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We have introduced a Y-configuration model from the double-quantum-dot (QD) system to study third-order Kerr
nonlinearity based on the density-matrix method. Inhomogeneity in QDs has been included in the calculations of
the real (Kerr) and imaginary (absorption) parts of the density matrix, which has not been covered in the earlier
Kerr calculations. Our system exhibits high controllability with a single parameter. Giant Kerr dispersion, propa-
gation without distortion, wide electromagnetic-induced transparency, and switching between subluminal to
superluminal propagation are obtained by tuning its fields. Controlling and cycling fields can also control the
system in addition to the pump field. © 2014 Optical Society of America
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1. INTRODUCTION
Nonlinear quantum optical phenomena based on quantum
coherence and interference show considerable importance
due to their wide range of applications [1]. These phenomena
include electromagnetic-induced transparency (EIT), sublu-
minal and superluminal light propagation, lasing without
inversion, and giant Kerr nonlinearity [2]. Many new and
important research areas depend on these phenomena, such
as quantum information and computing, quantum entangle-
ment, and chemical reaction dynamics [3]. Recently, Kerr non-
linearity has shown interesting applications, such as quantum
logic gates, quantum nondemolition measurements, quantum
state teleportation, and nonlinear light control. High Kerr
nonlinearity at low light powers requires minimization of
absorption loss. Conventional devices are incompatible with
this requirement [4]. Two- and three-level devices have high
resonant absorption and weak nonresonant linearity [5].
Accordingly, EIT is extended, inmultilevel systems, to produce
a high nonlinearity and suppress linear susceptibility [1,6].

Because of their high nonlinearity, quantum dots (QDs) can
be used for obtaining high Kerr dispersion [2,7]. Quantum
coherence and interference phenomena in QDs have led to
interesting phenomena, such as EIT and superluminal light
propagation [8,9]. QD molecules are studied in [9], where both
superluminal and subluminal light propagation are demon-
strated using interdot tunnel coupling. Enhancement of Kerr
nonlinearity with reduced linear and nonlinear absorption via
tunnel coupling was also investigated [2], while electric field
asymmetry was used [7,10] to enhance Kerr nonlinearity in
QD molecules. Linear optical properties for amplification,
absorption, and dispersion in double-cascade configurations
in the four-level QD system were investigated [11]. In the
three-level systems, nonlinear effects cannot be produced
because EIT doesn’t interact with the probe light. Using

multilevel systems, EIT was extended to obtain high nonli-
nearity and suppress linear susceptibility [1,6]. Accordingly,
we have introduced in this work a four-level QD system
and then studied the possibility of its manipulation to control
its linear and nonlinear absorption and dispersion. Our pro-
posed structure shows a complete control of nonlinear ab-
sorption and dispersion by tuning the controlling fields and
their phases. This work is organized as follows: In Section 2,
the model of Y-type in double QD is proposed; in Section 3, the
results are presented and discussed; and in Section 4, this
work is concluded.

2. Y-TYPE MODEL IN DOUBLE-QD
NANOSTRUCTURES
Consider a four-level Y-type configuration in a QD system.
This can be found in a QDmolecule with two conduction band
levels for each one, as shown in Fig. 1. The inter-sub-band
transitions are easily realized experimentally. Sub-band con-
figurations have two subsystems. Sub-bands j0i, j1i, j2i, and
j3i form a Λ-type subsystem with a j0i → j1i transition (ℏw10

energy) that is driven by a weak probe field E0 (frequencyw0),
with Rabi frequency (Ω0 � E0μ10∕ℏ): the j1i → j2i transition
(ℏw21 energy) due to the strong cycling field E1 (frequency
w1), with Rabi frequency (Ω1 � E1μ21∕ℏ) and the j2i → j3i
transition (ℏw32 energy) due to the coupling field E2 (fre-
quency w2), with Rabi frequency (Ω2 � E2μ32∕ℏ). The second
subsystem contains j0i, j1i, and j3i sub-bands and forms a lad-
der type system with the j0i → j1i and the j1i → j3i transitions
(ℏw13 energy) due to the strong pump field E3. The corre-
sponding detunings for these transitions are Δ2 � ω2 − ω23,
Δm � ωm − ω13, Δ1 � ω1 − ω12, and Δ0 � ω0 − ω01. The two
middle levels j1i and j2i, the upper level j3i, and the ground
level j0i form a closed interaction contour. The phases asso-
ciated with the four coherent fields E0, E1, E2, and Em are
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ϕ0;ϕ1;ϕ2, and ϕm, respectively. Driving transitions between
double dots by laser fields are examined in a number of works
[12,13]. Using the density matrix approach, we can write the
following dynamical equations for our system (see Fig. 1):

ρ:�3�00 � −γ0ρ
�3�
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Note that ϕ � ϕ0 � ϕ2 − ϕ1. γi is the total decay constant
from sub-band (i). It includes both the lifetime broadening
due to longitudinal phonon emission at low temperature
and the dephasing broadening, which results from both acous-
tic phonon scattering and scattering from interface roughness.
In QDs, the dephasing broadening is the dominant contribu-
tion in contrast to the atomic systems [11]. In this paper, a
third-order nonlinear Kerr effect is derived from the probe
transition coherence ρ�3�10 , and then an analytical relation is ob-
tained by taking into account the solution of the system Eq. (1)

at steady state. After some (long) mathematical manipulations
following the routine way, one can get the following relation:
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where a � −i�Δ0 � Δ1� − �γ0 � γ1�, b � −i�Δ0 � Δm� −
�γ0 � γ2 � γm�, and d � ��iΔ0 � γ0� � �Ω2

1e
2iφ∕a� � �Ω2

m∕b��−1.
The nonlinear Kerr susceptibility is then given by

χ�3��ω0� �
Z

2Nμ401
3ℏ3ε0Ω3

0

ρ�3�01 �ω0�D�ω�dω; (3)

where N is the atomic number density in the medium. Our
formula differs from all other calculations by including QD
inhomogeneity via the convolution over the inhomogeneous
density of states, which is given by [14]

D�E� � si

Veff
dot

1����������
2πσ2

p exp
�
−�ℏω − Ei

max�2
2σ2

�
; (4)

where si is the degeneracy number at the QD state �si � 2� in
the quantum disc model used here. σ is the spectral variance
of QDs, Veff

dot�� h∕ND� is the effective volume of QDs, h is the
dot height, and ND is the areal density of QDs. The transition
energy at the QD maximum distribution of the ith optical
transition is Ei

max.

3. RESULTS AND DISCUSSION
The proposed structure (see Fig. 1) is an asymmetric InAs
double QD with (10 nm height and 4 nm width) for the left
dot and (14 nm height and 2 nm width) for the right dot. Their
ground and excited conduction energy sub-bands are (0.8 and
1.07 eV) for the left QD and (0.91 and 1.05 eV) for the right one.
This structure can be obtained by the self-assemble growth
technique [15]. The ground state (GS) for the left dot is the
state j0i of the system, while the GS and the excited state
(ES) of the right dot are states j1i and j2i, respectively. State
j3i is the ES of the left dot. Inclusion of an inhomogeneity is
important for susceptibility calculations, which have not been
investigated in earlier QD literature that discusses quantum

Fig. 1. Schematic energy level diagram of a four-level system in
Y-configuration. Here, ω0�Δ0�, ω1�Δ1�, ω2�Δ2�, and ωm�Δm� are
frequencies (frequency detunings) of probe, cycling, coupling, and
pumping fields, respectively.
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coherence and interference, see, for example, [2,7–10,15]. A
uniform ensemble of QD molecules is assumed [12]. Inclusion
of inhomogeneity reduces susceptibility; Fig. 2 shows that in-
cluding inhomogeneous broadening (blue line) reduced Kerr
dispersion by about half in comparison with homogeneously
broadened Kerr dispersion (red line). This is an expected
result where it is demonstrated that the inhomogeneity
reduces the optical properties of QD [14]. The comparison
in this figure shows that it is critical to include inhomogeneity
in the dispersion calculations. Throughout this work, the
relaxation from all sub-bands is assumed to be identical
�γ0 � γ1 � γ2 � γm � 1 meV�. Assumption of identical relax-
ation is used for simplifying the calculations and can be found
in [7] for QD systems, in [16] for atomic systems, and in [17]
for quantum well systems. In the following simulated results,
inhomogeneity will be included, and they are divided into the
following subsections.

A. Detuning Frequency Control
Figure 3 shows the real part of the third-order nonlinear sus-
ceptibility versus variation of probe detuningΔ0 normalized to
the relaxation γ0. The absorption, which is the imaginary part
of the linear (third-order) susceptibility, is shown as a red
(blue) dashed line for comparison. In Fig. 3(a), the following
parameters are considered: �Δ1 � 0�, �Δ2 � Δm � 5γ� probe,
pump, cycling, and coupling fields have Rabi frequencies
�Ω0 � Ω1 � Ω2 � 0.01γ;Ωm � 1.3γ�; i.e., only the pump field
is strong. Two Kerr peaks and a wide EIT window of about
�15γ� are shown. Inside the EIT window, the slope of Kerr
dispersion is positive and linear, which results in a large group
index of refraction and thus a reduced group velocity [18], i.e.,
a subluminal light propagation. From the figure, this
dispersion occurs at neglected linear and nonlinear absorp-
tion (or gain). This result is preferred in applications where
the wave travels without distortion (from absorption) or noise
(from gain). Around zero probe detuning �Δ0 � 0�, the slope
of the Kerr dispersion is negative, with very low linear gain. A
high nonlinear gain is obtained collinear with the linear gain,
which is added to the linear gain, and then a total gain has
a considerable value associated with Kerr dispersion and

cannot be neglected. This deteriorates the wave propagation
and is undesirable in nonlinear optical applications. Our cal-
culation of nonlinear gain is one of the important features of
this study. It is also covered by some other similar works on
QDs and other atomic systems (see for example [2,12,16,19]).
Figure 3(b) shows the case when the detunings are �Δ1 �
Δ2 � 0� and �Δm � 5γ� with Rabi frequencies �Ω0 � 0.01γ;
Ω1 � Ω2 � 0.1γ;Ωm � 0.5γ�; i.e., cycling, coupling, and pump
fields are strong. Compared with Fig. 3(a), in which only the
pump was strong, two high Kerr peaks, which appear at low
nonlinear gain points, are increased by ∼3 times while the
width of the EIT window is reduced by ∼3 times. Around zero
probe detuning �Δ0 � 0�, a negative Kerr dispersion is shown
corresponding to neglected absorption. In Fig. 3(c), the detun-
ings are �Δ1 � Δ2 � 5γ� and �Δm � 0�, while the Rabi frequen-
cies are �Ω0 � 0.01γ;Ω1 � Ω2 � 0.1γ;Ωm � 1γ�, which differs
from Fig. 3(a) in that the three controlling fields (pump,
cycling, and coupling) are strong and only the pump field is
in resonance with its transition energy. A good result is
obtained; Kerr peaks increase by ∼10 times compared with
Fig. 3(a). The two Kerr peaks lie at the EIT window with
neglected absorption and a considerable nonlinear gain, but
it is about half the value of the Kerr peak. Around zero probe
detuning, the Kerr dispersion is also negative. Compared with
other works dealing with Kerr in QD and other atomic systems
[2,12,16,19], a very giant Kerr value is obtained. In Fig. 3(d),
we have set �Δ1 � Δ2 � Δm � 5γ� while Rabi frequencies
are the same as that in Fig. 3(c). Here, the left Kerr peak is
shifted more and the EIT window becomes wider (its
width approaches 10γ). In Fig. 3(e), the detunings are
�Δ1 � Δ2 � 2γ;Δm � 0�, and the Rabi frequencies are
�Ω0 � 0.01γ;Ω1 � 0.3γ;Ω2 � 0.1γ;Ωm � 1.5γ�, which refer to
increasing Rabi frequencies of two controlling fields (cycling
and pumping). The best result is obtained where the main Kerr
peak appearing at the center of the EIT window corresponds
to zero linear absorption and reduced nonlinear absorption.
Other side peaks appear at the left and right, about ��7γ� from
the main peak with very small linear absorptions and high
nonlinear gains. In both Figs. 3(d) and 3(e), the Kerr
dispersion is also negative around zero probe detuning. In
Fig. 3(f) the detunings are �Δ1 � Δ2 � Δm � 5γ�, and the Rabi
frequencies are �Ω0 � 0.01γ;Ω1 � Ω2 � 0.5γ;Ωm � 1.5γ�,
i.e., increasing the three controlling fields, which are not
resonant with their corresponding transitions. A positive
slope dispersion around zero probe detuning and a wider
EIT �∼30γ� are obtained. This refers to switching from
superluminal [in Figs. 3(a)–3(e)] to subluminal light propaga-
tion. Four Kerr dispersion peaks inside the EIT window
are obtained, each separated by �∼10γ� from their nearest
neighbors. Two of them correspond to negligible absorption
peaks.

1. Discussion
It is known that detuning the control field varies both the mag-
nitude and position of Kerr dispersion [20]. This is due to the
modification of energy states by a laser beam resonant with
their energy difference. This results in a scattered photon with
distinct coherence and spectral properties that are tuned
depending on the laser. Then the bare electronic states are
dressed when the Rabi frequency is larger than the spontane-
ous emission rate [21].

Fig. 2. Comparison between inhomogeneously (red line) and homo-
geneously broadened (blue line) Kerr dispersion. The detunings are
�Δ1 � Δ2 � Δm � 0� while the Rabi field frequencies are
�Ω0 � Ω1 � Ω2 � 0.01γ;Ωm � 1γ�. The phase is zero �ϕ � 0�, while
all relaxations are set to 1 meV.
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Figure 2 shows that working with resonant fields (zero
detunings, EIT center) is important where the Kerr peak is
higher than that in Fig. 3(a), which is not at the EIT center,
although the pump field is �Ωm � 1γ� in Fig. 2 and �Ωm �
1.3γ� in Fig. 3(a). The destructive quantum interference

between the two absorption paths j0i, j1i, j3i and j0i, j1i,
j2i, j3i of two branches of the Y-configuration leads to an
EIT window in our QD system. Referring to Fig. 2, an inhomo-
geneity in QDs due to manufacture imperfection deviates
the absorption (or gain) spectrum from the conventional

(a) (b)

(c) (d)

(f)(e)

Fig. 3. Third-order susceptibility as a function of probe detuning �Δ0� normalized to the decay rate �γ0� for (a) �Ω1 � Ω2 �
0.01γ;Ωm � 1.3γ�, �Δ1 � 0�, �Δ2 � Δm � 5γ�; (b) �Ω1 � Ω2 � 0.1γ;Ωm � 0.5γ�, �Δ1 � Δ2 � 0�, and �Δm � 5γ�; and (c) and (d) �Ω0 �
0.01γ;Ω1 � Ω2 � 0.1γ;Ωm � 1γ�, �Δ1 � Δ2 � 5γ�. In (c), �Δm � 0�. In (d), �Δm � 5γ�. (e) �Ω0 � 0.01γ;Ω1 � 0.3γ;Ω2 � 0.1γ;Ωm � 1.5γ�,
�Δ1 � Δ2 � 2γ;Δm � 0�. In (f), �Ω0 � 0.01γ;Ω1 � Ω2 � 0.5γ;Ωm � 1.5γ�, �Δ1 � Δ2 � Δm � 5γ�. The phase is zero �ϕ � 0�, while all relaxations
are set to 1 meV �γ0 � γ1 � γ2 � γ3 � γ� 1meV�.
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Lorentzian shape. This results in an inhomogeneous shape of
absorption spectrum, which is the usual spectrum of QD struc-
ture in the absence of a strong pump field. This shape is modu-
lated under strong pump field coupled QD sub-bands [22]. In
ourY-configurationQDstructure, eachpump, cycling, and cou-
pling field coupled with QD sub-bands results in dressed QD
states. Since this structure convolutes from four sub-bands
in two branches, the pump is not the only controlling field that
changes the shape and peak strength of the spectrum. Both cy-
cling and coupling fields work together and control the right
branch of the system and finally control all of the system. In
Fig. 3(b), increasing the cycling and coupling while reducing
the pump to �Ωm � 0.5γ� leads to increasing the Kerr peak
to a value higher than that in Figs. 2 and 3(a). This is due to
the dark-state results in the Λ-type subsystem (j3i↔j1i,
j3i↔j2i, and j2i↔j1i), which is coherently coupled to state
j1i via the cycling field and hence double-dark resonance
arises. It is known that engineering the width and position
of the absorption line is possible [20] by this field (cycling,
here) to control the dark state.

Stronger pump, coupling, and cycling fields lead to switch-
ing between subluminal and superluminal light propagation,

as in Fig. 3(f). Field detunings in our structure control EIT
width and, to some extent, peak strength. This is obvious
when one compares Figs. 3(c) and 3(d). This is also seen
in [20].

B. Rabi Frequency Control
Figure 4(a) shows Kerr dispersion (solid red line) as a func-
tion of the Rabi frequency of the coupling field �Ω2�. The linear
absorption (blue dashed line) and the nonlinear absorption
(red dashed line) are also shown for comparison. The struc-
ture is examined at the center of EIT, where all detunings are
zero �Δ0 � Δ1 � Δm � 0� (fields are resonant). The Rabi
frequencies are �Ω0 � 0.01γ;Ω1 � 0.1γ;Ωm � 0.5γ�. The im-
portant result is obtained at a high coupling field (Ω2 ≥ 6γ
and exceeds Ωm), where a giant Kerr is obtained at neglected
linear and nonlinear absorption (or gain), which refers to
switching to giant Kerr dispersion by a single controlling
parameter (high coupling field) that agrees with the discus-
sion of the above section. Figure 4(b) examines the variation
of the susceptibility as a function of the pump field at
�Δ2 � 0.5γ�, while all other detunings are zero and the fields
are �Ω0 � 0.01γ;Ω1 � Ω2 � 0.1γ�. High Kerr dispersion is

(a) (b)

(c)

Fig. 4. Third-order susceptibility as a function of different Rabi frequencies in units of �γ�: (a) Rabi frequency of coupling with the following
parameters: Ω0 � 0.01γ, Ω1 � 0.1γ, Ωm � 0.5γ, and �Δ0 � Δ1 � Δ2 � Δm � 0�. (b) Rabi frequency of pump Ω0 � 0.01γ, Ω1 � 0.1γ, Ω2 � 0.1γ,
and �Δ0 � Δ1 � Δm � 0;Δ2 � 0.5γ�. (c) Rabi frequency of cycling Ω0 � 0.01γ, Ω2 � 0.1γ, Ωm � 0.5γ, and �Δ0 � 0;Δ1 � 5γ;Δ2 � 3γ;Δm � 5γ�.
Other values are γ0 � γ1 � γ2 � γ3 � γ � 1 meV.
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obtained at �Ωm ≥ 2γ� with zero absorption and neglected
nonlinear absorption. The effect of the cycling field �Ω1� is
examined in Fig. 4(c) at detunings �Δ0 � 0;Δ1 � 5γ;Δ2 �
3γ;Δm � 5γ� and Rabi frequencies �Ω0 � 0.01γ;Ω1 � 0.1γ;
Ωm � 0.5γ�. The important result is obtained at �Ω1 � 4γ�,
where a high Kerr is obtained at neglected linear and nonlin-
ear absorption. This is important for pulse propagation to
overcome the pulse distortion inside the medium with high
absorption, while a gain may add noise to the pulse through
the amplifying medium.

C. Phase Control
Figure 5(a) shows the Kerr dispersion (red solid line) as a
function of phase �ϕ�. Both linear (blue dashed line) and non-
linear susceptibility (red dashed line) are shown for compari-
son. The detunings are set to �Δ0 � γ;Δ1 � Δ2 � 0;Δm � 3γ�
while the fields are �Ω0 � 0.01γ;Ω1 � Ω2 � 0.1γ;Ωm � 0.5γ�.
High peaks of Kerr dispersion are obtained at low linear
absorption and low nonlinear gain. This is important in the
application of slow light levels where the dispersion rises
above the absorption, as shown here. Figure 5 is another
example of controlling our structure by a single param-
eter (phase).

4. CONCLUSIONS
A model for the Kerr effect in a Y-configuration QD system is
proposed using the density-matrix formalism. Inhomogeneity
in QDs is shown to be critical in the dispersion Kerr calcula-
tions in QD systems. Using the controllable fields, detunings,
and phases, switching between subluminal and superluminal
light propagations, distortionless propagation, wide EIT, and a
giant Kerr nonlinearity is obtained.
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