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Abstract
In PG(2, q), the projective plane over the field Fq of q elements, a (k, n)-arc is a set K
of k points with at most n points on any line of the plane. A fundamental question is to
determine the values of k for which K is complete, that is, not contained in a (k + 1, n)-arc.
In particular, what are the smallest and largest values of k for a complete K, denoted by
tn(2, q) and mn(2, q)? Here, a new lower bound for tn(2, q) is established and compared to
known values for small q .

Keywords Finite projective plane · Arc · Lower bound

Mathematics Subject Classification 51E20

1 Introduction and background

A projective plane of order q consists of a set of q2 + q + 1 points and a set of q2 + q + 1
lines, where each line contains exactly q +1 points and two distinct points lie on exactly one
line. It follows from the definition that each point is contained in exactly q + 1 lines and two
distinct lines have exactly one common point.

The main focus of this paper is to find a lower bound for k of a (k, n)-arc in PG(2, q).
First, some basic constants and their properties are summarised. See [8, Chap. 12] or [7,
Chap. 12].

Definition 1.1 A (k, n)-arc in PG(2, q) is a setK of k points, no n+1 of which are collinear,
but with at least one set of n points collinear. When n = 2, a (k, 2)-arc is a k-arc.

Definition 1.2 A (k, n)-arc is complete if it is not contained in a (k, n + 1)-arc.
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Notation 1.3 The maximum value of k for a (k, n)-arc to exist is denoted by mn(2, q).

Definition 1.4 A line � is an i-secant of K if |� ∩ K| = i .

Notation 1.5 For a (k, n)-arc K in PG(2, q), let

τi = the total number of i-secants ofK,

ρi = ρi (P) = the number of i-secants through a point P ofK,

σi = σi (Q) = the number ofi − secants through a pointQof PG(2, q)\K.

Lemma 1.6 For a (k, n)-arc K, the following equations hold:
n∑

i=0

τi = q2 + q + 1; (1.1)

n∑

i=1

iτi = k(q + 1); (1.2)

n∑

i=2

1
2 i(i − 1)τi = 1

2k(k − 1). (1.3)

Proof See [8, Chap. 12]. ��

The constants ρi , σi are useful in investigations of the properties of (k, n)-arcs, but are
not required here.

Theorem 1.7

m2(2, q) =
{
q + 2, f or q even;
q + 1, f or q odd.

Proof See [8, Chap. 8]. ��

Theorem 1.8 (1)

mn(2, q)

{
= (n − 1)q + n, f or q even and n | q;
< (n − 1)q + n, f or q odd.

(2) A (k, n)-arc K is maximal if and only if every line in PG(2, q) is either an n-secant or a
0-secant.

Proof See [8, Chap. 12]. ��

Lemma 1.9 IfK is a complete (k, n)-arc, then (q+1−n)τn ≥ q2 +q+1−k, with equality
if and only if σn = 1 for all Q in PG(2, q)\K.

Proof See [8, Chap. 12]. ��

Definition 1.10 The type of a point P in PG(2, q) for a (k, n)-arc is the (n + 1)-tuple
(ρ0, ρ1, . . . , ρn).
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Table 1 Bounds for complete
k-arcs for 4 ≤ q ≤ 23

q 4 5 7 8 9 11 13 16 17 19 23

b2(2, q) 5 5 5 5 6 6 6 7 7 7 8

t2(2, q) 6 6 6 6 6 7 8 9 10 10 10

m2(2, q) 6 6 8 10 10 12 14 18 20 20 25

Table 2 Bounds for complete
(k, 3)-arcs for 4 ≤ q ≤ 16

q 4 5 7 8 9 11 13 16

b3(2, q) 7 8 9 9 9 10 11 12

t3(2, q) 7 9 9 11 12 13 15 15

m3(2, q) 9 11 15 15 17 21 23 28

2 New lower bound

A lower bound for the smallest complete (k, n)-arcs K is established below.

Theorem 2.1 In PG(2, q), a complete (k, n)-arc does not exist for k ≤ n∗, where

n∗ = (q + 1 − n2) + √
(q + 1 − n2)2 + 4(n2 − n)(q + 1 − n)(q2 + q + 1)

2(q + 1 − n)
.

Proof Let K be a complete (k, n)-arc. The number of n-secants through a point P in K is
at most (k − 1)/(n − 1). Then, counting the set {(P, �)}, where � is an n-secant and P is a
point of K incident with � gives that

τn ≤ k(k − 1)

n(n − 1)
. (2.1)

On the other hand, Lemma 1.9 implies that

τn ≥ q2 + q + 1 − k

q + 1 − n
(2.2)

Now, from Eqs. (2.1) and (2.2),

k2 − k

n2 − n
= q2 + q + 1 − k

q + 1 − n
.

Hence

(q + 1 − n)k2 − (q + 1 − n)k = (n2 − n)(q2 + q + 1) − (n2 − n)k,

(q + 1 − n)k2 − (q + 1 − n − n2 + n)k − (n2 − n)(q2 + q + 1) = 0,

(q + 1 − n)k2 − (q + 1 − n2)k − (n2 − n)(q2 + q + 1) = 0. (2.3)

Now, Eq. (2.3) implies that k = n∗ > 0. ��

This can be applied to k-arcs and (k, 3)-arcs, as in Tables 1 and 2, with the notation
n∗ = bn(2, q) and n = 2, 3.

123



682 S. Alabdullah, J. W. P. Hirschfeld

Table 3 Lower bounds for
complete (k, 3)-arcs for
4 ≤ q ≤ 16

k [14] [9] Theorem Exact result

4 7 6 7 7

5 8 6 8 9

7 9 7 9 9

8 9 8 9 11

9 10 8 10 12

11 10 9 10 13

13 11 10 11 15

16 12 11 12 15

3 Comparison with known results

Table 3 gives the comparison, for (k, 3)-arcs, between [9,14] and Theorem 2.1 for the values
of q with 4 ≤ q ≤ 16.
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