
International Journal of Scientific and Research Publications, Volume 5, Issue 9, September 2015 1
ISSN 2250-3153

www.ijsrp.org

Deadlock Detection and Resolution in Distributed
Database Environment

Abdullah Mohammed Rashid1, Nor’ashikin Ali2

College Of IT, University Tenaga Nasional Kajang, Selangor, Malaysia

 Abstract: A distributed database system is a combination of sub-database separated over many sites communicated through a
network. Deadlock is one of the most common problems that occur in distributed database implementation. Deadlock occurs when a
multiple transaction locks the same data sources and every transaction waits for other to release. Deadlock detection and resolution is
not easy in a distributed database system, because such system is composed of more than one site communicated to central database.
The main objective of this study is to analyze several proposed algorithms to detect and resolve the deadlock in distributed database
and propose a new technique to avoid the drawbacks of previous algorithms, besides enhancing the efficiency of detection and
resolving the deadlock in distributed database.

Key Words: Distributed database, Deadlock, Detection and Resolving

I. Introduction

A distributed database environment is a combination of sub-database distributed over many sites communicated through a network
(GROVER & KUMAR, 2012). According to Al-Murafi (2009), most organizations consider that the response time of the database is
essential to achieve competitive advantage, such as for television companies. For example, the news programs are competing to obtain
the most recent news early and broadcast early to satisfy the audience. Mitchell & Merritt (1984) mentioned that data retrieved from
central database is the main bottleneck of time response exactly when the central database is distant from the organization. Thus, a
distributed database enhances the organization’s competitive advantage by increasing the efficiency and speed of data retrievals from
different sites (Al-Murafi, 2009).

The database users interact with the database via transactions, which are defined as a set of logical units used to perform different
tasks within the database, such as Read, Write, Update, Delete, and Insert (Jeffery, 2013). Concurrency problems occur when multiply
users’ access and update same source of data simultaneously (Himanshi Grover, 2013). According to Jeffery (2013), concurrency
causes several drawbacks within the database, such as lost updates, uncommitted data and inconsistent retrievals.

The concurrency control is the processes of simultaneously managing the transaction and maintaining the database integrity without
concurrency problems (Jeffery, 2013). The concurrency control uses two different techniques to prevent the concurrency, which are,
(1) Locks: the transaction locks the data source needed in the current processes to prevent other transactions from accessing the same
data through execution of transaction, and (2) Versioning: Database Management Systems (DBMS) provides a copy of the database
with timestamp to every transaction that requires access to the database, then receives the update of database check if there is no
conflict between multiple updates , the DBMS update central database, else based on timestamp, rejects the transaction, which causes
the conflict (Jeffery, 2013).
Deadlock occurs when a transaction enters into wait state, for example multiple transaction locks the same data sources and every
transaction waits for the other to release, when the requested data is not available because it is held by other transactions. There are
three main approaches used to solve the deadlock, which are preventing the deadlock, avoiding the deadlock as well as detecting and
resolving the deadlock (Chahar & Dala, 2013; Al-Murafi, 2009; Thakur & Deswal, 2014).

The main aim of this study is to review and analyze in detail some of the common algorithms proposed to detect and resolve the
deadlock in distributed database. Furthermore, this study aims to determine the drawbacks of the proposed algorithms before
providing recommendations that combine three algorithms together to avoid the individual weaknesses and enhance the efficiency of
detecting and resolving the deadlock in distributed database systems.

II. Related Works

A. Related Deadlock Detection Techniques

There are too many studies conducted to detect and resolve the deadlock in distributed database. These studies address the deadlock
by using three common techniques, which are prevention, avoidance or detection and resolution of the deadlock to increase the
performance of distributed database.

http://ijsrp.org/

International Journal of Scientific and Research Publications, Volume 5, Issue 9, September 2015 2
ISSN 2250-3153

www.ijsrp.org

Avoidance the deadlock : This technique handles the deadlock before it occurs. If the requested data sources are locked by other
transactions, the current transaction has two choices: (1) wait for the locked data resource to be free, or (2) aborted (Swati Gupta,
2013; Thakur & Deswal, 2014; Bhatia & Verma, 2013).
Prevention of the deadlock: This technique stops the deadlock before it occurs. Each transaction identifies and blocks all data
resources that will be used in transaction steps before executing the transaction (Swati Gupta, 2013; Thakur & Deswal, 2014; Bhatia &
Verma, 2013). According to Jeffery (2013), preventing the deadlock is difficult to implement in real life because all programs are
executed in a serial manner based on the demand routines, which means not all data sources needed in the transaction can be
determined because some routines are not called yet.
Deadlock Detection: This technique detects the deadlock that has already occurred, by continuously scanning the transaction requests
(subjects) and scanning the data sources (objects) to distinguish the deadlock. Then, one of the transactions detected as a victim to be
aborted in terms of resolving the deadlock (Swati Gupta, 2013; Jeffery, 2013; Thakur & Deswal, 2014; Bhatia & Verma, 2013). There
are several algorithms, techniques and procedures that are proposed to detect the deadlock and other criteria to detect the victim
transaction in deadlock cycles. Table 1 illustrates some of these techniques and algorithms to detect the deadlock in distributed
database, which is described in detail in the realistic example section 2.2 of the current study.

Table 1: Existing Techniques to Detect and Resolve the Deadlock

NO Deadlock Detection

Techniques
 Description

1 B. M. Alom’s techniques Detect and resolve the deadlock by using LTS , DTS and priority tables
2 Brian M’s algorithm Detect and resolve the deadlock by using T-ID, Wait-For, Held-By, Request-Q and timestamp

tables.
3 TWFG algorithm Detect and resolve the deadlock by using Edges (E), Vertices (V) and timestamp tables
4 Path-pushing algorithms and

Edge-Chasing algorithm
Detect and resolve the deadlock by using updated WFG tables and sending to neighbors

B. M. Alom (2009) has proposed a new algorithm to detect and resolve the deadlock in distributed database. The proposed algorithm
is composed of two tables, which are local transaction structure (LTS) and distributed transaction structure (DTS) to record the
transactions’ request of the data resources, and other table to record the priority of transactions. When the deadlock occurs and
detected , the algorithm is detect the victim node based on the priority table, where the lowest priority transaction is aborted and all
data resources held by the aborted transaction are granted to other transactions in terms of resolving the deadlock as will described in
the realistic example section.

Brian M’s .Johnston et al. (1991) have proposed new algorithm to detect and resolve the deadlock in distributed database. The
proposed algorithm has the main transaction table structure, which consists of T-ID ,Wait-for, Held-by, and Request-Q; when
intersection occurs between the wait-for and requested –Q means there is deadlock. The victim transaction is allocated based on the
timestamp of the younger transaction that will be aborted because it has a few requested data resources as will described in the
realistic example section.

Mitchell & Merritt (1984), Chahar & Dala, (2013) and Swati Gupta (2013) have proposed Transaction-Wait-For-Graph algorithm to
detect and resolve the deadlock in distributed database. The proposed algorithm composed from Edges (E) and Vertices (V) in current
algorithm, where E represents transactions and V represents the data resources. The deadlock occurs when the graph contains a cycle
of transaction that requests a resource held by them. The victim transaction is detected based on the timestamp of the younger
transaction that will be aborted because it has a few requested data resources as describe in the realistic example section 2.2.

 Bhatia & Verma (2013) have proposed a new algorithm to detect and resolve the deadlock in distributed database. The proposed
algorithm uses WFG individually for each site of distributed database. When WFG allocates the deadlock, every sit updates its own
WFG and sends to a number of neighbors. This process continues until one of the sits complete the whole picture about the global
deadlock then try to solve the deadlock by one of three mechanisms, which are resolve by Preemption, resolve by Rollback, and
resolve by Termination, as will described theoretically in the realistic example section.

B. Realistic Example of Deadlock Detection and Resolutions

This section applies and analysis the proposed algorithms in practical example of distributed database, only last Path-Pushing
algorithms will discusses theoretically. Suppose the distributed database system (DDS) consist from two sits site1 and site2 , site 1
maintaining four transactions which are t1,t2,t3, and t4 as well as sit2 maintaining other four transactions which are t5,t6,t7, and t8 as
shown in Figure 1.

http://ijsrp.org/

International Journal of Scientific and Research Publications, Volume 5, Issue 9, September 2015 3
ISSN 2250-3153

www.ijsrp.org

Figure 1: Example of distributed database structure composed of two sites

• First over all analyzing the B. M. Alom’ algorithm based on the example present in figure 1:
This algorithm consist from three tables which are (1) local transaction structure (LTS) is a tables recorded the locals transactions’
requests individually for each site as shown in table 2 for site1 and table 3 for site 2, (2) Distributed transaction structure (DTS) is a
table to recorded the global transactions ‘requests which are participate more than one site as shown in table 4, and (3) transaction
query is a table maintain the transactions ID related to their priorities as shown in table 5 and 6 related to site 1 and site 2 gradually
and table 7 shows the transaction priority for DTS .

Detecting the deadlock is through scanning the transaction requests looking for any cycles. Table 2 illustrates that, there is no cycle
between transactions’ request that mean there is no deadlock occurs, can say that site 1 is deadlock free. Table 3 illustrates that there
is a clear cycle between transaction requests in site2, thus there is a deadlock. Table 6 shows that, T6 has lowest priority in site 2, thus
T6 will be aborted because it is youngest transaction and has low requested resource. Table 4 illustrates that, there is a cycle
between transaction’s requests from site1 and site 2, thus there is a deadlock occurs between transaction’s requests. Table 7 shows
that T5 is lower priority transaction has participates in global deadlock. Thus, T5 has been aborted because it is youngest transaction
in DTS caused the deadlock. Figure 2 show the distributed database without any deadlocks between transactions’ requests based on B.
M. Alom’ algorithm .

T-ID T-Priority
T5 3
T6 1
T7 4
T8 2
Table 6: Site 2
Transactions’ Priority

T-ID Request -At
T5 6
T6 8
T8 7
T7 5
Table 3: Site 2
Transactions’ request

T-ID T-Priority
T1 1
T2 2
T3 3
T4 4
Table 5: Site 1
Transactions’ Priority

T-ID Request -At
T1 2
T1 3
T2 3
T4 2

Table 2: Site 1
Transactions’ request

T-ID Request -At
T1 2
T1 3
T2 3
T3 5
T5 6
T6 4
T4 2
T8 7
T7 5
T6 8
Table 4: DTS for
site1 and site 2

T-ID T-Priority
T1 1
T5 2
T3 3
T7 4
T2 5
T8 6
T4 7
T6 8
Table 7: DTS Priority

Site1

T

T T

T

Site 2

T T

T T

http://ijsrp.org/

International Journal of Scientific and Research Publications, Volume 5, Issue 9, September 2015 4
ISSN 2250-3153

www.ijsrp.org

Figure 2: Distributed database without deadlocks

• Second, analyzing the Brian M. Johnston’s algorithm based on the example present in figure 1:
This algorithm considers that, each transaction has T-ID represent the transaction identification, and TS represent the timestamp
associate with T-ID which presents when the transaction join the execution stage . From other hand, there are three main variables
for each transaction which are (1) Wait-for, (2) Held-by, and (3) Request-Q. If the Ti is not waiting for any other transaction then
Wait-for (Ti) is set to nil, otherwise, Wait-for (Ti) refer to which transaction is at the head of the locked data object. Held_by (Ti) is
set to nil if the current transaction is executing, else it stores the transaction that is holding the data object required by the current
transaction. Request-Q (Ti) maintains all pending requests for data resources that are holed other transaction. Each element in the
Request-Q (Ti) is a pair (Tj, Di), where Tj is the requesting transaction and Di is the particular data source held by Ti.

When transaction Ti establish data request for to lock Dj, if Dj free can granted directly to Ti and locks under Ti identifications, else
several processes required to perform which are :

• Dj sends a not granted message to Ti along with the transaction identifier locking Dj
• Ti joins the Request-Q (Tj) and sets its Wait-for equal to wait-for (Ti).
• Now Ti initiates a update message to modify all the Wait-for variables which are affected by the changes in Locked by

variable of the data objects.
• Update message is a recursive function call that will continue updating all elements of every Request-Q in the chain.
• When a transaction Tj receives the update message it checks if its Wait-for value is the same as the new Wait-for value.
• This message continues until Ti discovers that Wait-for (Ti) intersected with Request-Q (Ti) is not nil.
• Thus, the deadlock occurs then should abort the Ti and granted its data sources to other transaction required it.

Execute this algorithm by based on the example in figure 1. Table 8 and table 9 show the transaction structure for site 1 and site 2
.Finally, table 10 shows the transaction structure in distributed environment both site1 and site 2.

 Wait-for (T5) ∩ Request-Q (T5) = nil
Wait-for (T1) ∩ Request-Q (T1) = nil Wait-for (T6) ∩ Request-Q (T6) = nil
Wait-for (T2) ∩ Request-Q (T2) = nil Wait-for (T7) ∩ Request-Q (T7) = nil
Wait-for (T3) ∩ Request-Q (T3) = nil Wait-for (T8) ∩ Request-Q (T8) = T6
Wait-for (T4) ∩ Request-Q (T4) = nil

Based on reviews the intersection values of table 8 , there is no deadlock occur because there is no intersection exist between Wait –
for(Ti) and request-Q(Ti) . The intersection values of table 9 shows that, there is a deadlock occur because Wait-for(T8) ∩

T-ID TS Wait-for Held-By Request-Q
T1 2 T2,T3 T2,T3 Nil
T2 1 T2 T3 T1,T4
T3 3 Nil Nil T1,T2
T4 4 T2 T2 Nil

Table 8: Transaction Structure of site1

T-ID TS Wait-for Held-By Request-Q
T5 3 T6 T6 T7
T6 1 T6 T8 T5
T7 2 T6 T5 T8
T8 4 T6 T7 T6

Table 9: Transaction Structure of site1

Site1

T

T T

T

Site 2

TT

T

http://ijsrp.org/

International Journal of Scientific and Research Publications, Volume 5, Issue 9, September 2015 5
ISSN 2250-3153

www.ijsrp.org

Request-Q (T8) = T6 , thus, one of these transactions T8 or T6 should be aborted based on lower timestamp. Therefore, the
timestamp of T6 is 4 which is less than the time stamp of T8, thus T8 should be abort to resolve the deadlocks.

The intersections review based on table 10 shows that, there in two deadlocks occur first one caused by transaction 3 and second one
caused by transaction 8 as describe in the following intersection formulates.

Wait-for (T0) ∩ Request-Q (T0) = nil
Wait-for(T1) ∩ Request-Q (T1) = nil
Wait-for (T2) ∩ Request-Q (T2) = nil
Wait-for(T3) ∩ Request-Q (T3) = T2
Wait-for(T5) ∩ Request-Q (T5) = nil
Wait-for(T6) ∩ Request-Q (T6) = nil
Wait-for(T7) ∩ Request-Q (T7) = nil
Wait-for(T8) ∩ Request-Q (T8) = T6

To resolve the deadlock required to select the victims transactions based on time stamp values. TS(T2) < TS(T3) , thus T3 should be
aborted to resolve first deadlock , and TS(T8) > TS(T6) , thus T8 should be aborted to resolve the second deadlock as shown in figure
3.

 Figure 3: Distributed database without deadlocks

• Third analyzing the TWFG algorithm which is proposed by Swati Gupta (2013), based on the example present in
figure 1:

This algorithm consists from two tables which are local transaction structure (LTS) maintains the local transactions’ requests
individually for each site and distributed transaction structure (DTS) stores the global transactions ‘requests which are participate

T-ID TS Wait-for Held-By Request-Q
T1 7 T2 T2,T3 Nil
T2 1 T2 T3 T1,T4
T3 5 T2 T5 T1,T2
T4 2 T2 T2 T6
T5 6 T6 T6 T7,T3
T6 3 T6 T4,T8 T5
T7 8 T6 T5 T8
T8 4 T6 T7 T6

Table 10: Transaction Structure of site1and site 2

Site1

T

T T

Site 2

T

T T

http://ijsrp.org/

International Journal of Scientific and Research Publications, Volume 5, Issue 9, September 2015 6
ISSN 2250-3153

www.ijsrp.org

more than one site. LTS and DTS are created based on the transactions’ timestamp. This algorithm will analysis based on the
example present in figure 1 by executes the following steps.

1. All transaction Ti request data sources maintaining in array namely P and the data source have been needed stores in array called

Q , array vector used to keep the scan values though execution this algorithm initially it is empty, stack to store the matching
values , and finally temp variable used to store the searching values.

2. First transaction from array P enters to vector array.
3. The corresponding data sources from array Q is store in temp variable.
4. Search the temp variable in array of transaction P, every matching value as a result of searching passed to stack.
5. Repeat until complete array P is empty: Take the most top value in the stack , only the Q value then searching in vector array
for matching results, if the results is false there is no matching values enter the value of P to the vector array and go to step 3.
Else if the result is true that mean there is a deadlock occur. The victim transaction will be allocated and aborted based timestamp
value resolve the problem of gridlock.
6. For unsuccessful search if temp is not found in array P then make the stack empty.
Finally, to detect the deadlock in global sites: create the DTS table to maintain the transaction request from different sites, implement
the local deadlock detection algorithm in each site individually to resolve the global deadlock cycle.

Table 11 illustrates the transactions timestamp for site1 and site 2, Table 12 shows the LTS for site1 and site 2 , and figure 4 and
figure 5 explain the algorithm execution steps in site 1 and site 2.

Figure 4: Deadlock detection in site 1

According to vector array and stack directions there is no matching occur between pairs (P, Q). Thus, there is no deadlock occur in site
1.

Figure 5: Deadlock detection in site 2

Site1 Site2
T-ID TS T-ID TS
T2 1 T6 3
T4 2 T8 4
T3 5 T5 6
T1 7 T7 8

Table 11: Timestamp for site1 and site2

Site1 Site2
P Q P Q
2 3 6 8
4 2 8 7
1 3 5 6
1 2 7 5

Table 12: LTS for site1 and site2

Vector
2
4
1
1

Vector array for Site1

Stack

Stack for Site1

Temp
3
2
3
2

Temp

Vector
6
8
7
5
6

Vector array for Site2

Stack
8,7
7,5
5,6

Stack for Site2

Temp
8
7
5

Temp

http://ijsrp.org/

International Journal of Scientific and Research Publications, Volume 5, Issue 9, September 2015 7
ISSN 2250-3153

www.ijsrp.org

According to vector array of site 2 there is matching occur for the transaction from node 5 to node 6. Thus, the transaction with lowest
timestamp should be aborted to resolve this problem. According to table 11, the TS (T5) > TS (T6) , thus, T5 will be aborted. Table 13
shows that, the LTS after detect and resolve the deadlock.

Regarding to deadlock detection in distributed database table 15, illustrates the timestamp for site 1 and site 2 transactions that have
participate in the cycle between two sites. Table 14 shows the DTS for site1 and site 2. Now, to detect the deadlock and victim
transaction should use the P , Q, vector, stack and temp variable as shows in figure 6 .

 Figure 6: Deadlock detection in DTS

According to array vector values, there is a matching value between T2 and T4, thus the deadlock occur between T2 and T4. One of
these two transaction should be aborted TS (T4) > TS(T2), thus T4 will be aborted to resolve the deadlock problem and continuous
without gridlock. Finally, figure 7 illustrates the distributed database without deadlock.

Site1 Site2
P Q P Q
2 3 6 8
4 2 8 7
1 3
1 2

Table 13: LTS for site1 and site2

Site 1& 2
T-ID TS
2 1
4 2
6 3
3 5
5 6

Table 15: timestamp for site1 and site2

Site1&2
P Q
2 3
4 2
6 4
3 5
5 6

Table 14: DTS for both site1 and site2

Vector
2
3
5
6
4
2

Vector array DTS

Stack
3,5
5,6
6,4
4,2

Stack for DTS

Temp
3
5
6
4

Temp for DTS

Site1

T

T T

T

Site 2

T T

T

http://ijsrp.org/

International Journal of Scientific and Research Publications, Volume 5, Issue 9, September 2015 8
ISSN 2250-3153

www.ijsrp.org

Figure 7: Distributed database without deadlock

• Furth , Analyzing Path-pushing algorithms theoretically which is proposed by Bhatia & Verma (2013)

Path-pushing algorithms: The importance of this technique is creating a Global-Wait-for-Graph (GWFG) by depending on Local-
Wait-For-Graph (LWFG). Every site sends its own LWFG to all neighbors’ sites to detect the deadlock. The sites modified their
LWFG based on shared information from neighbors. This process continues until some of the sites have completed a whole picture of
the distributed database transaction. Finally, it can decide if there is existing deadlock or not. This algorithm is called path-pushing
algorithms because it keeps track of the path along the sites to detect the transaction that causes the gridlock. On the other hand, edge-
chasing algorithm is described as a deadlock in distributed database that can be detected by sending a message called probes along the
edges of the graph. When the initiator probe receives a matching probe, it knows there is a cycle in the graph (Deadlock). To resolve
the deadlock, there are three main approaches that can be used to perform this task, which are, 1) Resolve through Preemption, 2)
Resolve through Rollback, and 3) Resolve through Termination.

III. Discussion

B. M. Alom (2009) algorithm detects the deadlock cycle in site 1 and site 2 individually then in distributed database and solves the
deadlock by using priority values. In site 1, there was no deadlock, but in site 2 and distributed database, there was a deadlock. The
victim nodes are selected based on priorities of transactions. Transaction 6 was the main node that caused the deadlock in site 2 while
transaction 5 was the main node that caused the deadlock in distributed database based on priority schedule. The main drawback of
this algorithm is the deadlock detection depends only for the transaction priorities, if there is a change in the transactions priorities, the
algorithm may fail to detect the right deadlock.

Brian M’s algorithm allocates the deadlock in local and distributed database and resolves the deadlock by using timestamp values. The
deadlock occurs in site 2 and distributed database while there is no deadlock in site 1. In terms of resolving the deadlock, the lowest
timestamp transaction will be aborted to avoid the deadlock from occurring. Based on the timestamp schedule in site 2, transaction 8
was aborted and in distributed database, transaction 3 and transaction 8 were aborted to avoid the deadlock. The number of
transactions is aborted by Brian M’s algorithm in distributed database more than the number of transaction aborted by Alom’s
algorithm, which is only transaction 6. The main limitation of this algorithm is that there are no criteria of deciding which transaction
needs to be aborted early to reduce the repeated time of detections.

TWFG’s algorithm detects and resolves the deadlock in local and global database environments. There is no deadlock detection in site
1. However, site 2 and distributed database contains a deadlock. To resolve the deadlock, the victim transaction, which is the youngest
transaction based on time stamp values, should be aborted. Transaction 5 was the main transaction causing the deadlock in site 2 and
distributed database, thus it is selected to be aborted as the youngest transaction. The main problem of this algorithm is starvation; this
algorithm often aborts the youngest transaction that causes the critical starve to the youngest transaction.

Finally , all the proposed algorithm detect and resolve the deadlock in distributed database, but all of them have some limitations such
as priority, standard criteria and starvation. This justifies the need to create new techniques to remove the drawbacks of the proposed
algorithms.

IV. Recommendation

The main drawback of B. M. Alom’s algorithm is detecting the deadlock by using transaction priorities schedule, when a change in the
priorities would result in this technique possibly failing to detect the deadlock. The main drawback of Brian M’s algorithm is that
there are no standard criteria of allocating which transaction should to be aborted early to reduce the repeated time of detections.
Meanwhile, the main drawback of TWFG algorithm is starvation. This algorithm often aborts the youngest transaction that causes the
critical starve to the youngest transaction. We can suggest new techniques that composed of B. M. Alom, TWFG and Brian M’s
algorithms implemented together to solve these three weaknesses as the follows.

http://ijsrp.org/

International Journal of Scientific and Research Publications, Volume 5, Issue 9, September 2015 9
ISSN 2250-3153

www.ijsrp.org

1. Detect the deadlock by using B. M. Alom’s algorithm.

2. Use Brian M’s algorithm to allocate the victim transaction to solve the changes of priorities problem based on timestamp.
3. Use flag variable associated with each transaction. Initially set all flags as Zero value (flag=0), which means not aborted yet.
4. When detecting the victim transaction as a younger transaction based on step 2 , check if flag=0; this means that the transaction
can be aborted and set the flag value as one (flag=1), which is not allowed to abort the youngest transaction and can abort the next
earlier timestamp transaction.
This procedure detects the deadlock by using B. M. Alom’s algorithm, resolve the deadlock by using Brian M’s algorithm and solve
the starvation drawback by using flag variable. Thus, the proposed algorithm detects and resolves the deadlock efficiency.

V. Conclusion
The in-depth reviews of common algorithms which are used to detect and resolve the deadlock in distributed database show that there
is no complete algorithm to detect and resolve without any negative effect, such as first algorithm facing drawback when the priorities
of the transaction are changed; secondly algorithm faced a limitation where there is no standard criteria to resolve the deadlocks, and
thirdly the algorithm has real weaknesses, which are starvations. This research proposed new techniques to detect and resolve the
deadlock by using the reviewed algorithms’ concepts together and add flag values as shown in the recommendation section.

References

al-murafi, w. s. h. database fragmentation technique for news websites (doctoral dissertation, middle east university)

alom, b. m., henskens, f., & hannaford, m. (2009, april). deadlock detection views of distributed database. in information technology: new generations, 2009. itng'09.
sixth international conference on (pp. 730-737). ieee

bhatia, y., & verma, s. (2014). deadlocks in distributed systems.international journal of research, 1(9), 1249-1252

chahar, p., & dalal, s. deadlock resolution techniques: an overview.international journal of scientific and research publications, 56

jeffrey hoffer v ramesh heikki topi isbn-10: 0273779281 • isbn-13: 9780273779285 ©2013 • pearson • paper, 628 pp published 12 oct 2012 • reprinting - limited stock.
add to basket to check current availability.
- see more at: http://catalogue.pearsoned.co.uk/catalog/academic/product?isbn=9780273779285#downloadable-instructor-resources

grover, h. (2013, february). a distributed algorithm for resource deadlock detection using time stamping. in international journal of engineering research and
technology (vol. 2, no. 11 (november-2013)). esrsa publications

grover, h., & kumar, s. (2012). analysis of deadlock detection and resolution techniques in distributed database environment.international journal of computer
engineering & science, 2(1), 17-25

gupta, s. (2013). deadlock detection techniques in distributed database system. international journal of computer applications, 74(21), 41-45

johnston, b. m., javagal, r. d., datta, a. k., & ghosh, s. (1991, march). a distributed algorithm for resource deadlock detection. in computers and communications, 1991.
conference proceedings., tenth annual international phoenix conference on (pp. 252-256). ieee.

mitchell, d. p., & merritt, m. j. (1984, august). a distributed algorithm for deadlock detection and resolution. in proceedings of the third annual acm symposium on
principles of distributed computing (pp. 282-284). acm

thakur, s., & deswal, k. (2014). analysis for deadlock detection and resolution techniques in distributed database. international journal of research, 1(9), 1312-1316

AUTHORS
First Author – Abdullah Mohammed Rashid, Master student , College Of IT University Tenaga Nasional, Kajang, Selangor,
Malaysia.
 Email : Abdall_rshd@yahoo.com
Second Author – Nor’ashikin Ali, PHD , College Of IT, University Tenaga Nasional, Kajang, Selangor, Malaysia,

Email:shikin.uniten@gmail.com

http://ijsrp.org/

	Deadlock Detection and Resolution in Distributed Database Environment
	Abdullah Mohammed Rashid1, Nor’ashikin Ali2

	Authors

