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ABSTRACT 

This manuscript presents a new technique to derive an 
accurate describe of sporadically perturbed primary 
bifurcations in two non-linearly coupled oscillators in both the non-
resonant and resonant cases. Statistical methodologies traditionally 
used by behavioral scientists assume that variables are continuous 
and linearly related. (Thom.C., 1975) has shown mathematically 
that catastrophe theory is an appropriate methodology to examine 
discontinuous non-linear relationships. While Thorn developed the 
theory to deal primarily with biological problems, (Zeeman, 1975) 
has explained how this approach can be effective with behavioral 
science phenomena. Catastrophe theory allows examination of 
discontinuous effects occurring over time.The bifurcations in the 
subharmonic resonant case are Z2-symmetry ones and they have 
codimension 3. On the other hand, the bifurcations in the main 
resonant case are shown to possess no symmetry properties and 
their codimension increases to 5. These bifurcation problems are 
analyzed in detail and the quasiglobal bifurcation classifications as 
well as bifurcation diagrams in the system are presented. It is 
shown that one can control vibration in non-linear systems with an 
appropriate choice of system parameters as suggested by some 
regions in the hyper surface where the amplitude of bifurcating 
solution is always zero. 

Keywords: Bifurcation Phenomena, Statistica, 
methodologies, Non-Linearly Coupled Oscillator, Primary 
Bifurcations, Secondary Bifurcations, Catastrophe Theory. 
 

1. INTRODUCTİON 

Considerable interest has been paid to the bifurcation 
phenomena of non-linear oscillating systems in engineering 
applications over the past five years [ 11. These phenomena 
include jump responses, hysteresis responses, periodic 
motions, quasiperiodic motions, sub -harmonic and super 
harmonic oscillations and chaotic motions. Many new 
mathematical ideas and theories, for instance the theory of 
Hopf bifurcation [2], the method of averaging 
[3-61, the centre manifold theorem [7], the theory of 
normalforms [7], and alternativeapproaches [6] have played 
an important role in the study of bifurcation problems. 
With the development of bifurcation studies, typical 
bifurcations or simple bifurcationssuch as the Hopf 
bifurcation, the saddle-node bifurcation and the pitchfork 
bifurcationhave become quite familiar. However, more 
complicated bifurcations or highercodimension bifurcations 
have not yet received much attention.The influence of a 
periodic perturbation on a bifurcating system has been 
studied by Rosenblatt and Cohen [S, 91 using the method of 
multiple scales. Similar studies have been made by Kath 
[l0], where periodic perturbations appear as external 
disturbances. 

Bajaj [ll] has studied some of these problems using the 
alternative method. Recently, Namachchivaya and 
Ariaratnam [12] have studied periodically perturbed Hopf 
bifurcation using the averaging method, normal forms and 
the centre manifold theorem. However, the investigations 
mentioned above have been focused only on the bifurcation 
problems originating from non-linear dynamic systems with 
one degree of freedom. The important issues of 

i- higher codimension bifurcations  
ii-  the global properties of the bifurcations in 

parameter space were not considered.  
These issues can be addressed by using 
the theory of singularity and group methods in bifurcation 
research [13]. In this paper a non-linear dynamic system 
with two degrees of freedom is considered so as to provide 
an initial framework for similar analysis of systems with 
many degreesof freedom. The system consists of two non-
linearly coupled oscillators with small parametric excitation 
and external force. Only primary bifurcations are considered. 
The associated secondary bifurcation problems will be dealt 
with in a companion paper [ 141. Equations of the type 
studied in this paper arise from the investigation of finite 
amplitude oscillations of hinged-clamped columns [15] 
subjected to an axial harmonic load or pipesconveying a 
moving fluid. They can also be found in biological studies in 
which the equations describe “states”, for example the 
concentration of chemical species of two neigh boring cells 
or groups of cells, each of which is able to oscillate by itself 
[16] and also if solutes are permitted to flow between these 
oscillators by diffusion and they areaffected periodically by 
external factors such as temperature and humidity, etc. In 
what follows the averaging method [3-5] is applied to study 
periodically perturbed primary bifurcations of the system 
and to obtain the bifurcation equations. A description of the 
dynamic model is made. Periodically perturbed primary 
bifurcations in the non-resonant cases are examined. The 
influence of parametric force and external force on the 
primary bifurcations is shown. Primary bifurcations in sub 
harmonic resonance associated with parametric excitation 
are studied. The symmetry bifurcation problem is analysed 
in detail. Primary bifurcations in main resonance associated 
with an externally applied force are investigated .This leads 
to a different kind of bifurcation problem from that of 
section 4. Some quasiglobal bifurcation pictures are 
presented in every section. It should be noted that these 
quasiglobal bifurcation pictures could not be obtained by 
previous techniques included in the aforementioned 
references. 
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2. CATASTROPHE THEORY  
Catastrophe theory, in mathematics, a set of methods used to 
study and classify the ways in which a system can undergo 
sudden large changes in behaviour as one or more of the 
variables that control it are changed continuously. 
Catastrophe theory is generally considered a branch of 
geometry because the variables and resultant behaviours are 
usefully depicted as curves or surfaces, and the formal 
development of the theory is credited chiefly to the French 
topologist René Thom.A simple example of the behaviour 
studied by catastrophe theory is the change in shape of an 
arched bridge as the load on it is gradually increased. The 
bridge deforms in a relatively uniform manner until the load 
reaches a critical value, at which point the shape of the 
bridge changes suddenly—it collapses. While the term 
catastrophe suggests just such a dramatic event, many of the 
discontinuous changes of state so labelled are not. The 
reflection or refraction of light by or through moving water 
is fruitfully studied by the methods of catastrophe theory, as 
are numerous other optical phenomena. More speculatively, 
the ideas of catastrophe theory have been applied by social 
scientists to a variety of situations, such as the sudden 
eruption of mob violence.Catastrophe theory analyses 
degenerate critical points of the potential function — points 
where not just the first derivative, but one or more higher 
derivatives of the potential function are also zero. These are 
called the germs of the catastrophe geometries. The 
degeneracy of these critical points can be unfolded by 
expanding the potential function as a Taylor series in small 
perturbations of the parameters.When the degenerate points 
are not merely accidental, but are structurally stable, the 
degenerate points exist as organising centres for particular 
geometric structures of lower degeneracy, with critical 
features in the parameter space around them. If the potential 
function depends on two or fewer active variables, and four 
or fewer active parameters, then there are only seven generic 
structures for these bifurcation geometries, with 
corresponding standard forms into which the Taylor series 
around the catastrophe germs can be transformed by 
diffeomorphism (a smooth transformation whose inverse is 
also smooth).[citation needed] These seven fundamental 
types are now presented, with the names that Thom gave 
them 

2.1 Catastrophe Theory and Bifurcation 
Analysis 

Statistical methodologies traditionally used by behavioral 
scientists assume that variables are continuous and linearly 
related. (Thom.C., 1975) has shown mathematically that 
catastrophe theory is an appropriate methodology to examine 
discontinuous non-linear relationships. While Thorn 
developed the theory to deal primarily with biological 
problems, (Zeeman, 1975) has explained how this approach 
can be effective with behavioral science phenomena. 
Catastrophe theory allows examination of discontinuous 
effects occurring over time.Catastrophe theory is not 
concerned with the examination of tragedies as would be 

surmised from the popular use of the word, but pertains to 
sudden and abrupt discontinuous change. This may refer to 
values, opinions or behavior which does not occur via a 
smooth transition. (Jiobu and Lundgren, 1978) explain that 
there are theoretically seven possible models from the "fold" 
(one dependent and one independent variable) to the 
parabola (two dependent and four independent variables). 
The applicable model for this study is the cusp model which 
has one dependent and two independent variables. The other 
models (except for the "fold") are more complicated, 
extremely difficult to conceptualize, and even more difficult 
to operationalize. The cusp model is visualized in Figure (1). 
The model is usually conceptualized as being four 
dimensional even though only three dimensions can be 
drawn. The values for the two independent variables (X, Z) 
are presented on the "control surface."The dependent 
variable (Y) is the height of the figure and is displayed on the 
"behavior surface." This surface has different heights which 
indicate the extent of the dependent variable at each juncture 
of the two independent variables. The fourth dimension 
concerns the variables over time. The cusp model is 
characterized by four attributes (Flay, 1978). First, the 
behavior can be considered bimodal dependent upon 
different values of the control factors (independent 
variables). Abrupt changes are observed between one mode 
of the dependent variable and another. This change is 
characterized by a delay rule where the behavioral variable 
tends to be continuous and in one behavioral state as long as 
possible (Sussman and Zahler, 1978). The cusp-catastrophe 
model therefore describes a phenomenon where two 
continuous independent variables impact upon a 
dichotomous dependent variable. The dependent variable 
will remain in the same bimodal state until an abrupt change 
or catastrophe occurs (a result of the "delay rule") when the 
continuous independent variables reach some threshold point 
The "A" time path on the behavior surface in Figure 3.1  
illustrates abrupt movement from one plane or mode of the 
dependent variable to another. The threshold is reached as 
the independent variables or factors cross the shaded area in 
Figure 3.1 (depicted by "a" on the behavior surface). The 
trace of this behavioral path is projected on the control 
surface (time path "A" on the control surface). The second 
attribute is the shaded area or inaccessible region on the 
behavior surface. This occurs since theoretically people 
cannot be actively involved in two contradictory behaviors 
simultaneously (i.e., people either stay or leave an 
organization). This area is represented by the bifurcation 
plane on the control surface. Movement across the 
bifurcation plane by the two independent control surface 
factors would therefore imply an abrupt change in behavior 
on the behavior surface. Third, there is hysteresis in the 
behavior surface implying that abrupt changes from one 
mode of behavior to another can occur at different values of 
the control surface depending on the direction of the time 
path. Any combination of control factors on the bifurcation 
plane represents a threshold beyond which intent to leave or 
termination behavior will occur. Not all time paths will 
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necessarily cross the bifurcation plane. This possibility is 
illustrated in Figure (1) by the projections of the "B" and "C" 
time path on the control surface. If both "B" and "C" do not 
change, the behavioral state on the behavior surface will not 
change abruptly. The fourth attribute of divergent behavior 
concerns comparative changes in behavior. As one 
approaches the shaded area, even small changes in the 
control factors may result in catastrophic or abrupt changes 
in behavior. At other locations on the behavior surface large 
changes in perceptions may not influence behavior. 

 
Figure 1: Model is usually conceptualized as being four 
dimensional even though only three dimensions can be 

drawn. 
 

Catastrophe theory can be briefly described as follows. 
Consider a system whose. The behaviour is usually smooth 
but which exhibits some discontinuities. Suppose the system  
has a smooth potential function to describe the system 
dynamics and has “n” state variables and “m” control 
parameters. Given such a system, catastrophe theory tells us 
the following: The number of qualitatively different 
‘configurations of discontinuities that can occur depends not 
on the number of state variables but on the number of 
control parameters. Specifically, if the number of the control 

parameters is not greater than four, there are seven basic or 
elementary catastrophes, and in none of these are more than  

Two state variables involved [10]. 
Consider a continuous potential function V (Y, C) which 
represents the system behavior, where Y are the state 
variables and C are the controlparameters. The potential 
function V(Y,C) can be mapped interms of its control 
variables C to define the continuous region. Let the potential 
function be represented by: 

( , ) :V Y C M R  (1) 

Where M, C are manifolds in the state space
nR  and the 

control space 
rR respectively. 

Now we define the catastrophe manifold M as the 
equilibrium surface that represents all critical points of 

V(Y,C). It is the subset 
rn RR  defined by: 

( ) 0Y c YV   (2) 

 

Where (Y )cV = ( , )V Y C and y  is the partial derivative 

with respect to Y. Equation is the set of all critical points of 

the function ( , )V Y C .Next we find the singularity set, S , 

which is the subset of M that focus on all degenerate critical 

points of V . It is defined by: 

( ) 0Y c YV   

And 

2
( ) 0Y c YV   

(3) 

The singularity set, S , is then projected down onto the 

control space
rR by eliminating the state variables x  using, 

to obtain the bifurcation set, B. The bifurcation set provides 

a projection of the stability region of the function ( , )V Y C , 

i.e. it contains all non-degenerate critical points of the 

function V bounded by the degenerate critical point at 
which the system exhibits sudden changes when it is subject 
to small changes.The seven elementary catastrophes of 

4r  are listed in [6]. The geometric analyses of the 
catastrophes that are used in this thesis are presented in 
detail in Appendix (A). A simplified analysis of the seven 
elementary catastrophes is given in [7]. 
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Table 1: Seven Elementary Catastrophes 
 

Catastrophe 
Control Space 

Dimension 

State Space 

Dimension 
Function Catastrophe Manifold 

 

Fold 

 

1 

 

1 

 

31
-

3
x a x

 

 

2 -x a  

 

Cusp 

 

2 

 

1 

 

4 1
- -

2
x a x b x

 

 

3 - -x a bx  

 

Swallowtail 

 

3 

 

1 

 

5 2 31 1 1
- - -

5 2 3
x ax bx cx

 

 

4 2- - -x a bx cx  

 

Butterfly 

 

4 

 

1 

 

6 2 3 41 1 1
- - - -

6 2 3
x ax bx cx dx

 

 

5 2 3- - - -x a bx cx dx  

 

Hyperbolic 

 

3 

 

2 

 

3 3x y ax by cxy     

2

2

3

3

x a cy

y b cx

 

  
 

 

Elliptic 

 

 

3 

 

2 

 

3 2 2 2-x xy ax by cx cy     

2 23 2

2 2

x y a cx

xy b cy

  

  
 

 

parabolic 

 

4 

 

2 

 

2 4 2 2x y y ax by cx dy      
2 3

2 2

4 2

xy a cx

x y b dy

 

   
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2.2 Application of Cusp Catastrophe Theory and 
Mathematical Problem  
The cusp geometry is very common, when one explores what 
happens to a fold bifurcation if a second parameter, b, is 
added to the control space. Varying the parameters, one finds 
that there is now a curve (blue) of points in (a,b) space where 
stability is lost, where the stable solution will suddenly jump 
to an alternate outcome.But in a cusp geometry the bifurcation 
curve loops back on itself, giving a second branch where this 
alternate solution itself loses stability, and will make a jump 
back to the original solution set. By repeatedly increasing b 
and then decreasing it, one can therefore observe hysteresis 
loops, as the system alternately follows one solution, jumps to 
the other, follows the other back, then jumps back to the 
first.However, this is only possible in the region of parameter 
space a < 0. As a is increased, the hysteresis loops become 
smaller and smaller, until above a = 0 they disappear 
altogether (the cusp catastrophe), and there is only one stable 
solution.One can also consider what happens if one holds b 
constant and varies a. In the symmetrical case b = 0, one 
observes a pitchfork bifurcation as a is reduced, with one 
stable solution suddenly splitting into two stable solutions and 
one unstable solution as the physical system passes to a < 0 
through the cusp point (0,0) (an example of spontaneous 
symmetry breaking). Away from the cusp point, there is no 
sudden change in a physical solution being followed: when 
passing through the curve of fold bifurcations, all that happens 
is an alternate second solution becomes available.A famous 
suggestion is that the cusp catastrophe can be used to model 
the behaviour of a stressed dog, which may respond by 
becoming cowed or becoming angry.[1] The suggestion is that 
at moderate stress (a > 0), the dog will exhibit a smooth 
transition of response from cowed to angry, depending on how 
it is provoked. But higher stress levels correspond to moving 
to the region (a < 0). Then, if the dog starts cowed, it will 
remain cowed as it is irritated more and more, until it reaches 
the 'fold' point, when it will suddenly, discontinuously snap 
through to angry mode. Once in 'angry' mode, it will remain 
angry, even if the direct irritation parameter is considerably 
reduced.A simple mechanical system, the "Zeeman 
Catastrophe Machine", nicely illustrates a cusp catastrophe. In 
this device, smooth variations in the position of the end of a 
spring can cause sudden changes in the rotational position of 
an attached wheel.[2]Catastrophic failure of a complex system 
with parallel redundancy can be evaluated based on 
relationship between local and external stresses. The model of 
the structural fracture mechanics is similar to the cusp 
catastrophe behavior. The model predicts reserve ability of a 
complex system.Other applications include the outer sphere 
electron transfer frequently encountered in chemical and 
biological systems[3] and modelling Real Estate Prices.[4] 

 

Fold bifurcations and the cusp geometry are by far the most 
important practical consequences of catastrophe theory. They 

are patterns which reoccur again and again in physics, 
engineering and mathematical modelling. They produce the 
strong gravitational lensing events and provide astronomers 
with one of the methods used for detecting black holes and the 
dark matter of the universe, via the phenomenon of 
gravitational lensing producing multiple images of distant 
quasars.In this example we have two control variables asb and 
one state variable x . In modern mathematics we don't 
recognize the existence of variables, though, so we have to 
introduce the control space. The potential function is: 

 

4 2( )V X X uX vX                                   (4) 

So the equilibrium surface is a three-dimensional space in x , 
u and v given by: 

34 2 0X uX v                                                         (5) 

First problem is that this expression was obtained by truncating 
a Taylor series to 4th order. It is conceivable that taking higher 
terms might destroy the shape of the equilibrium surface M . 
Certainly if we work only to 3rd order we get quite a different 
picture. For then we have a potentialand the singularity set is the 
subset of the equilibrium surface such that the derivative of 
(4) is also equal to zero. It is given by: 

212 2 0x u                                                                  (6) 

We find the bifurcation set by eliminating the state variable x
from (2) and (3), we obtain 

3 28 27 0u v                                                                 (7) 

Equation (4) is the projection of the three-dimensional 
manifold of Equation (.4) onto the control space (u-v). The 
cusp manifold and the bifurcation set are shown in Figure (2) 
Equation (2) has three real roots within the bifurcation set 
region, or when: 

3 28 27 0u v                                                                 (8) 

But when  

3 28 27 0u v  (9)

 

Figure 2: Cusp manifold and its bifurcation set 
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There is only one real root. Figure (3)shows the bifurcation set 

of ( u - v ) plane in which the Functions v(x) is sketched for 
different values of the parameters u and v. 

 

 

 

Figure 3: Cusp potential V(X) at different values of the control 
variables 

The classification can be extended to codimension 5, in 
which, case four new functions appear, namely x7, x 2y-y5 , 
x2y+y5and x3 + y3 . But for codimension 6 or more the 
classification becomes infinite (see [9] or [ll]). In applications 
we can view Thom's theorem as saying the following. The 
function f on its own may be topologically unstable: small 
perturbations behave differently. The unfolding of f a 
however, captures all the different types of perturbation in a 
single family. Thus in a physical situation, when we observe 
f,we expect to find the rest of its unfolding too (provided all 
perturbations are in principle allowed. Symmetry conditions 
or suchlike can prevent this). Books on bifurcation theory are 
full of diagrams like figure 3. They should consider figure 4b 
too since in actual fact this is also going to occur. More: figure 
(3) is "typical” in a way that 4a is not. And of course figure 2 
is what is really relevant. (For a ’’perturbation” application of 
the elliptic umbilic, see a fluid dynamics example due to 
Michael Berry, reported in [14].). 
 

3. CONCLUSION 
In this manuscript, Cusp catastrophes model and the application 
of singularity theory concepts were used to enumerate the 
complete bifurcation structures of a two-degree-of-freedom 
system is believed to be new insofar as the non-linear 
vibration literature is concerned. Moreover, the approach 
presented in this paper can deal with some quasiglobal forms 

of behaviour which cannot be dealt with by various previous 
methods such as those quoted above.The other main 
contribution here is the identification of the bifurcation 
phenomena shown in Figures 3 and 4. The results in Figure 2 
show that one can control vibration in non-linear systems by 
an appropriate choice of system parameters, as suggested by 
some regions in the hypersurface where the amplitude of the 
bifurcating solution is always zero.  
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