(J,) and therefore that f¥+2) ¢ L,(Jy). Since f coincides
with F on Jy it follows that F¢+1) ¢ AC(I) and that F?F+2) ¢ L (I).

When p = 1, proceeding as in the case of p > 1 with (3.2) replaced by (3.3)
we find that F?%) € AC(I,) and F®**1) € BV(I,). This completes the proof of
implication (i) = (ii).

The implication (ii) = (iii) follows from Lemma 6.

Assuming (iv), since n* Y| M, (f,k,.) — fllz, ) — 0 as n — oo, proceeding
as in the proof of (i) = (ii) it follows that n*+1||M, (f, k,.) — f||Lp(J2) — 0 as
n — oo and hence we find that h(z) and ¢o(z) are zero functions.

Thus, 2*k+2(D)f(m) = 0. This implies that f is 2k + 2 times continuously
differentiable function. Now, applying Theorem 4 for the function f

lim 5t (M, (f.k,.) = f.9) = (Pars2(D)f, 9). (3.6)

n;j—00 J

Comparing (3.4) and (3.6), we have Pyyyo(D)f(z) = 0. Hence, over Iy, F is
2k + 2 times continuously differentiable function and Pog4o(D)F (x) = 0.
Finally, (v) = (vi) follows from Theorem 4.
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