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Abstract 

  The sphericity test for repeated measures model is studied. The likelihood ratio criterion of this test is 

obtained. 
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1- Introduction 

  The repeated measures model (RMM) is one of the most widely used models in experimental 

designs, especially in biological, agricultural, educational and psychological research [4]. It occurs 

in analysis of variance when a particular experimental unit receives several treatments [3]. Many 

literatures that are considered univariate the assumption is made that a set of random variables are 

independent and have a common variance. Mauchly (1940) [5], was studied the test of the 

hypothesis that the sample from n-variate population is in fact from a population from which the 

variances are equal and the correlations are all zero. A population having this symmetry will be 

called " spherical ". Anderson (1984) [2], was studied a test based on repeated sets of 

observations, that is, he used a sample of p-component vectors from a multivariate normal 

distribution to test that hypothesis. Al-Mouel (2004) [1], was studied a generalization for the 

sphericity test by letting nYY ,,1   be independent of each other, and identically distributed 

),( pN  and considering the partition ],,,[ 21  ikiii YYYY  , 
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vectors and rr  is rr pp   matrices ),,2,1( kr   with  
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where rr  is rr mm   matrices with krpmq rrr ,,2,1,  , s  denote the  ss  

identity matrix and   be the  Kroncker product between two matrices [6]. 

And he shows the criterion for 0  is  
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for .,,2,1 kr   In this paper we study the sphericity test in repeated measures model of Gabbara 

(1994) [4] as an application of generalized sphericity test . 
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2- Repeated Measures Model (RMM) of Gabbara (1994) [4] 

  In this section, we state the RMM of Gabbara (1994) [4], which is given below. Let ijkY  be the 

thkj ),(  observation on the 
thi  individual ( experimental unit ), for 

,,,1,,,1 ajmi   and ,,,1 bk  where a  is the number of rows and b  is the 

number of columns. Let ),,( 11  iabii YYY   denote the 1ab  vector of observations on the  

thi  individual, and ,)( ijkijk YE  .)( ii YE  It is assumed that iY  are independently 

normally distributed with mean vector i    and common covariance  , which is positive definite 

matrix. Let all measurements have the same variance 
2 , and that every pair of measurements that 

comes from :  

(i) different columns and different rows treatments, 

(ii)  the same column but different rows treatments,  

(iii) different columns but the same row treatments,  

having 2
2

1
2 ,  , 3

2  as their respective covariances and every pair of measurements that 

comes from different individuals have covariance zero. In symbols : 
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 Let 

              ,iiabiabii jjj                                              (6) 

where 

   i  is a scalar, 

   ),,( 1  iaii    is an  1a  vector orthogonal to aj , 

   ),,( 1  ibii    is a  1b  vector orthogonal to bj , 
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   ),,( 11  iabii    is an  1ab  vector orthogonal to every column of the  

             matrix  ba j  and every column of the matrix  baj  , and sj  is the 1s  vector of 

one’s. 

Let  mYY ,,1   be independent  ab -dimensional normal random vectors such that 

                   ,,,1,),(~ miNY iabi                                                     (7) 

where  i  is given in (6) and    is defined in (5). 

Then, he showed that 

],)()()1[( 11213123
2

abbabaab JJJ  

                                                                                                                     (8) 

The model defined by (5)- (8) is called the RMM.   

 

3- Transforming the RMM ( Gabbara (1994)) 

In this section, we use the transformation of the RMM , which is given by Gabbara (1994) [4]. 

 Let U  be an abab  orthogonal matrix given in the following form 
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where  sU   be ss  )1(  matrix such that 1 sss UU , ssss J
s

UU )
1

( , 

0 ss jU , 0ss Uj , and sJ  is the ss   matrix of one’s .  

Let 
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where 

4321 ,,, iiii YYYY  are 1)1(,1)1(,11  ba , 1)1)(1(  ba  ,   

respectively. Since U  is an invertible matrix and does not depend on any  

unknown parameters, observing  mYY ,,1    is equivalent to observing 

1iY ,  


32 , ii YY  and 


4iY . Thus  
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 UUUNY iabi  .                                                (11) 
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where  i  is given in (6), and 
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where 
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),,,( 2
4
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2
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2
1   is just an invertible function of ),,,( 321

2   which is a  

reparametrization. 

Hence  

1iY , 
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32 , ii YY  and 
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4iY  are independent, and 
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4: The Sphericity Test in RMM 

   We consider the covariance structure in RMM of Gabbara (1994) [4] . We wish to test the null 

hypothesis  
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which is based on the sample  
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mYY ,,1  , or 

         .),,,(: )1()1(
2
41

2
31

2
2

2
10 

  babadiag                             (18) 



  1002( لسنة 3( العدد )21مجلة القادسية للعلوم الصرفة المجلد )

 

 982 

We see that (17) is a special case of the form (1). Then we can applied the generalized sphericity test 

of Al-Mouel (2004) [1] . 

Hence, the likelihood ratio criterion for  0   is : 
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where  
Y  and  S  be respectively the sample mean vector and covariance matrix formed from a 

sample observations on  


iY  that means  
Y   and  A  partition as : 
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where 
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5 : Conclusion 

   The likelihood ratio criterion, for 0  (17) which is based on the sample 
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where A   and  gB  are given in (20) and (21) respectively. 
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 الاخـتـبـار الـكـروي لـنـمـوذج الـقـيـاسـات الـمـتـكـررة

 1&  جـواد مـحـمـود جـاسـم  2عـبـد الـحـسـيـن صـبـر الـمـويـل

 جـامـعـة الـبـصـرة-كـمـيـة الـتـربـيـة-قـسـم الـريـاضـيـات -2

 جـامـعـة الـبـصـرة-كـمـيـة الـعـمـوم -قـسـم الـريـاضـيـات -9

 الـمـسـتـخـمـص 

 و حـسـاب مـعـيـار نـسـبـة الـتـرجـيـح الاعـظـم لـهـذا الاخـتـبـار. لـقـد تـمـت دراسـة الاخـتـبـار الـكـروي لـنـمـوذج الـقـيـاسـات الـمـتـكـررة  


