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Abstract
We introduce a Y-configuration model for a double quantum dot (QD) system, which is modeled
for Kerr nonlinearity using the density matrix theory. Inhomogeneity in QDs is included in the
calculations of the real part (Kerr) and the imaginary part (absorption) of the density matrix,
which has not been covered before in Kerr calculations. Five configurations are studied: Y,
ladder, Λ, staircase, and weak probe. Frequency detunings, controlling fields, and phases are
used to study the structures. Our system shows high controllability as well as a giant Kerr
dispersion, propagation without distortion, wide electromagnetic induced transparency, and
switching between subluminal to superluminal propagation by tuning its fields.

Keywords: quantum dot, Kerr dispersion, absorption

(Some figures may appear in colour only in the online journal)

1. Introduction

Many quantum optical applications depend on Kerr non-
linearity, which is the real part of a third-order nonlinear
susceptibility. For example, generation of optical solitons
depends on cross-phase modulation, which can be enhanced
with Kerr nonlinearity. Additionally, quantum information
processing applications, such as Bell-state measurements,
long-distance quantum teleportation and quantum bit gen-
eration are shown to be possible with giant Kerr nonlinearity
[1–6]. When it is plotted against detuning, Kerr nonlinearity
can be compared with linear absorption (the imaginary part of
a first-order linear susceptibility). When absorption associates
with Kerr dispersion in a medium it produces a wave dis-
tortion, while gain produces a noise that is accompanied by a
wave travelling in the medium. Thus, a high Kerr nonlinearity
dispersion at zero absorption (or zero gain) is preferred in
order to transmit waves without distortion or noise. Much
attention has been devoted to quantum dot (QD) structures
due to their useful properties, especially discrete energy
subbands and long dephasing time. These properties have
gained QDs much attention in quantum optics applications
and many studies have been devoted to them. For example,

She et al [7] studied the linear and nonlinear Kerr optical
properties including interdot tunnel coupling and showed the
possibility of their modulation by the control field. Mahmoudi
et al [8] controlled the switching of group velocity in QDs by
tunneling. Hao et al discussed the case of manipulation
between pump and coupling fields and showed their effect on
linear dispersion and four-wave mixing in a four-level QD
structure [9]. In conclusion, much work has been done that
includes tunneling between double QDs and four-level single
QD systems. Hamedi et al [10] obtained high gain and dis-
persion in an atomic Y-structure. Joshi [11] examined the
inverted Y-structure in quantum well structures and showed
the possibility of a single parameter control. In nano-systems,
the Y-structure offers the possibility of intersubband transi-
tions [11]. Due to QD subband quantization, it is easy to
realize the Y-scheme using its conduction intersubband
transitions.

No previous work has studied Y-structure in QDs. This
work proposes a four-level double QD Y-structure as an
appropriate system for high Kerr dispersion at low absorption.
An analytical relation is obtained from the density matrix
equations, which is then simulated by MATLAB. The results
discuss the possibilities of this system by turning off one of
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the four applied fields which results in new schemes such as
the Λ-, staircase- and ladder-scheme, while the other two
cases remain Y-scheme. In [11] and [10], the pump and probe
field couples with the two-photon process via two pumping
fields (pump and coupling fields). This makes it possible to
strengthen the Kerr peak by manipulating these two fields,
which are not offered by the atomic Y-structures.

In this work, interesting possibilities are explored, wherein
the structure returns to a simple two-level system in many of
the discussed cases. The benefit of our structure here is a high
Kerr value that cannot be obtained with any other real, simple
two-level system. This results from the collective work of the
four fields. It is shown that the cycling field produces the
strength of the Kerr dispersion. Additionally, due to their
manufacture imperfections, the QDs have a nonuniformity in
shape and size distribution [12]. Inclusion of inhomogenous
broadening is shown in order to best demonstrate the experi-
mental results of gain and refractive index [13]. This work will
show that inhomogeneity, which has not yet been considered in
the literature on Kerr calculation, drastically reduces QDs Kerr
nonlinearity in a non-neglected range.

2. Y-type model in double QD nanostructures

Consider a four-level Y-type configuration in a QD system.
This can be found in a QD molecule, as in figure 1, which
depicts a double QD with two conduction band levels apiece.
The intersubband transitions are easily done experimentally.
The subbands’ configuration has two subsystems. Subbands

0 , 1 , 2 and 3 form a Λ-type system with the →0 1
transition (ℏw10 energy) due to the weak probe field E0,
(frequency w0) with Rabi frequency (Ω μ= ℏE /20 0 10 ; note
that μ10 is the dipole moment of this transition); the

→1 2 transition ( ωℏ 21 energy) due to the strong cycling

field E1, (frequency ω1) with Rabi frequency Ω μ= ℏ( )E /21 1 21

; and the →2 3 transition ( ωℏ 32 energy) due to the
coupling field E2, (frequency ω2) with Rabi frequency

Ω μ= ℏ( )E /22 2 32 . The second subsystem contains 0 , 1

and 3 subbands and forms a ladder-type system with the
→0 1 transition and the →1 3 transition ( ωℏ 13

energy) due to the strong pump field E3. The corresponding
detunings for these transitions are Δ ω ω= −2 2 23,
Δ ω ω= −m m 13, Δ ω ω= −1 1 12, and Δ ω ω= −0 0 01,
respectively. In this way, the two middle levels 1 and 2 ,
the upper level 3 , and the ground level 0 form a closed
interaction contour. The phases associated with the four
coherent fields E0, E1, E2, and Em are ϕ ϕ ϕ, , ,0 1 2 and ϕm,
respectively.

Using the density matrix approach for our system, shown
in figure 1, and under the rotating-wave and electric-dipole
approximations, the time evolution of the system, expressed
by the density operator ρ, leads to the following system of
equations for the density matrix elements ρij:

ρ γ ρ Ω ρ ρ

ρ γ ρ γ ρ γ ρ

Ω ρ ρ

Ω ρ ρ Ω ρ ρ

ρ γ ρ γ ρ

Ω ρ ρ

Ω ρ ρ

ρ γ γ ρ

Ω ρ ρ

Ω ρ ρ

ρ Δ γ ρ

Ω ρ ρ

Ω ρ Ω ρ

ρ Δ Δ γ γ ρ

Ω ρ Ω ρ Ω ρ

Ω ρ Ω ρ Ω ρ

ρ Δ Δ Δ γ γ γ ρ

Ω ρ Ω ρ Ω ρ

= − + −

= − +

+ −

+ − −

= − +

+ −

+ −

= − +

+ −

+ −

= − +

+ −

+ +

= − + − +

+ + −

+ + −

= − + + − + +

+ + −

φ

φ φ

φ φ

⎡⎣
⎤⎦

⎡⎣
⎤⎦

⎡⎣
⎤⎦

⎡⎣
⎤⎦

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

( )
( )

( )
( ) ( )

( )
( )

( )

( )
( )

( )

( )

( )

( )

( )

( )

( )

i

i

i

i

i

i

e

i

i e e

i e e

i

i

m

m

i
m

i i

i i

m

m

00
.(3)

0 00
(3)

0 10
(2)

01
(2)

11
.(3)

0 11
.(3)

1 22
.(3)

3 33
.(3)

0 01
(2)

10
(2)

0 21
(2)

12
(2)

31
(2)

13
(2)

22
.(3)

1 22
(3)

2 33
(3)

1 12
(2)

21
(2)

2 32
(2)

23
(2)

33
.(3)

2 3 33
(3)

13
(2)

31
(2)

2 23
(2)

32
(2)

10
.(3)

0 0 10
(3)

0 00
(2)

11
(2)

1 20
(2)

30
(2)

20
.(3)

0 1 0 1 20
(3)

1 10
(2)

2 30
(2)

0 21
(3)

1 10
(2)

2 30
(2)

0 21
(3)

30
.(3)

0 2 0 2 3 30
(3)

10
(2)

2 20
(2)

0 31
(2)

Figure 1. Schematic energy level diagram of a four-level system in
Y-configuration. Here, ω Δ( )0 0 , ω Δ( )1 1 , ω Δ( )2 2 , and ω Δ( )m m are
frequencies (frequency detunings) of probe, cycling, coupling, and
pumping fields, respectively.
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Note that γi is the total decay rate from subband (i) and
includes both the lifetime broadening due to longitudinal
phonon emission at low temperature and the dephasing
broadening, which results from both acoustic phonon scat-
tering and scattering from interface roughness. In QDs,
dephasing broadening is the dominant contribution, in con-
trast to the atomic systems [9].

The third-order nonlinear Kerr effect is calculated from
the probe transition coherence ρ10

(3). An analytical relationship
can be obtained by taking the solution of the system
equations (1) at steady state. After some (long) mathematical
manipulations, one can get the following relationship:
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, and

ϕ ϕ ϕ ϕ= + −0 2 1. The nonlinear Kerr susceptibility is then
given by

∫χ ω
μ

ε Ω
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01
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where N is the atomic number density in the medium. Our
formula differs from all previous calculations because of
convolution the inhomogeneous density of states in QDs is
then given by [14]:

πσ σ
=
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eff

i
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2

where si is the degeneracy number at QD state, =s( 2)i in the
quantum disc model used here, σ is the spectral variance of
QDs, =V h N( / )dot

eff
D is the effective volume of QDs, h is the

dot height and ND is the areal density of QDs. The transition
energy at the QD maximum distribution of the ith optical
transition is E i

max.

3. The proposed QD structure

The proposed structure used to simulate the system shown in
figure 1 is an asymmetric InAs double QDs with 10 nm height
and 4 nm width for the left dot, and 14 nm height and 2 nm
width for the right dot. Their ground and excited conduction
energy subbands are (0.8 and 1.07 eV) for the left QD and
(0.91 and 1.05 eV) for the right. This structure can be
obtained by the self-assemble growth technique [15]. The
ground state (GS) for the left dot is the state 0 of the system,
while the GS and ES of the right dot are the states 1 and 2 ,
and the state 3 is the ES of the left dot. Inclusion of inho-
mogeneity, as mentioned above, is important for suscept-
ibility calculations. This has not previously been discussed in
the QD literature on quantum coherence and interference; see
for example [2, 7, 16–19]. Results are divided into
subsections.

4. Special cases for Y-configuration QD structures

Examining equation (2), there are many cases for our structure
that can be discussed. Below, the obtained relation of each case
with its results are shown and discussed in their respective
subsections. For all of the figures below, the Kerr dispersion,
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which is the real part of third-order nonlinear susceptibility, is
shown as a red solid line; the nonlinear absorption (or gain),
which is the imaginary part of the third-order susceptibility, is
shown as a red dashed line; and the linear absorption (gain),
which is the imaginary part of linear susceptibility, is shown as
a blue dashed line. All the relaxations are assumed to be equal,
i.e. γ γ γ γ γ= = = = =( )1 meV0 1 2 3 . Assumption of identical

relaxation is used for simplifying the calculations and can be
found in [17] for a QD system, in [1] for an atomic system, and
in [11] for a quantum well system. Before going into a dis-
cussion of the case, let us study the structure where all fields
are turned on. This is the case where equation (2) is used. The
nonlinear susceptibility spectrum from equation (2) is plotted in
figure 2 versus the probe detuning Δ( )0 , which is normalized
by its relaxation rate γ( )0 . The parameters used are for the Rabi
frequencies Ω γ Ω γ= =0.01 , 0.1 ,0 1 Ω γ Ω γ= =0.1 , 1m2 ,
while the detunings are Δ Δ γ Δ γ= = =( 5 , 3 )m1 2 . A positive
Kerr peak near zero probe detuning is shown. A two-sided Kerr
peak appears at different distances from the central peak. This
may result from the different field detunings Δ Δ Δ( , , )m1 2 . For
the linear absorption (multiplied by a factor of 50, for figure
clarity) an electromagnetic induced transparency (EIT) window
is shown. The curve of the Kerr dispersion, assuming homo-
genous broadening, is shown as a solid black curve. An
inhomogenously broadening curve lowers the homogenously
broadening one by a factor of four, due to size and shape
fluctuations [20]. Thus, it is critical to include inhomogeneity
in the Kerr calculations of QD structures. In the following
results, inhomogeneity is included.

The discussed cases are:
a. Y-configuration for E2 = 0 case
Dropping the coupling field, the two dots are still con-

nected by the probe field. Equation (2) for this case, becomes
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For the special Y-case, equation (5), figure 3(a) shows
the absorption and dispersion spectra when the coupling field
is turned off. The structure works at the detunings
Δ γ Δ Δ= = =3 , 0m1 2 , while the Rabi frequency of the
pump increases to Ω γ= 0.5m . A negative slope for Kerr
dispersion is shown around zero probe detuning, which
indicates superluminal propagation. It also occurs at neglected
absorption, which indicates propagation without distortion
(the absorption curve in the figure is multiplied by 70 for
clarity). The case of superluminal propagation is required to
achieve the theoretical limit of information transmission since
some transmission systems are not optimal. It is also impor-
tant when the measurements of information content must be
performed near the peak pulse where the wave propagates at
or below the speed of light in a vacuum [8]. The figure also
refers to the possibility of switching from subluminal to
superluminal light propagation. The reduction in the Kerr
height here results from reducing the pump field to
Ω γ= 0.5m . Figure 3(b) shows the case when
Δ Δ Δ γ= = =0, 3m1 2 . A steep curve around zero probe
detuning is shown which refers to a huge Kerr dispersion. It
occurs at neglected absorption (recall that the absorption
curve is multiplied by 70). This figure shows the importance
of the coupling field. The structure returns to a simple two-
level system when E2 = 0 since each dot behaves separately in
the presence of a weak probe field, where both cycling and
pump fields are in resonance with their transitions. Then an

Figure 2. Third-order susceptibility as a function of probe detuning,
Δ( )0 , normalized to the decay rate γ( )0 when

Ω γ Ω γ Ω γ Ω γ= = = =0.01 , 0.1 , 0.1 , 1m0 1 2 , .
Δ Δ γΔ γ= = =( )5 3m1 2 . Note that γ γ γ γ γ= = = = =( 1 meV).0 1 2 3
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Figure 3. Third-order susceptibility for Y-case (E0 = 0) in (a), (b) and (c) as a function of probe detuning, with Δ( )0 normalized to the decay
rate γ( )0 . Note that in (a) Ω γ Ω γ Ω γ= = =0.01 , 0.1 , 0.5m0 1 , Δ γ Δ Δ= = =( 3 , 0)m1 2 ; in (b) Ω γ Ω γ Ω γ= = =( 0.01 , 0.1 , )m0 1

Δ Δ γ Δ= = =( 0, 3 , 0)m1 2 ; in (c) Ω γ Ω γ Ω γ= = =( 0.01 , 0.1 , 1.3 )m0 1 , Δ Δ Δ γ= = =( 0, 3 )m1 2 ; in (d) as a function of cycling field
Rabi energy Ω1 when Ω γ Ω γ= =( 0.01 , )m0 , Δ Δ γ Δ Δ= = = =( 7 , 0)m0 1 2 ; and in (e) as a function of phase. Note that

γ γ γ γ γ= = = = =( )1 meV0 1 2 3 .
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absorption peak replaces the EIT window. Figure 3(c) shows
the nonlinear susceptibility when the pump is detuned to
Δ γ= 3m while Δ Δ= = 01 2 . A positive and steep Kerr dis-
persion is obtained near zero probe detuning. A wide EIT
window is obtained which is half that of the window in
figure 2, since the structure is still a four-level Y-structure. A
Kerr peak near zero detuning is obtained at zero absorption,
which is preferred for use in most applications.
Figures 3(a)–(c) show the controllability of our structure by a
single parameter, the detuning. Figure 3(d) shows the non-
linear susceptibility as a function of Rabi cycling Ω( )1 , which
is an example of field detuning. A high, positive Kerr dis-
persion is obtained when the cycling field approaches γ(15 )
with a zero absorption (which is multiplied by 70, for figure
clarity) at this region. The figure also shows the possibility of
switching between superluminal and subluminal light propa-
gation via the cycling field. Figure 3(e) shows the nonlinear
susceptibility as a function of phase. The zero absorption is
shown (which is also multiplied by 70, for figure clarity). Kerr
dispersion is periodically phase dependent on the π-period.

b. For = =E E 01 2 ladder configuration
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For the ladder case, (E1 =E2 = 0), figure 4(a) shows the
absorption and dispersion spectra as a function of probe
detuning; the detuning parameters are Δ Δ Δ γ= = =0, 5m1 2
and the Rabi field energies are Ω γ Ω γ= =0.01 , 1m0 . Since
the probe field is weak, the pump field is the only coupling
between the two dots, and no EIT window, which would be a
result of destructive interference between the pump and probe
[21], is shown. Since the transition →( 2 1 ) is an allowed
transition, there are two transitions at the same time: down-
ward →( 2 1 ) and upward →( 1 3 ) under the effect
of pump field. Finally, we are in a simple two-level config-
uration (simple →0 1 system). A steep Kerr dispersion
with positive slope near zero detuning is thus obtained,
compared with figure 3(b) (which is also a two-level system),
where Kerr height is reduced when the cycling field is can-
celed. This explains the higher Kerr dispersion obtained using
the Y-configuration in figures 2 and 3, which are higher than
all other Kerr values obtained by other systems previously
reported in the literature. This results from the collective work
of the four fields (three fields in figure 3). Here, the strength
of the Kerr dispersion comes from the cycling field.
Figure 4(b) shows the possibility of obtaining an EIT window
when the Rabi energy of the pump is increased to

Figure 4. Third-order susceptibility for ladder configuration as a
function of (a) and (b) probe detuning, Δ( )0 , normalized to the decay
rate γ( )0 , (a) when Ω γ Ω γ= =( 0.01 , 1 )m0 ,
Δ Δ Δ γ= = =( 0, 5 )m1 2 ; (b) when Ω γ Ω γ= =( 0.01 , 1.5 )m0 ; (c)
as function of pump field Rabi energy Ωm when Ω γ=( 0.01 )0 ,
Δ Δ Δ Δ γ= = = =( 3 )m0 1 2 . Note that

γ γ γ γ γ= = = = =( )1 meV0 1 2 3 .
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Ω γ=( 1.5 )m while all detunings are zero. Figure 4(c) shows
that the control by the pumping field where Kerr dispersion
peaks are obtained at Ω γ= ±( 3 )m corresponds to a con-
siderable linear gain, which results in unrequired noise
associated with wave propagation. Due to this phenomenon,
this case is not recommended for use in applications.

c. For =E 01 , Λ configuration
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For Λ configuration, =E( 0)1 , figure 5(a) shows the lin-
ear and nonlinear absorption and Kerr dispersion spectra
when the cycling field is turned off. EIT windows are
obtained due to the four-level Λ configuration constructed
from subband transitions →( 0 1 , →1 3 , and

→2 3 ). A steep and negative slope dispersion is shown
around zero detuning which indicates superluminal light
propagation. In figure 5(b), by controlling the detunings to
Δ Δ Δ γ= = = 5m1 2 , a wide EIT window with reduced Kerr
dispersion is obtained. Corresponding to these wide

Figure 5. Third-order susceptibility for Λ configuration =E( 0)1 when (a) Ω γ Ω γ Ω γ= = =( 0.01 , 0.1 , 1.5 )m0 2 , Δ Δ Δ= = =( 0)m1 2 ; (b)
Ω γ Ω γ Ω γ= = =( 0.01 , 0.1 , 1.5 )m0 2 and Δ Δ Δ γ= = =( 5 )m1 2 as a function of probe detuning, Δ( )0 , normalized to the decay rate γ( )0 ;
(c) as function of coupling field Rabi energy Ω2 when Ω γ Ω γ= =( 0.01 , 1 )m0 Δ Δ Δ Δ γ= = = =( 0, 3 )m0 1 2 ; (d) as a function of phase

when Ω γ Ω γ Ω γ= = =( 0.01 , 0.1 , )m0 2 . Δ Δ Δ γ Δ= = = =( 0, 5 , 0)m0 1 2 . Note that γ γ γ γ γ= = = = =( )1 meV0 1 2 3 .
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detunings, the EIT window is increased by ∼3 times while
Kerr height is reduced by ∼one order of magnitude. This
shows the importance of working with resonant fields (zero
detunings) in increasing Kerr height. Switching from negative
dispersion to positive is also shown here (figure 5(a)).
Figure 5(c) shows Kerr dispersion controlling by field
strength; the coupling field is used as an example. A giant
Kerr is obtained at zero absorption, which corresponds to
distortionless propagation, when a high coupling field is used.
Figure 5(d) shows the phase controllability of the Λ config-
uration system where a high dispersion is obtained at
neglected absorption.

d. For =E 0m , staircase-configuration
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Figure 6. Third-order susceptibility for staircase-configuration =E( 0)m when (a) Ω γ Ω γ Ω γ= = =( 0.01 , 0.1 , 0.1 )0 1 2 ,
Δ Δ γ Δ= = =( 5 , 0)m1 2 ; (b) Ω γ Ω γ Ω γ= = =( 0.01 , 0.1 , 0.5 )0 1 2 and Δ Δ Δ γ= = =( 0, 3 )m1 2 as a function of probe detuning, Δ( )0 ,
normalized to the decay rate γ( )0 ; (c) as a function of coupling field Rabi energy Ω2 when Ω γ Ω γ= =( 0.01 , 0.1 )0 1

Δ γ Δ Δ Δ= = = =( 5 , 0)m0 1 2 ; in (d) as a function of phase when Ω γ Ω γ Ω γ= = =( 0.01 , 0.1 , 0.1 )0 2 2 , and

Δ Δ Δ Δ γ= = = =( 0, 1 )m0 1 2 . Note that γ γ γ γ γ= = = = =( )1 meV0 1 2 3 .
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Figure 6(a) shows the linear and nonlinear susceptibility
when the pump field is turned off and the other parameters are
Δ Δ γ Δ Ω γ Ω γ Ω γ= = = = = =( )5 , 0, 0.01 , 0.1 , 0.1m1 2 0 1 2

where the Kerr dispersion is reduced by three orders of
magnitude, compared with figure 5(a), and a negative slope
of Kerr dispersion is obtained near zero probe detuning at
the neglected absorption (which is multiplied by 20, for
figure clarity). Figure 6(b) shows that increasing the cou-
pling field to Ω γ=( 0.5 )2 returns the Kerr height to the same
range obtained in figure 5(a), which means that the high
coupling field works as the main controlling field in the
staircase system. A simple two-level behavior is obtained in
both figures 6(a) and (b). This may result from the con-
structive interference between cycling and coupling fields,
which removes the EIT window and returns the structure to
a simple →( 1 0 ) system. The benefit of this staircase
system compared with any two-level system is the high Kerr
value obtained, with negative slope dispersion, at ∼zero
gain. Figure 6(c) shows the case wherein the coupling field
is controlled by the system. A high negative Kerr dispersion
is obtained at zero absorption. Figure 6(d) shows the phase
controllability of this staircase system.

e. For weak probe configuration, Ω = 00
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Figure 7(a) shows the case when the probe field is turned
off. The structure is connected now with the coupling and
pump fields. A negative and steep Kerr dispersion is obtained
around zero detuning with a considerable nonlinear gain. The
EIT window with neglected linear gain peaks (multiplied by
10, for figure clarity) is shown. Figure 7(b) shows the phase
control of the weak probe case of our structure. High Kerr
peaks are obtained at zero linear gain values.

5. Discussion of the cases

Our structure has two branches: the left branch, which is a
simple three-level ladder system, and the right branch, which
is a staircase- scheme (also equivalent to a ladder system).
Inclusion of both Y-branches yields a giant Kerr dispersion
as in figure 2; this is also the case when the coupling field is
canceled, as in figure 3(b), since both branches are still
working. This shows the importance of the case where both
branches of Y-structure are coupled by pumping fields
(pump, cycling, and controlling fields), compared with the
Y-system couples by pump and probe only. Stopping one of

Figure 7. Third-order susceptibility for weak probe-configuration =E( 0)0 as a function of probe detuning, normalized to the decay rate γ( )0

when (a) Ω γ Ω γ Ω γ= = =( 0.01 , 0.1 , 1 )m1 2 , Δ Δ Δ γ= = =( 0, 5 )m1 2 ; (b) as a function of phase in when

Ω γ Ω γ Ω γ= = =( 0.1 , 0.1 , 1 )m1 2 and Δ Δ Δ Δ γ= = = =( )0, 5m0 1 2 . Note that γ γ γ γ γ= = = = =( )1 meV0 1 2 3 .
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Y-branches returns the structure to a ladder system and
reduces its Kerr dispersion comparable to that in [10]. This
can be shown for both the left and right branches in
figures 4(a) and 6(a), respectively. Kerr dispersion can be
increased by using a high value of pump for the ladder-
scheme (figure 4(b)) or a high value of coupling field for the
staircase-scheme (figure 6(b)).

6. Conclusions

A model for the Kerr effect in a Y-configuration in a double
quantum dot (QD) system is proposed using the density
matrix formalism. Inhomogeneity in QDs is shown to be
critical in the dispersion Kerr calculations in QD systems.
Five cases are discussed for Y, ladder, staircase, Λ, and weak
probe configurations, where the corresponding field is turned
off. It is found that in some cases the system returns to a
simple two-level state although the Kerr value remains high
compared with conventional two-level systems as a result of
the collective work of the four fields. Using the controllable
fields, detunings and phases, a switching between sub- and
superluminal light propagations, distortionless propagation,
wide EIT and a giant Kerr nonlinearity is obtained.
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