# On approximation f by

# $(\alpha, \beta, \gamma)$ -Baskakov Operators

# Hanadi A. AbdulSatter

University of Basra, College of Education for Pure Science, Dept. of Maths., Basra, Iraq.

#### habd21465@gmail.com,

#### **Abstract:**

In the present paper, we study some application properties of the approximation for the sequences  $M_{n,\gamma}^{\alpha,\beta}(f;x)$  and  $B_{n,\gamma}^{\alpha,\beta}(f;x)$ . These sequences depend on the arbitrary (but fixed) parameters  $\alpha,\beta$  and  $\gamma$ . Here, we study the effect of these parameters on tends speed of the two families of operators  $M_{n,\gamma}^{\alpha,\beta}(f;x)$  and  $B_{n,\gamma}^{\alpha,\beta}(f;x)$  and the CPU times which are occurring on the approximation by a choosing fixed n.

**Key word**: Korovkins' conditions,  $(\alpha, \beta, \gamma)$ -Baskakov Operators,  $(\alpha, \beta, \gamma)$ - Baskakov Kantorovich operators.

#### 2010 Mathematics Subject Classification: 41A25, 41A35.

Mursaleen and Asif khan, they studied approximation properties of q-Bernstein–Shurer operators and they found the error estimate. In addition, they proved graphically the convergence for f by these operators. [6]

Gupta introduced and studied a generalization of the Baskakov –Durrmeyer operators. This generalization are defined as:

For  $x \in [0, \infty)$ ,  $\gamma = 1$ ,

$$B_{n,\gamma}(f;x) = \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) \int_{0}^{\infty} b_{n,k,\gamma}(t) f(t) dt$$

$$+ P_{n,0,\gamma}(x) f(0)$$

where  $P_{n,k,\gamma}(x)$  and  $b_{n,k,\gamma}(t)$  as defined as:

$$P_{n,k,\gamma} (x) = \frac{\Gamma(\frac{n}{\gamma+k})}{\Gamma(k+1)\Gamma(\frac{n}{\gamma})} \cdot \frac{(\gamma x)^k}{(1+\gamma x)^{\binom{n}{\gamma}+k}}$$

$$b_{n,k,\gamma} (t) = \frac{\gamma \Gamma(\frac{n}{\gamma+k+1})}{\Gamma(k) \Gamma(\frac{n}{\gamma+k})} \cdot \frac{(\gamma t)^{k-1}}{(1+\gamma x)^{(\frac{n}{\gamma})+k+1}}$$
 (1.2)

Then, he introduced modification of Baskakov operators using weight functions of Bate base functions depend of parameter  $\gamma$ , and getting some results concerning Baskakov operators from them approximation theorem, rate of convergence, weighted approximation theorem. [1], [2]

We define  $(\alpha, \beta, \gamma)$ - Baskakov operators  $M_{n,\gamma}^{\alpha,\beta}(f;x)$  in this research, we prove the Korovkin conditions for the operators  $M_{n,\gamma}^{\alpha,\beta}(f;x)$  and  $B_{n,\gamma}^{\alpha,\beta}(f;x)$ .

#### 1- Introduction

The classical Baskakov operators  $(L_n)$  of bounded continuous functions f(x) on the interval  $[0, \infty)$ , which defined as: [3]

Suppose that

$$p_{n,k}(x) = (-1)^k \frac{x^k}{k!} \varphi_n^{(k)}(x),$$

The *n*-th order of classical Baskakov is defined as:

$$(L_n f)(x) = \sum_{k=0}^{\infty} p_{n,k}(x) f(\frac{k}{n}),$$
 (1.1)

where 
$$n \in N, x \in [0, b], b > 0$$
.

The article proved the Korovkins' conditions for the convergence of Baskakov operators. [4]

Berens and Suzuki were studied the classes for continuous functions with compact support and getting some results concerning bounded continuous functions. [8], [9]

Bernstein polynomials and Szasz-Mirakian operators are the especial cases of Baskakov operators considered by May. [7]

In recent years, some applications had been done for sequences of linear positive operators by use Maple programs.

Sharma was studied the rate of convergence of q-Durrmeyer operators and he used maple programming to describe the approximation for two sequences of operators. [5]

# Theorem (2-1) (Korovkin Theorem):

For  $x \in [0, \infty)$ ,  $f \in [0,1]$  and by applying Korovkin Theorem on the operator  $M_{n,\gamma}^{\alpha,\beta}(f;x)$ , we have:

1. 
$$M_{n,y}^{\alpha,\beta}$$
 (1;  $x$ )=1

2. 
$$M_{n,\gamma}^{\alpha,\beta}(t;x) = \frac{nx}{n+\beta} + \frac{\alpha}{n+\beta}$$

3. 
$$M_{n,\gamma}^{\alpha,\beta}(t^2;x) = \frac{n^2x^2}{(n+\beta)^2} + \frac{1+2\alpha}{(n+\beta)^2} \{nx\} + \frac{\alpha^2}{(n+\beta)^2}$$

4. 
$$M_{n,\gamma}^{\alpha,\beta}(t^m;x) = \frac{n^m x^m x}{(n+\beta)^m} + \frac{m(m-1)+2\alpha m}{2(n+\beta)^m} \{n^{m-1} x^{m-1}\} + T.L.P.(x) + \frac{\alpha^m}{(n+\beta)^m}$$

Proof

The operators  $M_{n,\gamma}^{\alpha,\beta}$  are well define on the function  $1, t, t^2, t^m$  we obtain.

1. 
$$M_{n,y}^{\alpha,\beta}(1;x) = \sum_{k=0}^{\infty} P_{n,k,y}(x) = 1$$

2. 
$$B_{n,\gamma}^{\alpha,\beta}(t;x) = \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) \cdot \frac{k+\infty}{n+\beta}$$

$$= \frac{1}{n+\beta} \left\{ \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) . k + \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) . \infty \right\}$$

$$= \frac{nx}{n+\beta} + \frac{\alpha}{n+\beta} \to x \quad as \ n \to \infty$$

3. 
$$M_{n,\gamma}^{\alpha,\beta}(t^2;x) = \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) f(\frac{k+\alpha}{n+\beta})^2$$

$$= \frac{1}{(n+\beta)^2} \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) . (k^2 + 2 \propto k + \infty^2)$$

$$= \frac{1}{(n+\beta)^2} \{ \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) \quad k^2 + \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) \ (2 \propto k) + \infty^2 \}$$

$$= \frac{1}{(n+\beta)^2} \{ n^2 x^2 + \gamma x^2 + nx \} + \frac{2^{\alpha}}{(n+\beta)^2} \{ nx \}$$

$$+\frac{\alpha^2}{(n+\beta)^2}$$

$$= \frac{n^2 x^2}{(n+\beta)^2} + \frac{1+2\alpha}{(n+\beta)^2} \{nx\} + \frac{\alpha^2}{(n+\beta)^2} \to x^2$$

as  $n \to \infty$ 

4. 
$$M_{n,\gamma}^{\alpha,\beta}(t^m;x) = \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) f(\frac{k+\infty}{n+\beta})^m$$

$$= \frac{1}{(n+\beta)^m} \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) (k+\alpha)^m$$

In this paper is an application study to the sequences  $M_{n,\gamma}^{\alpha,\beta}(.;x)$ ,  $B_{n,\gamma}^{\alpha,\beta}(.;x)$  and  $L_n(f,x)$  on the two test function  $f(x) = \frac{x^3}{3} - \frac{x^2}{2} + \frac{3}{16}x$ ,  $f(t) = \sin(10t)\exp(-3t) + 0.3$  to show that the effect of the parameters  $(\alpha,\beta,\gamma)$  in the sequences  $M_{n,\gamma}^{\alpha,\beta}(.;x)$ ,  $B_{n,\gamma}^{\alpha,\beta}(.;x)$  on the tends speed of approximation .The results which are done are describe by the graphs of the test function and the approximations of the sequences  $M_{n,\gamma}^{\alpha,\beta}(.;x)$ ,  $B_{n,\gamma}^{\alpha,\beta}(.;x)$  and  $L_n(f,x)$ . In addition, we give some tables of the CPU time which are occurring on the approximation of the test function by a choosing fixed n.

# 2- Construction of the Operators $\{M_{n,y}^{\alpha,\beta} (f,x)\}$

In this part, we introduce the operators  $M_{n,\gamma}^{\alpha,\beta}$  ( f,x ) and state some of their properties.

#### **Definition 2-1**

Let  $f \in [0,1], x \in [0,\infty), k \in \mathbb{N}^0 = \{0,1,2,...\}$  for some  $0 \le \alpha \le \beta$ , and  $n \in \mathbb{N} = \{1,2,...\}$ . The  $(\alpha,\beta,\gamma)$ -Baskakov Operators in special case i.e.  $\gamma = 1, \alpha = \beta = 0$  is reduce to the operators (1.1).

The will-known  $(\alpha, \beta, \gamma)$ - Baskakov operators  $M_{n,\gamma}^{\alpha,\beta}$ ,  $(\alpha, \beta, \gamma)$ - Baskakov Kantorovich operators  $B_{n,\gamma}^{\alpha,\beta}$  with two parameters  $\alpha$  and  $\beta$  with  $0 \le \alpha \le \beta$  on two test function f(x) and investigated convergence and approximation properties of these operators, such as defined:

$$M_{n,\gamma}^{\alpha,\beta}(f(t),x) = \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) f\left(\frac{k+\alpha}{n+\beta}\right)$$
 (2.1)

$$B_{n,\gamma}^{\alpha,\beta}(f(t);x) = n \sum_{k=0}^{\infty} P_{n,k,\gamma} \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(t)dt \qquad (2.2)$$

Where

$$P_{n,k,\gamma} \left( x \right) = \frac{\Gamma\left(\frac{n}{\gamma} + k\right)}{\Gamma\left(k+1\right)\Gamma\left(\frac{n}{\gamma}\right)} \cdot \frac{(\gamma x)^k}{(1+\gamma x)^{\left(\frac{n}{\gamma}\right)+k}},$$

$$f(x) = \frac{x^3}{3} - \frac{x^2}{2} + \frac{3}{16}x\tag{2.3}$$

$$f(t) = \sin(10t) \exp(-3t) + 0.3 \tag{2.4}$$

The following theorem help us to study the Korovkin conditions for convergence for two operators  $M_{n,\gamma}^{\alpha,\beta}$ ,  $B_{n,\gamma}^{\alpha,\beta}$ .

3. 
$$B_{n,\gamma}^{\alpha,\beta}(t^{2},x) = n\sum_{k=0}^{\infty} P_{n,k,\gamma}(x) \int_{\frac{k}{n}}^{\frac{k+1}{n}} t^{2} dt$$

$$= \frac{n}{3n^{3}} \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) \left\{ (k+1)^{3} - k^{3} \right\}$$

$$= \frac{1}{3n^{2}} \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) \left\{ 3k^{2} + 3k + 1 \right\}$$

$$= \frac{1}{n^{2}} \left\{ n^{2}x^{2} +, y x^{2} + nx \right\} + \frac{1}{n^{2}} \left\{ nx \right\} + \frac{1}{3n^{2}} \rightarrow$$

$$x^{2} \quad as \quad n \rightarrow \infty$$
4. 
$$B_{n,\gamma}^{\alpha,\beta}(t^{m},x) = n \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) \int_{\frac{k}{n}}^{\frac{k+1}{n}} t^{m} dt$$

$$= \frac{n}{n^{m+1}(m+1)} \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) \left\{ (k+1)^{m+1} - k^{m+1} \right\}$$

$$= \frac{1}{n^{m}(m+1)} \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) \left\{ k^{m+1} + (m+1)k^{m} + \frac{m(m+1)}{2}k^{m-1} + \cdots + (m+1)k + 1 - k^{m+1} \right\}$$

$$= \frac{1}{n^{m}} \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) k^{m} + \frac{m}{2n^{m}} \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) k^{m-1} + \cdots + \frac{1}{n^{m}} \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) k + \frac{1}{n^{m}(m+1)}$$

$$B_{n,\gamma}^{\alpha,\beta}(t^{m},x) = x^{m} + \frac{m^{2}}{2n}x^{m-1} + T.L.P.(x) + \frac{1}{(m+1)n^{m}}$$

#### 3- Numerical Example

Here, we give a numerical example for the approximation of operators  $M_{n,\gamma}^{\alpha,\beta}(f,x)$  for different values of the parameters  $\alpha,\beta,\gamma$  by take the two test functions on [0,1].

$$f(x) = \frac{x^3}{3} - \frac{x^2}{2} + \frac{3}{16}x. \tag{2.3}$$

$$f(t) = \sin(10t) \exp(-3t) + 0.3 \tag{2.4}$$

$$= \frac{1}{(n+\beta)^m} \{ \sum_{k=0}^{\infty} \mathsf{P}_{n,k,\gamma}(x) \ k^m + \frac{\alpha m}{(n+\beta)^m} \sum_{k=0}^{\infty} \mathsf{P}_{n,k,\gamma}(x) \ k^{m-1} \\ + T.L.P(x) \} + \frac{\alpha^m}{(n+\beta)^m}$$

$$M_{n,\gamma}^{\alpha,\beta}(t^m;x) = \frac{n^m x^m x}{(n+\beta)^m} + \frac{m(m-1) + 2\alpha m}{2(n+\beta)^m}$$

$$\{ n^{m-1} x^{m-1} \} + T.L.P.(x) + \frac{\alpha^m}{(n+\beta)^m} \to x^m \text{ as } n \to \infty$$

#### Theorem (2-2)

# $((\alpha, \beta, \gamma)$ -Baskakov Kantorovich operators)

The following equation hold:

$$B_{n,\gamma}^{\alpha,\beta}(f(t);x) = n \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(t) dt$$

1. 
$$B_{n,y}^{\alpha,\beta}(1,x)=1$$

2. 
$$B_{n,\gamma}^{\alpha,\beta}(t,x) = x + \frac{1}{2n}$$

3. 
$$B_{n,\gamma}^{\alpha,\beta}(t^2,x)=x^2+\frac{2}{n^2}x+\frac{1}{3n^2}$$

4. 
$$B_{n,\gamma}^{\alpha,\beta}(t^m,x)=x^m+\frac{m^2}{2n}x^{m-1}+$$
  
 $T.L.P(x)+\frac{1}{(m+1)n^m}$ 

Proof:

$$= n \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) \{ \frac{1}{n} \} = 1$$
2. 
$$B_{n,\gamma}^{\alpha,\beta}(t,x) = n \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) \int_{\frac{k}{n}}^{\frac{k+1}{n}} t . dt$$

$$= n \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) \{ \frac{2k+1}{n^2} \}$$

$$= \frac{2}{2n} \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) . k + \frac{1}{2n}$$

$$= \frac{2nx}{2n} + \frac{1}{2n} \to x \text{ as } n \to \infty$$

1.  $B_{n,\gamma}^{\alpha,\beta}(1,x) = n \sum_{k=0}^{\infty} P_{n,k,\gamma}(x) \int_{\underline{k}}^{\underline{k+1}} dt$ 

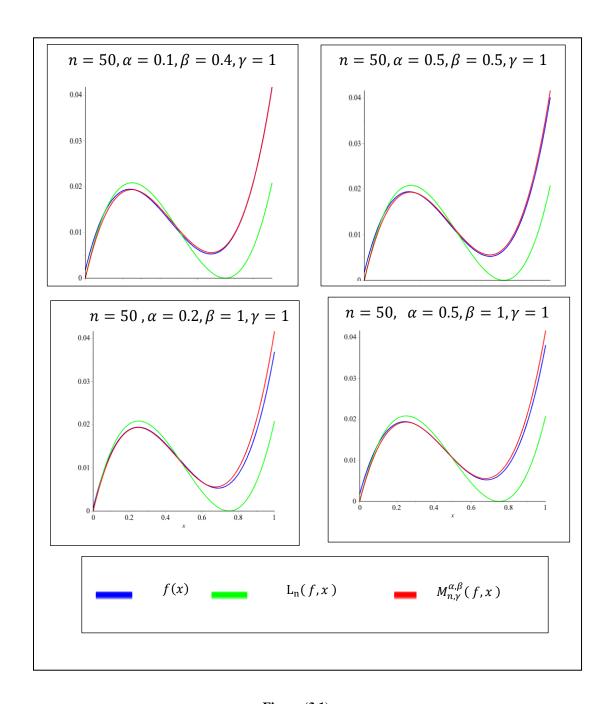


Figure (3.1)  $\text{Approximation test function } f(x) \text{ by } M_{n,\gamma}^{\alpha,\beta}(f,x) \text{ for } n=50$ 

#### 3-1The CPU time

The following table is explain the CPU time for the operators  $M_{n,\gamma}^{\alpha,\beta}(f,x)$ ,  $L_n(f,x)$  by test function (2.3), where n=50. We found the best CPU time introduced by  $L_n(f,x)$  by using the same test function f.

Figure 3.1, explains the tends speed of the operators  $M_{n,\gamma}^{\alpha,\beta}(f,x)$  by first test function (2.3), when the values n=50,  $\gamma=1$  fixed, such as if n increases tends speed of  $M_{n,\gamma}^{\alpha,\beta}(f,x)$  will fail in application, and take variance values of the  $\alpha,\beta$ , such that  $0 \le \alpha \le \beta$  we get the best tends speed by  $M_{n,\gamma}^{\alpha,\beta}(f,x)$  to approximating the test function when  $\alpha=0.5$ ,  $\beta=1$  and  $\gamma=1$ . In addition, the  $M_{n,\gamma}^{\alpha,\beta}(f,x)$  operators is returns to the classical operators  $L_n(f,x)$  when  $\gamma=1$ ,  $\alpha=0$ ,  $\beta=0$ .

Table (3.1) Explains the CPU time for n = 50

| The sequence                       | γ | α   | β | CPU time |
|------------------------------------|---|-----|---|----------|
| $M_{n,\gamma}^{\alpha,\beta}(f,x)$ | 1 | 0.5 | 1 | 12.12s   |
| $L_{n}(f,x)$                       | 1 | 0   | 0 | 11.07s   |

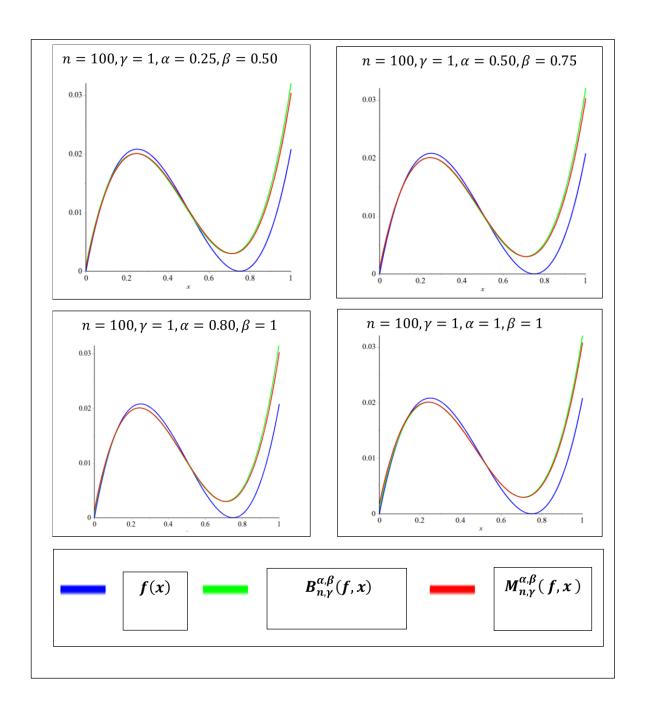


Figure 3.2  $\text{Approximation test function} f(x) \text{ by } M_{n,\gamma}^{\alpha,\beta}(f,x) \text{ and } B_{n,\gamma}^{\alpha,\beta}(f,x) \text{ for } n=100$ 

# 3-2 The CPU time

The following table is explain the CPU time for the operators  $M_{n,\gamma}^{\alpha,\beta}(f,x)$ ,  $B_{n,\gamma}^{\alpha,\beta}(f,x)$  where n=100. We found the best CPU time introduced by  $B_{n,\gamma}^{\alpha,\beta}(f,x)$  by using the same test function f.

Figure 3.2 explains the tends speed of  $(\alpha, \beta, \gamma)$ - Baskakov operators  $M_{n, \gamma}^{\alpha, \beta}$  with  $(\alpha, \beta, \gamma)$ -Baskakov Kantorovich operators  $B_{n, \gamma}^{\alpha, \beta}$  by first test function (2.3), when take the values  $n=100, \gamma=1$  and take variance values of the  $\alpha, \beta$ , such that  $0 \le \alpha \le \beta$  we get the best case is  $\alpha=1$  and  $\beta=1$ .

Table (3.2) Explains the CPU time for n = 100

| The sequence                       | γ | A | В | CPU time |
|------------------------------------|---|---|---|----------|
| $M_{n,\gamma}^{\alpha,\beta}(f,x)$ | 1 | 1 | 1 | 31.26S   |
| $B_{n,\gamma}^{\alpha,\beta}(f,x)$ | 1 | 1 | 1 | 28.48S   |

Now we will test the second function (2.4) on the same two sequence of operators with the same steps as above.

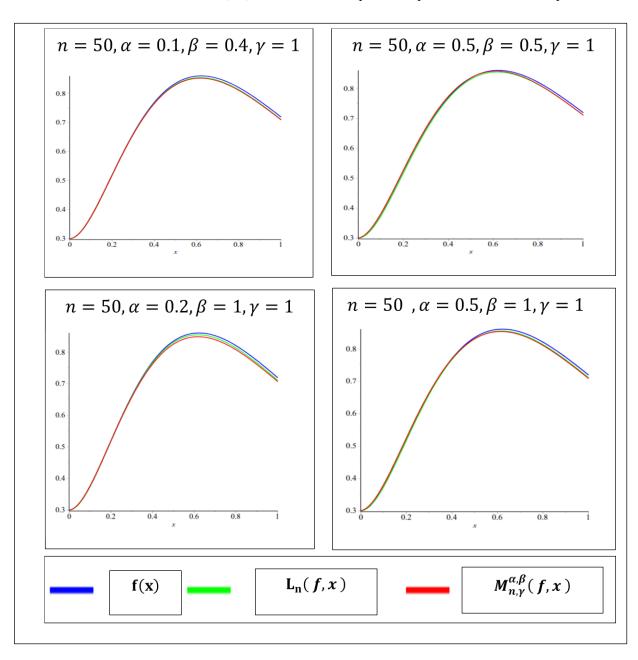


Figure (3.3)  $\text{Approximation } f(x) \text{ by } M_{n,\gamma}^{\alpha,\beta}(f,x) \text{ for } n=50$ 

**3-3 The CPU time:** The following table is explain the CPU time for the operators  $M_{n,\gamma}^{\alpha,\beta}(f,x)$ ,  $L_n(f,x)$  by test function (2.4), where n=50.

Table (3.3) Explains the CPU time for n = 50

| The sequence                       | γ | α   | β | CPU time |
|------------------------------------|---|-----|---|----------|
| $M_{n,\gamma}^{\alpha,\beta}(f,x)$ | 1 | 0.5 | 1 | 4.71s    |
| $L_{n}(f,x)$                       | 1 | 0   | 0 | 4.78s    |

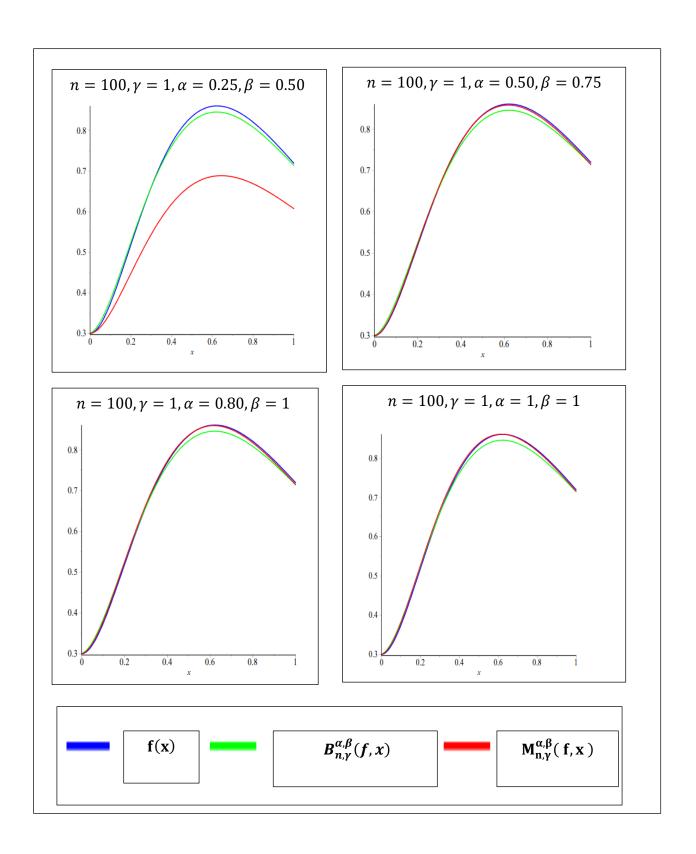


Figure 3.4  $\text{Approximation test function } f(x) \text{ by } M_{n,\gamma}^{\alpha,\beta}(f,x) \text{ and } B_{n,\gamma}^{\alpha,\beta}(f,x) \text{ for } n=100$ 

function(2.4),where n=100. We found the best CPU time introduced by  $M_{n,\gamma}^{\alpha,\beta}(f,x)$  by using the same test function f.

# 3-4 The CPU time

The following table is explain the CPU time for the operators  $M_{n,\gamma}^{\alpha,\beta}(f,x)$ ,  $B_{n,\gamma}^{\alpha,\beta}(f,x)$  by test

Table (3.4) Explains the CPU time for n = 100

| The sequence                       | γ | α | В | CPU time |
|------------------------------------|---|---|---|----------|
| $M_{n,\gamma}^{\alpha,\beta}(f,x)$ | 1 | 1 | 1 | 4.45S    |
| $B_{n,\gamma}^{\alpha,\beta}(f,x)$ | 1 | 1 | 1 | 19.018   |

# **4- Comparing Between Test Functions**

| Test function       | The operaters                                                                                                                           |  |  |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                     |                                                                                                                                         |  |  |
| Test function (2.3) | $M_{n,\gamma}^{\alpha,\beta} (f(t),x) = \sum_{k=0}^{\infty} P_{n,k,\gamma} (x) f\left(\frac{k+\alpha}{n+\beta}\right)$                  |  |  |
| Test function (2.4) | $M_{n,\gamma}^{\alpha,\beta}\left(f(t),x\right) = \sum_{k=0}^{900} P_{n,k,\gamma}\left(x\right) f\left(\frac{k+\alpha}{n+\beta}\right)$ |  |  |
| Test function (2.3) | $B_{n,\gamma}^{\alpha,\beta}(f(t);x) = n \sum_{k=0}^{\infty} P_{n,k,\gamma} \int_{\underline{k}}^{\underline{k+1}} f(t) dt$             |  |  |
| Test function (2.4) | $B_{n,\gamma}^{\alpha,\beta}(f(t);x) = n \sum_{k=0}^{900} P_{n,k,\gamma} \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(t)dt$                     |  |  |
| Test function (2.4) | The best tends speed of $M_{n,\gamma}^{\alpha,\beta}$ ( $f(t),x$ )                                                                      |  |  |
| Test function (2.4) | The best CUP time for $M_{n,\gamma}^{\alpha,\beta}$ ( $f(t),x$ ) , where $n=100$                                                        |  |  |

- [4] V.A.Baskakov,"An example of asquence of linear positive operators in the space of continuous functions" Dokl. Akad.Nauk SSSR, 113(1957) pp.249-251.
- [5] H. Sharma, "Note on approximation properties of generalized Durrmeyer operators", Mathematical sciences, (2012).
- [6] M. Mursaleen, Asif Khan, "Generalized q-Bernstein-Schurer Operators and some Approximation Theorems", Journal of function spaces and applications, Vol.2013, 7pages,30 July (2013).
- [7] C. P. May, "Saturation and inverse theorems for combinations of a class of exponential-type operators" Canad. J. Math. 28 (1976) pp.1224-1250.
- [8] H. Berens, "Pointwise saturation of positive operators" J.Approx. Th., 6(1972) pp.135-146.
- [9] Y. Suzuki, "Saturation of local approximation by linear positive operators of Bernstein type "TohokMath. J., "19(1967), pp. 429-453.

#### **5- Conclusions**

In this paper, we defined the sequence of a linear positive operators  $M_{n,\gamma}^{\alpha,\beta}(f,x)$  depends on the parameters  $\alpha,\beta,\gamma$  and give some of its properties. In addition, we made an application of the sequences  $M_{n,\gamma}^{\alpha,\beta}(f,x)$ ,  $B_{n,\gamma}^{\alpha,\beta}(f,x)$  to show the effect of these parameters  $\alpha,\beta,\gamma$  on tends speed occurs by these operators are betters than all tends speed of the sequence  $L_n(f,x)$ , where f is the test function. We also find a better effect of the parameters when  $0 \le \alpha \le \beta$  betters than previous cases of parameters  $\alpha,\beta,\gamma$ . Finally, by the applying the two operators  $M_{n,\gamma}^{\alpha,\beta}(f,x)$ ,  $B_{n,\gamma}^{\alpha,\beta}(f,x)$  we get the best CPU time introduced by  $M_{n,\gamma}^{\alpha,\beta}(f,x)$  by using the second test function.

#### References

- [1] V. Gupta, "Approximation for modified Baskakov Durrmeyer type operators, Rocky Mountain J. Math. 39(3) (2009), 1-16.
- [2] P.Patel, V.Mishra, "Approxmation properties of certain summation integral type operators ", Demonstratio Mathematica, (2015).
- [3] P. N. Agrawal, H.S. Kasana, "On simultaneous approximation by Szasz-Mirakian operators" Bull. Inst. Math.Acad.Sinica, 22(1994) pp.181-188.

# $(\alpha, \beta, \gamma)$ - حول تقریب الدالة الاختباریة f للمؤثرات الخطیة باسکوف - هنادي عبد الله عبد الستار (قسم الریاضیات - کلیة التربیة للعلوم الصرفة - جامعة البصرة) habd21465@gmail.com,

# المستخلص

في بحثنا هذا درسنا بعض الخواص التطبيقية لتقريب المتتابعات ضمن المؤثرين  $M_{n,\gamma}^{\alpha,\beta}(f;x)$ ,  $M_{n,\gamma}^{\alpha,\beta}(f;x)$  يتك المتتابعات تعتمد على تأثير الباراميترات  $\gamma$  ،  $\alpha$  ،  $\beta$  وعليه قمنا بدراسة تأثيرها من ناحية سرعة الوصول لكلا المؤثرين وحساب الوقت اللازم للتقريب بواسطة اختيار قيمه ثابتة ل  $\gamma$  .