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Abstract. In[6] Micchelli had introduced a technique of iterative com-
bination to improve the order of approximation by Bernstein polyno-
mials. In the present paper, we have used his technique to improve the
order of approximation by a new sequence of linear positive operators
introduced by us in [2]. Here, we study the degree of approximation in
ordinary and simultaneous approximation by the above combination
of these operators.

§1. Introduction

Motivated by the integral modification of Szasz-Mirakian operators by
Mazhar and Totik [5] to approximate Lebesgue integrable functions, we
[2] introduced a new sequence of linear positive operators M,, as given
below:

Let @ > 0 and f € Cy[0,00) := {f € C[0,00) : |f(t)| < Me** for
some M > 0}. Then,

M, (f(t);z) =n pny(z /qn,, LB F@)dt+ (L+2)""f(0), (1.1)

— —nt v
where pp, ,(z) = (n +Z 1) V(14 2)™ " and g (1) = %, z,

t €[0,00).
We may also write the operators (1.1) as M, (f(t);z) = [ Wp(t,z)
0

f(t)dt where the kernel W,,(t,x2) =n i P (Z)Gnp—1(t) + (L + )~ "0(2),

v=1
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d(t) being the Dirac-delta function. The space C,[0,00) is normed by
1fllea = ,Sup [f)e, f € Cal0, 00).

The order of approximation by the operators (1.1) is, at best O(n™!)
however smooth the function may be. Therefore, in order to improve the
rate of convergence O(n~!) by these operators, the technique of linear
combination as described in [4] has been used [2]. There is yet another
approach for improving the order of approximation, which was offered by
Micchelli [6] by considering the iterative combinations Uy, = I — (I —
B,,)* of the Bernstein polynomials B,,, where k € N (the set of positive
integers). He proved some direct and saturation results for these operators
Up,  using semi-group method. Agrawal [1] studied an inverse theorem in
simultaneous approximation for the operators U, k.

In the present paper, we have investigated certain problems concern-
ing the degree of approximation in ordinary and simultaneous approxima-
tion by the above iterative combination for the operators (1.1). The iter-
ates of the operator M,, are defined by M? = I and M" = M,,(M"~1),r €
N. For k € N, the iterative combination L, j : Cy[0,00) — C*°[0, c0)
(the class of infinitely differentiable functions on [0, 00)) of the operators
M,, is defined as:

k

Los(F(0):2) = (I — (I~ M) (f(0):2) = 3 (~1)7+* ( ) ME(F(t); ).

(1.2)

Let m € N and 0 < a < b < o0, for sufficient small values of n > 0, the
mt* order modulus of continuity wy,(f,n;[a,b]) for a continuous function
f on the interval [a,b] is defined as wy,(f,n;[a,b]) = sup {|ATf(z)| :
|h| < n,z,z 4+ mh € [a,b]}, where AT"f(z) is the m** order forward
difference with step length h. For m = 1, w,,,(f,n;[a, b]) is written simply
as wy(1; [a, b]) or w(f,n; [a, b]).

Throughout this paper, we denote by 0 < a < b < oo, Cl[a,b] the
space of all continuous functions on [a,b], || - |¢c[a,s) the sup-norm on the
space Cla,b], 0 < a1 < ag < by < by < o0, I; = [a;,b5],i = 1,2 and C a
constant not necessarily the same in different cases.

§2. Auxiliary Results

In the sequel, we shall require the following results:
For f € C,[0,00),n > 0 and m € N, the Steklov mean f, ,, of mt*
order corresponding to f is defined by:

m
n/2

fom(x) =n"" / fl@)+ (=DA% f(2) Hda:i, x € 1.

Ty
_77/2 =1
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Lemma 1 [8]. For the function f, ,(x) defined above, we have

(a) fy,m () has derivatives up to order m over Iy;
Ol Fmllow) < Men"wn(fm 1)r = 1,2, .m;
OINf = fomlled) £ Mpprwm(f,n; 11);

(@D fn.mllom) < Mmiallflle.;

(

o)llfmllow) < Masllflow),
where M/s are certain constants that depend on i but are independent of

f and .

Lemma 2 [7]. For m € N° (the set of non-negative integers), the m‘h
order moment of the Lupas operators is defined by the function pin, m () =
oo

> Pny (% - x)m. Hence pino(x) = 1, pin,1(x) = 0 and there holds the
v=0

recurrence relation Nty my1(t) = (1 + o)ty m(T) + My m—1()], for
m > 1. Consequently, we have

(1) pn,m(z) is a polynomial in z of degree at most m;
(i) for every = € [0,00), tin.m(z) = O(n~Um+/2l) where [B] denotes the
integer part of .

Lemma 3 [2]. Let m € N°, the m!" order moment for the operators
(1.1) be defined by:

Trnm(z) = My ((t — 2)™; x)

=1 pau(e) / Gy 1 ()t — )™t + (=)™ (1 +2) ™.

v=1

Then T, o(x) =1,T, 1(x) = 0 and
Ty mi1(x) = 2(1+2)T;, ., (@) + mTy () + ma(z + 2) Ty m—1(z), m > 1.

Further, we have the following consequences of Ty, y,(z):

(i) Ty () is a polynomial in z of degree m and in n~! of degree m — 1,

m # 1;
(i) for every z € [0,00), Ty.m(z) = O(n~[(m+1)/2]),

Lemma 4 [2]. Let 6 and v be any positive real numbers. Then for any
m > 0 we have

W (t, z)erdt =0(n™™).

[t=al20 Clajb]
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Lemma 5 [7]. There exist the polynomials g; jp(z)) independent of n
and v such that

P ) )
G AT = 3T nwena)lg (@)t (Lhe) T
2i+3j<p,i,7 >0

For every m € N°, the m*" order moment, Té% for the operator M?
where p € N, is defined by T%} (z) = MP((t—z)™; z). We denote Tj\ 4 ()

by T m(x).

Lemma 6. There holds the recurrence relation

m

T = () ng,i+j<x>% (T2 @), (0= 1) (1)

§=0
Proof: By the definition, we have

Tt (2) = Ma(ME((t — 2)™;u); ) = Ma(ME((t = u+u — )™ u); )

=), (m> My ((u — )’ ME((t — u)™ 75 u); z).
=0 \ 7
Since MP((t — u)™ J;u) is a polynomial in u of degree < m — j, by

3 : : m—j " (u_‘r)z %
Taylor’s expansion, we can write MP((t — u)™ ;u) = >, 7D

i=0
{r}
(Tn,m—j(x)) :
Hence, the equation (2.1) is immediate. O

Lemma 7. For every z € [0,00) we have

T2 (z) = O(n~Um+1/2]), (2.2).
Proof: We prove (2.2) by induction on p. For p = 1, the result holds
from Lemma 3. Assuming the result to be true for p and making use of
Lemma 6, we obtain 2.2. O

Lemma 8. For m‘" order moment (m € N) of the operators Ly, j defined
in (1.2) we find that Ly, ((t — z)™;z) = O(n™*).

Proof: We prove this lemma by induction on k. First, for k£ = 1, the
result follows from Lemma 3. Assuming the result to be true for k£ and
applying Lemma 6, we prove it for k£ + 1.
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§3. Main Results

Ordinary Approximation. First, we establish a Voronoskaja type
asymptotic formula for the operators Ly, f.

Theorem 1. Let f € C,[0,00). If f(2¢) exists at a point € [0,00) then

2k o(3) 2
T i {50 = @) = 3 L0 ko), and @)
lim n* {L, 11(f;2) — f(z)} =0, (3.2)

n— 00

where Q(i, k, x) are certain polynomials in x of degree at most i.

Further, if f(2¥—1) exists and is absolutely continuous over the interval
[0,b] and f*) € L[0,b], then for any [c,d] C (0,b) there holds

|Lni(f52) = F@)loea < Cn7* {Ifle. + 1 llrpn} - (33)

Proof: By Taylor’s expansion of f, we have

(J) )
Zf t—x)7+e(t,x)(t—x)2k,

where €(t,z) — 0 as t — z and |e(t, z)| < Ce®t for some C > 0. Therefore,

(J)
(L (F(8); ) — Z f o((t — 2 )

+nkz T+1( )MT(e(t o)(t—2)z) ="+ .

Using Lemma 8, we have

2k () (g . 2k @)z
S =it - apin = 3 G k) + o),

Since €(t,x) — 0 as ¢ — x, thus for a given € > 0, there exists a § > 0
such that |e(t,x)| < € whenever |t — x| < d. Suppose that ¢s(t) denotes
the characteristic function of the interval (z — d,z + d), then

\Z\me() (Ie(t, 2)\(t — 2)%*5(t) : o)
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30 (5) Mt 0 g0 = 0+

k
To estimate .J;, applying Lemma 7 we have J; < enf (f) M ((t —

r=1
1)2*; z) < eC. For an arbitrary s > 0, applying Lemma 4 we have

|Jo| < nkz ( ) M (Ce® (t — z)* (1 — ¢s(t));z) < % = o(1).

Since, € > 0 is arbitrary, thus ), — 0 as n — oo. Combining the
estimates of Y, and ) _,, we obtain (3.1).
The equation (3.2) can be proved along similar lines by noting the
fact that
Lnka((t—2);2) = O(n=*+V) v j e N.

Now, we shall prove (3.3). For this purpose let ¥ be the characteristic
function of [0, b]. Thus,

Lu(£(£):) = f(x) = Lus(b(0)(F(1) — f(2)); )
FLn s (L= )@~ f@)a) =3+

The estimate of ), can be found in a manner similar to the estimate of
Jo. Thus, we have for all z € [c,d], Y., < Cn™*||f]|c.,-
For t € [0,b] and x € [c, d], by our hypothesis of f, we can write

2%—1 (i) . t
10 - f@) = X P00+ ot -0 ™ waw,

7!

b (wa) [ =™ 1 ) x)

T

2k—1 ,(;
=) It ;(x) {J3+ Ju} + Js. (3.4)

=1

By Lemma 8, we get J3 = O(n~*) uniformly for = € [c, d].
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Proceeding as in the estimate of J5 and taking into account the fact that
x € [e,d]
Jy = O(n_k)

By (1.2) and (2.2), we have J5 = || f®®)|1_ 050 (n7%).
Combining the estimates J3 — J5 in (3.4), we obtain

2k—1

||Zs||0[c,d] <On D T 1 e + 1o o}-

=1
Finally, following [Thm.1,3], we obtain the required result. O
Theorem 2. Let f € C,[0,00), then for sufficiently large n, we have

Lk (F(); 7)) = F(@) o) < Clwarn(f,n 2 1) + 078 fllc. T,

where C' is independent of f and n.

Proof: Let f, o be the Steklov mean of (2k)" order corresponding to f.
Then,

[ Ln i (f(8); 2) = f(@)llor) < [ Lnk(f(E) = fo26(t); 2) o)
| Lk (f,26(8); ) — fr26(@)llom) + [ fn26(@) = f(@)|lom)
= Zl + ZQ + Zg'
By using the property (c) of Lemma 1, we have ) ; < Cwar(f,n,I1). Using
2k .
Theorem 1, we get >, < Cn=F Y ||f7(772)k||c(12). Now, following [Thm.2,3|
=2

and making use of the properties (d),(b) of Lemma 1, we have

1£llem) < CUlFllen +n~wak(f, 7 1)) = 2,3, ..., 2K).

Let a’ and b’ be such that a; < @’ < as < by < b’ < by and ¥ be the
characteristic function of [a/,b']. Then, by using Lemma 4 and property
(c) of Lemma 1 we get

>, < Cloa(fin 1) + 1" fllc, -

Now, choosing m > k and n = n~'/2 in the estimates of _,,", and 3,
the result follows. O

Simultaneous Approximation. Here we extend the results in ordinary
approximation to the case of simultaneous approximation. First, we prove
that the derivatives of the operators L, j; are approximation processes
for corresponding order derivatives of the function, i.e., we prove that

Lgf;c(f(t);x) — f®)(z) as n — oo, p € N.
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Theorem 3. Suppose that p € N, f € Cu[0,00) and f®) exists at a
point z € (0,00), then

lim L) (f(t);2) = f® (z). (3.5)

n—00

Further, if f() exists and is continuous on (a —1,b+n) C (0,00),1 > 0,
then (3.5) holds uniformly in x € [a, b].

Proof: To prove the theorem, it is sufficient to show that for every
re N, lim Z{Mr(f(t);z)} = f®)(z) and that it holds uniformly in
n—>00

the uniformity case. By Taylor’s expansion of f at x, we have f(t) =
p_ (i) .
> fzi,(x)(t —z)* + €(t,z)(t — z)P, where €(t,z) — 0 as t — z and

1=
le(t, z)| < Ce“t for some C' > 0. Hence,

dxP

» P @) () T ,
gy =3 I8 [we w o - o

/W(p) u, 2) M. (e(t, z)(t — z)P;u)du —Z —{—Z

—1)
From Lemma 3 it follows that, >, = <%> f@ () = f@) (),

as n — 0o. By using Lemma 5, we have

2.l 2 nx‘ﬁ”{’ix Zp o)l = naf!

2i+5<p,i,j 20

X /Qn,u—1(u)M,§_1(|e(t, z)||t — z|P;u)du
0

(n+p—1)
(n—1)!

Clearly, Jo — 0 as n — oo. To estimate Jy, suppose that ¢s(t) denotes
the characteristic function of the interval (z — 0,2 + §). Since €(¢t,z) — 0
as t — x, for a given € > 0, there exists a § > 0 such that |e(¢,z)| < e,
whenever 0 < |t — x| < §. For [t — z| > §, we have |e(t, z)(t — z)P| < Ce®*
for some C > 0. Hence,

(1+2z) " Ple(0,z)|2P := J1 + Ja.

(o.¢]
J, < Sup 9,5,p(2)] Z nitl me,,(m)h/—nxj
=1

2i+i<p,ij20 TP (1 + 2)P 245 <p,i,j>0
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e [ anoms M (= ol 505 )
0

(o ]

+/Qn,u—1(U)M5_1(Ceat(1 — ¢5(t)); u)du} = J3 -+ J4.

Now, applying Schwarz inequality, Lemma 2 and Lemma 7 it follows
that J3 = €O(1). Proceeding similarly, applying Schwarz inequality and
Lemma 4 we obtain Jy = o(1). Since € > 0 is arbitrary, it follows that
J1 = o(1) and hence ), = o(1). This completes the proof of (3.5).

The uniformity assertion follows easily from the fact that d(e) in the
above proof can be chosen to be independent of z € [a, b] and all the other
estimates hold uniformly in = € [a,b]. In the next theorem, we establish

an asymptotic formula for the operator Litp gﬂ O

Theorem 4. Let f € C,[0,00) and k,p € N. If fk+P) exists at some
point z € (0,00), then

2k+p

lim n (L(pgc(f,x) f(p) Z Q. k,p,x )f(j)( ); (3.6)

n—00
Jj=p

where Q(j, k, p, z) are certain polynomials in x. Further, if fk+P) exists
and is continuous on the interval (a —n,b+n) C (0,00), n > 0, then (3.6)
holds uniformly on [a,b].

Proof: Since f(?k1P) exists at = € (0,00), it follows that

1) = Z ml (t —2)™ +e(t, z)(t — x)*F TP

where €(t,z) — 0 as t — z and |e(t, z)| < Ce®* for some C' > 0. Therefore,
we can write

LY (f(t);z) = i(—w‘ﬂ (f) 7W(p) { 2%’) f(m)

My (= @)™ w) + My (et @) (8 — 2) 2, u>}d“ =Dt

By the consequence of Lemma 3 and Theorem 1, we get
2k+p

3= S LS (1) ot

=p 1=0

f(m)
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(@)

ESE0r -
S Bk )

() ()

m=p
2k-+p
+n7F Y " QU k,p, ) f™ (z) + o(n )
Jj=p
2k+p
= fP®@@) + 07 Y QUL k,p,2) f™(2) + o(n™F)
Jj=p

(in view of the identities)

Sor(n) () o

(2

To estimate ) _,, proceeding along the lines of the proof of >, = o(1) in
Theorem 3, we obtain n*3Y", = o(1). By combining the estimates of >,
and )_,, we get the required result (3.6).

The uniformity assertion follows as in the proof of Theorem 3. O

Theorem 5. Let f € Cy[0,00) and p < ¢ < 2k + p. If f(9 exists and is
continuous on (a —n,b+n) C (0,00),n > 0, then for sufficiently large n,

L2, (£ () 2) £ P (@) |ca,s <inwx{6hn (a= ”/2(f@%n‘”2%6an—k}

where C; = C1(k,p),C2 = Ca(k,p, f) and w(f,d) denotes the modulus of
continuity of f on the interval (a — n,b+ 7).

Proof: By our hypothesis

() @)y — f@(,
§:f L O = (=)

t—:c
q!

(t —z)%n(t)

+h(t, ) (1 = ¢y (1)),

where £ lies between ¢ and x and ¢, () is the characteristic function of the
interval (a —n,b+n). For t € (a —n,b+n) and z € [a, b], we get

1.7 @D(gy— £@D(yp

|
=0 ¢
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For t € [0,00)\ (a —n,b+n) and x € [a,b], we define h(t,z) = f(t) —
(%) ‘
Z ! ( )(t — x)*. Clearly, the function h(t,z) is bounded by Ce*® for

1=0
some C > 0. Now,

(1 T
5010 = [ R B ey 4 i (1010 -1

X (t — )%y (t); x) * L’l(%ljzc(h’(t’ 2)(1 = ¢n(t)); 7) := 21 * 22 * Zi’»'

Using Theorem 4 and the identities (3.7), we obtain Y, = f®(z) +
O(n™*) uniformly in z € [a,b]. To estimate >, we proceed as follows:

k

< f@‘sZ( Nk ZW \7%” )Mt — ]

r=1

- 1!
+07 Mt — 2| u)du + %(1 +2)7" " (Jo]? + 6 =TT |,
n—1)!
Now, using Lemma 5 and the Schwarz inequality three times (as in the
estimate of J3 in Theorem 3) in view of Lemmas 2 and 7, it follows that
for s =0,1,2,..

n2|p<p> )l / Gnw—1 (WM ([t = z]* u)du = O(n®=9/2), (3.9)
0

uniformly in = € [a,b]. Choosing § = n~'/? and applying (3.9), we are led

to
||Z2|| < Cn~ P02y (f@ n=1/2),

Since t € [0,00) \ (a — n,b+ 7n), we can choose 6 > 0 in such a way that
|t —x| > § for all z € [a,b]. Thus, by Lemmas 5 and 4, Schwarz inequality,
and Lemma 2, it is easy to see that >, = O(n™*) for any s > 0, uniformly
on [a, b]. Finally, combining the estimates of ) ; —> "5, the required result
is immediate. O
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