THE SPHERICITY TEST IN REPEATED MEASURES MODEL

Abdul-Hussein Saber Al-Mouel¹ & Jawad Mhmoud Jassim²

- 1- Department of Mathematics-College of Education-University of Basrah
- 2- Department of Mathematics-College of Science-University of Basrah

Abstract

The sphericity test for repeated measures model is studied. The likelihood ratio criterion of this test is obtained.

Key words: Repeated Measures Model, Likelihood Ratio Criterion, Sphericity Test

1- Introduction

The repeated measures model (RMM) is one of the most widely used models in experimental designs, especially in biological, agricultural, educational and psychological research [4]. It occurs in analysis of variance when a particular experimental unit receives several treatments [3]. Many literatures that are considered univariate the assumption is made that a set of random variables are independent and have a common variance. Mauchly (1940) [5], was studied the test of the hypothesis that the sample from n-variate population is in fact from a population from which the variances are equal and the correlations are all zero. A population having this symmetry will be called "spherical". Anderson (1984) [2], was studied a test based on repeated sets of observations, that is, he used a sample of p-component vectors from a multivariate normal distribution to test that hypothesis. Al-Mouel (2004) [1], was studied a generalization for the sphericity test by letting Y_1, \ldots, Y_n be independent of each other, and identically distributed N_p (μ , Σ) and considering the partition $Y_i = [Y_{i1}, Y_{i2}, \ldots, Y_{ik}]'$,

$$\mu = [\mu_1, \mu_2, \dots, \mu_k]', \quad \Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} & \dots & \Sigma_{1k} \\ \Sigma_{21} & \Sigma_{22} & \dots & \Sigma_{2k} \\ \vdots & \vdots & & \vdots \\ \Sigma_{k1} & \Sigma_{k2} & \dots & \Sigma_{kk} \end{bmatrix}, \text{ where } Y_{ir} \text{ and } \mu_r \text{ are } p_r \times 1$$

vectors and Σ_{rr} is $p_r \times p_r$ matrices $(r=1,2,\ldots,k)$ with $\sum\limits_{r=1}^k p_r = p$. He tests the null

hypothesis

$$\mathbf{H}_{0} : \Sigma = \begin{bmatrix} \mathbf{I}_{q_{1}} \otimes \Lambda_{11} & 0 & \dots & 0 \\ 0 & \mathbf{I}_{q_{2}} \otimes \Lambda_{22} & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & \mathbf{I}_{q_{k}} \otimes \Lambda_{kk} \end{bmatrix}, \tag{1}$$

where Λ_{rr} is $m_r \times m_r$ matrices with $q_r \times m_r = p_r$, r = 1, 2, ..., k, I_s denote the $s \times s$ identity matrix and \otimes be the Kroncker product between two matrices [6].

And he shows the criterion for $\,H_0\,$ is

$$\Lambda = \frac{|A|^{\frac{n}{2}}}{\prod\limits_{r=1}^{k} \left(\frac{|B_r|}{q_r^{m_r}}\right)^{\frac{nq_r}{2}}},$$
(2)

where

$$A = \sum_{i=1}^{n} (Y_i - \overline{Y})(Y_i - \overline{Y}) = \begin{bmatrix} A_{11} & A_{12} & \dots & A_{1k} \\ A_{21} & A_{22} & \dots & A_{2k} \\ \vdots & \vdots & & \vdots \\ A_{k1} & A_{k2} & \dots & A_{kk} \end{bmatrix},$$
(3)

 A_{rr} are $p_{\,r} \times p_{\,r}$ matrices, $B_{\,r} = \sum\limits_{i=1}^{q_{\,r}} A_{rr,\,ii}$, and

$$A_{rr} = \sum_{i=1}^{n} (Y_{ir} - \overline{Y_r})(Y_{ir} - \overline{Y_r})' = \begin{bmatrix} A_{rr,11} & A_{rr,12} & \dots & A_{rr,1q} \\ A_{rr,21} & A_{rr,22} & \dots & A_{rr,2q} \\ \vdots & \vdots & & \vdots \\ A_{rr,q_r1} & A_{rr,q_r2} & \dots & A_{rr,q_rq_r} \end{bmatrix},$$
(4)

for r = 1, 2, ..., k. In this paper we study the sphericity test in repeated measures model of Gabbara (1994) [4] as an application of generalized sphericity test.

2- Repeated Measures Model (RMM) of Gabbara (1994) [4]

In this section, we state the RMM of Gabbara (1994) [4], which is given below. Let Y_{ijk} be the $(j,k)^{th}$ observation on the i^{th} individual (experimental unit), for $i=1,\ldots,m, j=1,\ldots,a$, and $k=1,\ldots,b$, where a is the number of rows and b is the number of columns. Let $Y_i=(Y_{i11},\ldots,Y_{iab})'$ denote the $ab\times 1$ vector of observations on the i^{th} individual, and $\mu_{ijk}=E(Y_{ijk}), \ \mu_i=E(Y_i)$. It is assumed that Y_i are independently normally distributed with mean vector μ_i and common covariance Σ , which is positive definite matrix. Let all measurements have the same variance σ^2 , and that every pair of measurements that comes from:

- (i) different columns and different rows treatments,
- (ii) the same column but different rows treatments,
- (iii) different columns but the same row treatments,

having $\sigma^2 \rho_1$, $\sigma^2 \rho_2$, $\sigma^2 \rho_3$ as their respective covariances and every pair of measurements that comes from different individuals have covariance zero. In symbols:

$$COV(Y_{ijk}, Y_{i'j'k'}) = \begin{cases} \sigma^{2} & \text{if } i = i', j = j', k = k' \\ \sigma^{2} \rho_{3} & \text{if } i = i', j = j', k \neq k' \\ \sigma^{2} \rho_{2} & \text{if } i = i', j \neq j', k = k' \\ \sigma^{2} \rho_{1} & \text{if } i = i', j \neq j', k \neq k' \\ 0 & \text{if } i \neq i' \end{cases}$$
(5)

Let

$$\mu_i = \delta_i \ j_{ab} + \alpha_i \otimes j_b + j_a \otimes \beta_i + \eta_i \,, \tag{6}$$

where

 δ_i is a scalar,

$$\alpha_i = (\alpha_{i1}, \ldots, \alpha_{ia})'$$
 is an $a \times 1$ vector orthogonal to j_a ,

$$\beta_i = (\beta_{i1}, \dots, \beta_{ib})'$$
 is a $b \times 1$ vector orthogonal to j_b ,

 $\eta_i = (\eta_{i11}, \ldots, \eta_{iab})'$ is an ab imes 1 vector orthogonal to every column of the

matrix $I_a \otimes j_b$ and every column of the matrix $j_a \otimes I_b$, and j_s is the $s \times 1$ vector of one's.

Let Y_1, \ldots, Y_m be independent ab-dimensional normal random vectors such that

$$Y_i \sim N_{ab} (\mu_i, \Sigma), i = 1, \dots, m, \tag{7}$$

where μ_i is given in (6) and Σ is defined in (5).

Then, he showed that

$$\Sigma = \sigma^{2}[(1 - \rho_{3} - \rho_{2} + \rho_{1})I_{ab} + (\rho_{3} - \rho_{1})I_{a} \otimes J_{b} + (\rho_{2} - \rho_{1})J_{a} \otimes I_{b} + \rho_{1}J_{ab}],$$
(8)

The model defined by (5)- (8) is called the RMM.

3- Transforming the RMM (Gabbara (1994))

In this section, we use the transformation of the RMM, which is given by Gabbara (1994) [4].

Let U_* be an $ab \times ab$ orthogonal matrix given in the following form

$$U_{*} = \begin{bmatrix} (ba)^{-\frac{1}{2}} (j'_{b} \otimes j'_{a}) \\ b^{-\frac{1}{2}} (U'_{a} \otimes j'_{a}) \\ a^{-\frac{1}{2}} (j'_{a} \otimes U'_{b}) \\ (U'_{a} \otimes U'_{b}) \end{bmatrix},$$
(9)

where U_s' be $(s-1)\times s$ matrix such that $U_s'U_s=I_{s-1},\ U_sU_s'=I_s-(\frac{1}{s})J_s$,

 U_s' j_s = 0, j_s U_s' = 0, and J_s is the $s \times s$ matrix of one's .

Let

$$Y_{i}^{*} = \begin{bmatrix} Y_{i1}^{*} \\ Y_{i2}^{*} \\ Y_{i3}^{*} \\ Y_{i4}^{*} \end{bmatrix} = U_{*} Y_{i} = \begin{bmatrix} (ba)^{-\frac{1}{2}} j'_{a} \otimes j'_{b} \\ \frac{1}{b^{-\frac{1}{2}}} U'_{a} \otimes j'_{b} \\ \frac{1}{a^{-\frac{1}{2}}} j'_{a} \otimes U'_{b} \\ U'_{a} \otimes U'_{b} \end{bmatrix} Y_{i},$$

$$(10)$$

where
$$Y_{i1}^*, Y_{i2}^*, Y_{i3}^*, Y_{i4}^*$$
 are $1 \times 1, (a-1) \times 1, (b-1) \times 1, (a-1)(b-1) \times 1$,

respectively. Since U_st is an invertible matrix and does not depend on any

unknown parameters, observing Y_1, \ldots, Y_m is equivalent to observing Y_{i1}^* ,

$$Y_{i2}^*, Y_{i3}^*$$
 and Y_{i4}^* . Thus

$$Y_i^* \sim N_{ab}(U_*\mu_i, U_*\Sigma U_*').$$
 (11)

Now

$$U_* \mu_i = \begin{bmatrix} (ba)^{-\frac{1}{2}} j'_a \otimes j'_b \\ b^{-\frac{1}{2}} U'_a \otimes j'_b \\ a^{-\frac{1}{2}} j'_a \otimes U'_b \end{bmatrix} \mu_i = \begin{bmatrix} \sqrt{ba} \delta_i \\ \sqrt{b} U'_a \alpha_i \\ \sqrt{a} U'_b \beta_i \\ (U'_a \otimes U'_b) \eta_i \end{bmatrix},$$
(12)

where μ_i is given in (6), and

$$\Sigma^* = U_* \Sigma U_*' = \begin{bmatrix} \tau_1^2 & 0 & 0 & 0 \\ 0 & \tau_2^2 I_{a-1} & 0 & 0 \\ 0 & 0 & \tau_3^2 I_{b-1} & 0 \\ 0 & 0 & 0 & \tau_4^2 I_{(a-1)(b-1)} \end{bmatrix},$$
(13)

where

$$\tau_{1}^{2} = \sigma^{2}[1 + (b-1)\rho_{3} + (a-1)\rho_{2} + (b-1)(a-1)\rho_{1}],$$

$$\tau_{2}^{2} = \sigma^{2}[1 + (b-1)\rho_{3} - \rho_{2} - (b-1)\rho_{1}],$$

$$\tau_{3}^{2} = \sigma^{2}[1 - \rho_{3} + (a-1)\rho_{2} - (a-1)\rho_{1}],$$

$$\tau_{4}^{2} = \sigma^{2}[1 - \rho_{3} - \rho_{2} + \rho_{1}],$$
(14)

 $(au_1^2, au_2^2, au_3^2, au_4^2)$ is just an invertible function of $(\sigma^2,\rho_1,\rho_2,\rho_3)$ which is a reparametrization.

Hence Y_{i1}^* , Y_{i2}^* , Y_{i3}^* and Y_{i4}^* are independent, and

$$Y_{i1}^{*} \sim N_{1} \left(\sqrt{b a} \ \delta_{i}, \tau_{1}^{2} \right),$$

$$Y_{i2}^{*} \sim N_{a-1} \left(\sqrt{b} \ U'_{a} \ \alpha_{i}, \tau_{2}^{2} \ I_{a-1} \right),$$

$$Y_{i3}^{*} \sim N_{b-1} \left(\sqrt{a} \ U'_{b} \ \beta_{i}, \tau_{3}^{2} \ I_{b-1} \right), \text{ and}$$

$$Y_{i4}^{*} \sim N_{(a-1)(b-1)} \left(\left[U'_{a} \otimes U'_{b} \right] \eta_{i}, \tau_{4}^{2} \ I_{(a-1)(b-1)} \right). \tag{15}$$

4: The Sphericity Test in RMM

We consider the covariance structure in RMM of Gabbara (1994) [4] . We wish to test the null hypothesis

$$\mathbf{H}_{0}: \Sigma = \sigma^{2} [(1 - \rho_{3} - \rho_{2} + \rho_{1}) \mathbf{I}_{ab} + (\rho_{3} - \rho_{1}) \mathbf{I}_{a} \otimes J_{b} + (\rho_{2} - \rho_{1}) J_{a} \otimes \mathbf{I}_{b} + \rho_{1} J_{ab}],$$

$$(16)$$

which is based on the sample Y_1, \ldots, Y_m . Since the observing Y_1, \ldots, Y_m is equivalent to the observing Y_{i1}^* , Y_{i2}^* , Y_{i3}^* and Y_{i4}^* , and Σ is equivalent to Σ^* , where Σ^* is given in (13), then testing the null hypothesis (16) is equivalent to testing the null hypothesis

$$\mathbf{H}_{0}: \Sigma^{*} = U_{*} \Sigma U_{*}' = \begin{bmatrix} \tau_{1}^{2} & 0 & 0 & 0 \\ 0 & \tau_{2}^{2} \mathbf{I}_{a-1} & 0 & 0 \\ 0 & 0 & \tau_{3}^{2} \mathbf{I}_{b-1} & 0 \\ 0 & 0 & 0 & \tau_{4}^{2} \mathbf{I}_{(a-1)(b-1)} \end{bmatrix}, \tag{17}$$

which is based on the sample Y_1^*, \dots, Y_m^* , or

$$\mathbf{H}_{0}: \Sigma^{*} = diag(\tau_{1}^{2}, \tau_{2}^{2} \mathbf{I}_{a-1}, \tau_{3}^{2} \mathbf{I}_{b-1}, \tau_{4}^{2} \mathbf{I}_{(a-1)(b-1)}). \tag{18}$$

We see that (17) is a special case of the form (1). Then we can applied the generalized sphericity test of Al-Mouel (2004) [1].

Hence, the likelihood ratio criterion for $\ H_0$ is :

$$\Lambda = \frac{|A|^{\frac{m}{2}}}{\prod\limits_{g=1}^{4} |B_g|^{\frac{m}{2}}},\tag{19}$$

where

$$A = \sum_{i=1}^{m} (Y_i^* - \overline{Y^*}) (Y_i^* - \overline{Y^*})' = mS,$$
 (20)

$$B_g = trace(A_{gg}), g = 1, 2, 3, 4, \text{ and}$$
 (21)

$$A_{gg} = \sum_{i=1}^{m} (Y_{ig}^* - \overline{Y_g^*}) (Y_{ig}^* - \overline{Y_g^*})', g = 1, 2, 3, 4,$$
 (22)

where $\overline{Y^*}$ and S be respectively the sample mean vector and covariance matrix formed from a sample observations on Y_i^* that means $\overline{Y^*}$ and A partition as:

$$\overline{Y}^{*} = (\overline{Y_{1}}^{*}, \overline{Y_{2}}^{*}, \overline{Y_{3}}^{*}, \overline{Y_{4}}^{*}), \text{ and } A = \begin{bmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{21} & A_{22} & A_{23} & A_{24} \\ A_{31} & A_{32} & A_{33} & A_{34} \\ A_{41} & A_{42} & A_{43} & A_{44} \end{bmatrix}, (23)$$

where $\overline{Y_1^*}', \overline{Y_2^*}', \overline{Y_3^*}', \overline{Y_4^*}'$ are $1 \times 1, (a-1) \times 1, (b-1) \times 1, (a-1)(b-1) \times 1$ and $A_{11}, A_{22}, A_{33}, A_{44}$ are $1 \times 1, (a-1) \times (a-1), (b-1) \times (b-1),$ $(a-1)(b-1) \times (a-1)(b-1)$ respectively.

5: Conclusion

The likelihood ratio criterion, for H_0 (17) which is based on the sample Y_1^*,\ldots,Y_m^* , is

$$\Lambda = \frac{|A|^{\frac{m}{2}}}{\prod\limits_{g=1}^{3} |B_g|^{\frac{m}{2}}},$$

where \boldsymbol{A} and \boldsymbol{B}_{g} are given in (20) and (21) respectively.

References

- [1] Al-Mouel, A.S., "Multivariate Repeated Measures Models and Comparison of Estimators", Ph.D. Thesis, East China Normal University, China 2004.
- [2] Anderson, T.W., " An Introduction to Multivariate Statistical Analysis " New York, Wiley, 1984.
- [3] Arnold, S.F., "A coordinate-Free Approach to Finding Optimal Procedures for Repeated Measures Designs", Annals of Statistics, 1979, 7, 812-822.
- [4] Gabbara, S.D., "Optimal Procedures for Repeated Measures Models", Journal of Ebn-Al-Haithem, 1994, 5.
- [5] Mauchly, J.W., "Significance Test for Sphericity of A Normal n-Variate Distribution", Annals of Mathematical Statistics, 1940, 11,204-209.
- [6] Timm, N.H., "Applied Multivariate Analysis", Springer-Verlag, New York, 2002.

الاختبار الكروى لنموذج القياسات المتكررة

 2 عبد الحسين صبر المويل 1 8 جواد محمود جاسم

1- قسم الرياضيات-كلية التربية-جامعة البصرة

2- قسم الرياضيات-كلية العلوم -جامعة البصرة

المستخلص

لقد تمت دراسة الاختبار الكروي لنموذج القياسات المتكررة وحساب معيار نسبة الترجيح الاعظم لهذا الاختبار.