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In this paper, we introduce the analytical approximate solutions for one and 
two-dimension compressible Navier-Stokes equations by applying a 
relatively new method named splitting decomposition homotopy 
perturbation method. The new methodology depends on combining Adomian 
decomposition and Homotopy perturbation methods with the splitting time 
scheme for differential operators. The numerical results which we obtained 
from the solutions of the two problems, show that the new method is 
efficient with good converge and high accuracy compared with the two 
standard methods i.e. Adomian decomposition method and Homotopy 
perturbation method. 
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1. Introduction 

*Navier-Stokes equations are non-linear partial 
differential equations which are called compressible 
if the density of fluid is changed. The names of these 
equations are taken from the two physicists Claude-

Louis Navier and George Gabriel Stokes in the 
nineteenth century. Also, these equations are 
considered as the most important physical equations 
which describe a large number of phenomena of 
different applications in many research fields that 
may be used in modeling weather, liquid flow in 
channels and pipes, gas flow around flying bodies, 
and movement of stars in the galaxy. Many scientists 
and researchers attempted to find solutions for these 
equations by different acting methods; For example, 
Fonseca (2016) used Tanh-method to find analytic 
solution of one and two-dimensional compressible 
Navier-Stokes equations. Perron et al. (2004) applied 
finite volume method to solve three-dimensional 
Navier-Stokes equation. Wahab et al. (2015) 
presented analytical approximate solutions for 
Navier-Stokes equation by using homotopy 
perturbation method. Shahmohamadi and 
Mohammadpour (2014) suggested analytic solution 
for three-dimensional Navier-Stokes equation by 
using homotopy analysis method and Pade'-
approximate method. Al-Saif (2015) proposed 
Adomian decomposition methods to introduce 
analytical approximate solutions for two-
dimensional Navier-Stokes equations. Where, 
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Adomian decomposition method (ADM) and 
homotopy perturbation method (HPM) are active 
and strong in finding solutions for mathematical 
model in physics and engraining problems ones, so 
we can apply them to solve partial (ordinary) 
differential equations either linear or non-linear for 
initial-boundary value problems. The name of the 
first method is taken from the scientist who 
discovered it; namely, Adomian (1988), and the 
second was found for the first time by the Chinese 
Mathematician; He (1999). There are several 
researchers who attempted to develop and improve 
these two methods through the past few years; for 
example, Luo et al. (2006) revised ADM cases 
involving inhomogeneous boundary conditions using 
a suitable transformation. They solved 
inhomogeneous heat and wave equations. Zhu et al. 
(2005) present a new algorithm for calculating 
Adomian polynomials. The algorithm requires less 
formula than the previous method developed by 
Adomian. Luo (2005) suggested active methods for 
ADM which is a two-steps Adomian decomposition 
method (TSADM) to reach the solution. TSADM 
reduces the repetitive mathematical processes that 
are applied to find the solution and also he makes 
comparison for the results. The results showed that 
TSADM is an active and efficient method which has 
high accuracy in finding solutions. Also, in many 
works (Zhang and Lu, 2011; Inc, 2004; Ali and Al-
Saif, 2008), the authors use ADM to find analytic and 
approximate solutions for different problems. In the 
same direction of modification, the HPM is active to 
find solutions for non-linear equations (Jin, 2008; 
Hemeda, 2012; Ganji et al., 2007). Recently in Al-Saif 
and Al-Griffi (2017); we follow the example of 
researchers in the development of these two 
methods. We combine Adomian decomposition and 
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Homotopy perturbation methods with the splitting 
time scheme for differential operators to discover a 
new methodology namely splitting decomposition 
homotopy perturbation method (SDHPM), which is 
applied to solve unsteady one-dimensional Navier-
Stokes equation. The numerical results that are 
obtained by SDHPM showed that it is quite accurate, 
reasonable convergent and easily implemented. 
From the literature review and depending on our 
humble knowledge, we observed that the ADM and 
HPM are not yet used to study the current problems. 
This matter was the motive for us to use them in the 
present study with the application of both developed 
methods that are presented previously in Al-Saif and 
Al-Griffi (2017), to examine their validity.  

The aim of this paper is to extend the application 
of our proposed method SDHPM (Al-Saif and Al-
Griffi, 2017) to solve unsteady state one and two-
dimensional compressible Navier-Stokes equations. 
The numerical results which we obtained showed 
the efficiency and activity of a relative new method 
to solve one and two-dimension compressible 
Navier-Stokes equations, and compare its reliability, 
efficiency and accuracy with standard ADM and 
HPM.  

2. The main idea of the SDHPM method 

In this section, the basic idea of SDHPM will be 
discussed. It depends on the algorithms of ADM and 
HPM. To illustrate the main idea of the Adomian 
decomposition method and Homotopy perturbation 
method, we consider the general equation as in the 
differential operators form: 

 
𝐿𝑢 + 𝑅𝑢 + 𝑁𝑢 = 𝑔                                                                     (1a) 
 

with the initial condition; 
 
𝑢0 = 𝑢(𝑥, 0),                                                                         (1b) 

 
where 𝐿 is an easily invertible linear differential 
operator, 𝑅 is the remaining linear part, 𝑁𝑢 is the 
nonlinear term, 𝑢 = 𝑢(𝑥, 𝑡) is exact solution of Eq. 1, 
and 𝑔 = 𝑔(𝑥, 𝑡) is known analytic function.  

 
Algorithm of ADM: The application of the Adomian 
decomposition method (Adomian, 1988) on Eq. 1a, is 
as the following:   

 
𝑢 = 𝐿−1(𝑔) − 𝐿−1(𝑅𝑢) − 𝐿−1(𝑁𝑢)                                           (2) 
 

where 𝐿−1(. ) = ∫ (. )𝑑𝑡
𝑡

0
 is the inverse operator of 

𝐿 =
𝜕

𝜕𝑡
. 

The decomposition method represents the 
solution of Eq. 2 as the following infinite series: 

 

𝑢 = ∑ 𝑢𝑛
∞
𝑛=0                                                                                     (3) 

 

The nonlinear operator 𝑁𝑢 = Ψ(𝑢) is 
decomposed as:  

 
𝑁𝑢 = ∑ 𝐴𝑛

∞
𝑛=0                                                                                 (4) 

where 𝐴𝑛 are Adomian 's polynomials (Seng et al., 
1996), which are define as: 
 
𝐴𝑛 =

1

𝑛!

𝑑𝑛

𝑑𝜆𝑛
[Ψ(∑ 𝜆𝑖𝑢𝑖

𝑛
𝑖=0 )]

𝜆=0
   𝑛 = 0,1,2, …                            (5) 

 
substituting Eqs. 3 and 4 into Eq. 2, we have 
 

𝑢 = ∑ 𝑢𝑛
∞
𝑛=0 = 𝑢0 − 𝐿

−1(𝑅(∑ 𝑢𝑛
∞
𝑛=0 )) − 𝐿−1(∑ 𝐴𝑛

∞
𝑛=0 )   (6) 

 

consequently, it can be written as: 
 

𝑢0 = ∅ + 𝐿
−1(𝑔)

𝑢1 = −𝐿
−1(𝑅(𝑢0) − 𝐿

−1(𝐴0)

𝑢2 = −𝐿
−1(𝑅(𝑢1) − 𝐿

−1(𝐴1)
⋮

𝑢𝑛 = −𝐿
−1(𝑅(𝑢𝑛−1) − 𝐿

−1(𝐴𝑛−1)}
 
 

 
 

,                                        (7) 

 
where ∅ = 𝑢(𝑥, 0) is the initial condition. 

Hence all the terms of 𝑢 are calculated and the 
general solution is obtained according to ADM as 𝑢 =
∑ 𝑢𝑛
∞
𝑛=0 . The convergence of this series has been 

proved in Seng et al. 1996. However, for some 
problems this series cannot be determined (Çelik et 
al., 2006), so we use an approximation of the 
solution from truncated series  

 
𝑈𝑀 = ∑ 𝑢𝑛

𝑀
𝑛=0   

 
with 

 
 lim
𝑀→∞

𝑈𝑀 = 𝑢.                                                                                  (8) 

 
Algorithm of HPM: To illustrate the basic idea of the 
homotopy technique (Liao, 1995; Liao, 1997) for Eq. 
1, with the boundary condition: 

 
𝐵(𝑢, 𝜕𝑢

𝜕𝑛
) = 0 ,                                                                                   (9) 

 

where, 𝐵 is a boundary operator, we construct a 
homotopy 𝑣(𝑟, 𝑝): Ω × [0,1] → 𝑅 which satisfies: 
 
𝐻(𝑣, 𝑝) = (1 − 𝑝)[𝐿(𝑣) − 𝐿(𝑢0)] + 𝑝[𝐿(𝑣) + 𝑅(𝑣) +
𝑁(𝑣) − 𝑔] = 0, 𝑝 ∈ [0,1]                        (10a) 
 
or 
 
𝐻(𝑣, 𝑝) = 𝐿(𝑣) − 𝐿(𝑢0) + 𝑝 𝐿(𝑢0) + 𝑝[𝑅(𝑣) + 𝑁(𝑣) − 𝑔] =
0,                                                            (10b) 

 

where, 𝑝 ∈ [0,1]is an embedding parameter,𝑢0is an 
initial approximate of Eq. 1, which satisfies the 
boundary conditions. Obviously, from Eq. 10 we 
have; 
 
𝐻(𝑣, 0) = 𝐿(𝑣) − 𝐿(𝑢0) = 0,                                                   (11) 
𝐻(𝑣, 1) = 𝐿(𝑣) + 𝑅(𝑣) + 𝑁(𝑣) − 𝑔 = 0                              (12) 

 

Which the latter is actually, Eq. 1 with solution 
𝑢(𝑟) and Eq. 11 has 𝑢0(𝑟) its solution, so we 
have 𝑣(𝑟, 0) = 𝑢0(𝑟),   𝑣(𝑟, 1) = 𝑢(𝑟), where 𝑟 = 𝑥 ∈
Ω, is spatial independent variable. The changing 
process of 𝑝 from zero to unity is just that of 𝑣(𝑟, 𝑝) 
from 𝑢0(𝑟) to 𝑢(𝑟). In topology, this is called 



A. S. J. Al-Saif, Takia Ahmed J. Al-Griffi / International Journal of Advanced and Applied Sciences, 4(12) 2017, Pages: 133-144 

135 
 

deformation, and (𝑣) − 𝐿(𝑢0), and 𝐿(𝑣) + 𝑅(𝑣) +
𝑁(𝑣) − 𝑔 are called homotopic. 

Assume that the solution of Eq. 10 can be written 
as a power series in𝑝: 

 

𝑣 = 𝑣0 + 𝑝 𝑣1 + 𝑝
2𝑣2 +⋯,                                                      (13) 

 

setting 𝑝 = 1 results in the approximate solution of 
Eq. 1: 
 
𝑢 = lim

𝑝→1
𝑣 = 𝑣0 + 𝑣1 + 𝑣2 +⋯.                                              (14) 

 
Algorithm of SDHPM: Now, from above algorithms 
we can construct the basic idea of algorithm of 
SDHPM as follows: we decomposed the linear 
differential operator 𝐿 in Eq. 1a into two parts of 
differential operators: 
 
𝐿(𝑢) = 𝛼𝐿(𝑤) + 𝛽𝐿(ℎ),                                                            (15) 

 
where 𝛼 + 𝛽 = 1, 𝛼, 𝛽 ∈ [0,1]. By this definition, we 
can split Eq. 1a into two types of differential 
operator equations; one is linear and another is non-
linear as: 
 
𝐿(𝑤) + 𝑅(𝑤) = 0,                                                                       (16) 
𝐿(ℎ) + 𝑁(ℎ) − 𝑔 = 0.                                                                (17) 

 
We apply ADM as explained above on Eq. 16 to 

find the solution as series 𝑤𝑛,   𝑛 = 1,2, … depending 
on the initial condition 𝑢0, then using the result as an 
initial condition for the series solution ℎ𝑛,   𝑛 =
1,2, … that is obtained by using algorithm of HPM for 
Eq. 17 respectively. Repeating this iterative 
procedure between Eq. 16 and Eq. 17 by exchange, in 
order to reach to the original series solution 𝑢𝑛,   𝑛 =
1,2, …, then use (8) to obtain on the solution 𝑢. 

2.1. Algorithm analysis of SDHPM for one-
dimensional CNSE 

Consider the unsteady state one-dimensional 
compressible Navier-Stokes equations as the form: 

 

𝜌𝑡 + 𝜌 𝑢𝑥 + 𝑢 𝜌𝑥 = 0,                                                                (18) 
𝜌 (𝑢𝑡 + 𝑢𝑢𝑥) − 𝜇1𝑢𝑥𝑥 −

𝜇2
3
𝑢𝑥𝑥 + 𝑛𝑘𝜌

𝑛−1𝜌𝑥 = 0.               (19) 

with the initial conditions: 
 

 𝑢0 = 𝑢(𝑥, 0), 𝜌0 = 𝜌(𝑥, 0)                                                      (20) 
 

where 𝑢 represent the velocity component of the 
fluid, 𝜌 its density and the parameters 𝜇1 and 𝜇2 are 
the kinematic viscosities of the fluid. 

Now, we start applying the ADM algorithm for 
Eqs. 18-19 with the initial conditions (20), 𝑛 = 2, 

and divided Eq. 19 on𝜌. If 𝐿𝑡 =
𝜕

𝜕𝑡
 , 𝐿𝑥 =

𝜕

𝜕𝑥
 , 𝐿𝑥𝑥 =

𝜕2

𝜕𝑥2
 then the Eqs. 18-19 can rewrite with operator 

form as: 
 

𝐿𝑡𝜌 + 𝜌 𝐿𝑥𝑢 + 𝑢 𝐿𝑥𝜌 = 0,                                                         (21) 

 𝐿𝑡𝑢 + 𝑢𝐿𝑥𝑢 −
𝜇1

𝜌
𝐿𝑥𝑥𝑢 −

𝜇2
3 𝜌
𝐿𝑥𝑥𝑢 + 2𝑘𝐿𝑥𝜌 = 0.                 (22) 

 
By taking the inverse operator 𝐿𝑡

−1, the Eqs. 21-22 
are given by;  
 
𝜌(𝑥, 𝑡) = 𝜌(𝑥, 0) − 𝐿𝑡

−1(𝜌 𝐿𝑥𝑢) − 𝐿𝑡
−1(𝑢 𝐿𝑥𝜌) = 0,           (23) 

𝑢(𝑥, 𝑡) = 𝑢(𝑥, 0) − 𝐿𝑡
−1(𝑢𝐿𝑥𝑢) + 𝐿𝑡

−1 (
𝜇1

𝜌
𝐿𝑥𝑥𝑢) +

𝐿𝑡
−1 (𝜇2

3 𝜌
𝐿𝑥𝑥𝑢) − 𝐿𝑡

−1(2𝑘𝐿𝑥𝜌) = 0.                                           (24) 

 
The components solutions can be written as; 

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛
∞
𝑛=0  , and 𝜌(𝑥, 𝑡) = ∑ 𝜌𝑛

∞
𝑛=0  with the 

nonlinear operator 𝑁𝑢 = Ψ(𝑢) = 𝑢𝐿𝑥𝑢. 
The associated decomposition method is given 

by: 
 

𝑢0 = 𝑢(𝑥, 0), 𝜌0 = 𝜌(𝑥, 0)                                                     (25a) 

𝜌𝑛+1 = −𝐿𝑡
−1(𝜌𝑛𝐿𝑥𝑢𝑛) − 𝐿𝑡

−1(𝑢𝑛𝐿𝑥𝜌𝑛)

𝑢𝑛+1 = −𝐿𝑡
−1(Ψ(𝑢𝑛)) + 𝐿𝑡

−1 (
𝜇1

𝜌𝑛+1
𝐿𝑥𝑥𝑢𝑛) +

𝐿𝑡
−1 ( 𝜇2

3 𝜌𝑛+1
𝐿𝑥𝑥𝑢𝑛) − 𝐿𝑡

−1(2𝑘𝐿𝑥𝜌𝑛+1) }
 
 

 
 

.                (25b) 

 
We decomposed Ψ according to the series 

∑ 𝐴𝑛
∞
𝑛=0 , where 𝐴𝑛 is calculated by the Adomian 

polynomial, then we obtain: 
  

𝐴0 = 𝑢0
𝜕𝑢0

𝜕𝑥

𝐴1 = 𝑢0
𝜕𝑢1

𝜕𝑥
+ 𝑢1

𝜕𝑢0

𝜕𝑥

𝐴2 = 𝑢0
𝜕𝑢2

𝜕𝑥
+ 𝑢1

𝜕𝑢1

𝜕𝑥
+ 𝑢2

𝜕𝑢0

𝜕𝑥

⋮ }
 
 

 
 

                                               (26) 

 
and so on. Consequently the iterative solutions are; 

 

𝜌0 = 𝜌(𝑥, 0) , 𝑢0 = 𝑢(𝑥, 0)

𝜌1 = −𝐿𝑡
−1(𝜌0𝐿𝑥𝑢0) − 𝐿𝑡

−1(𝑢0𝐿𝑥𝜌0)

𝑢1 = −𝐿𝑡
−1(𝐴0) + 𝐿𝑡

−1 (
𝜇1

𝜌1
𝐿𝑥𝑥𝑢0) + 𝐿𝑡

−1 ( 𝜇2
3 𝜌1
𝐿𝑥𝑥𝑢0) − 𝐿𝑡

−1(2𝑘𝐿𝑥𝜌1)

𝜌2 = −𝐿𝑡
−1(𝜌1𝐿𝑥𝑢1) − 𝐿𝑡

−1(𝑢1𝐿𝑥𝜌1)

𝑢2 = −𝐿𝑡
−1(𝐴1) + 𝐿𝑡

−1 (
𝜇1

𝜌2
𝐿𝑥𝑥𝑢1) + 𝐿𝑡

−1 ( 𝜇2
3 𝜌2
𝐿𝑥𝑥𝑢1) − 𝐿𝑡

−1(2𝑘𝐿𝑥𝜌2)

⋮ }
 
 
 

 
 
 

                                                           (27) 

and so on. 
 
Now, by using HPM algorithm to Eqs. 18-19, we 

have: 
 

𝐻(𝑓, 𝑝) = (1 − 𝑝) [
𝜕𝑓

𝜕𝑡
−
𝜕𝜌0

𝜕𝑡
] + 𝑝 [

𝜕𝑓

𝜕𝑡
+ 𝑓

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑓

𝜕𝑥
] = 0  

𝐻(𝑣, 𝑝) = (1 − 𝑝) [
𝜕𝑣

𝜕𝑡
−
𝜕𝑢0

𝜕𝑡
] + 𝑝 [

𝜕𝑣

𝜕𝑡
+ 𝑣

𝜕𝑣

𝜕𝑥
+ 2𝑘

𝜕𝑓

𝜕𝑥
−

𝜇1

𝑓

𝜕2𝑣

𝜕𝑥2
−

𝜇2

3𝑓

𝜕2𝑣

𝜕𝑥2
] = 0  

 
or 
𝜕𝑓

𝜕𝑡
−
𝜕𝜌0

𝜕𝑡
= 𝑝 [−𝑓

𝜕𝑣

𝜕𝑥
− 𝑣

𝜕𝑓

𝜕𝑥
−
𝜕𝜌0

𝜕𝑡
] = 0  
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𝜕𝑣

𝜕𝑡
−
𝜕𝑢0

𝜕𝑡
= 𝑝 [−𝑣

𝜕𝑣

𝜕𝑥
− 2𝑘

𝜕𝑓

𝜕𝑥
+
𝜇1

𝑓

𝜕2𝑣

𝜕𝑥2
+

𝜇2

3𝑓

𝜕2𝑣

𝜕𝑥2
] = 0.  

 
By assuming the solution as a power series in p, 

we have: 
 

𝜕

𝜕𝑡
(𝑓0 + 𝑝𝑓1 + 𝑝

2𝑓2 +⋯) −
𝜕𝜌0

𝜕𝑡
= 𝑝 [−(𝑓0 + 𝑝𝑓1 + 𝑝

2𝑓2 +

⋯)
𝜕

𝜕𝑥
(𝑣0 + 𝑝𝑣1 + 𝑝

2𝑣2 +⋯) − (𝑣0 + 𝑝𝑣1 + 𝑝
2𝑣2 +

⋯)
𝜕

𝜕𝑥
(𝑓0 + 𝑝𝑓1 + 𝑝

2𝑓2 +⋯) −
𝜕𝜌0

𝜕𝑡
]  

𝜕

𝜕𝑡
(𝑣0 + 𝑝𝑣1 + 𝑝

2𝑣2 +⋯) −
𝜕𝑢0

𝜕𝑡
= 𝑝 [−(𝑣0 + 𝑝𝑣1 + 𝑝

2𝑣2 +

⋯)
𝜕

𝜕𝑥
(𝑣0 + 𝑝𝑣1 + 𝑝

2𝑣2 +⋯) − 2𝑘
𝜕

𝜕𝑥
(𝑓0 + 𝑝𝑓1 + 𝑝

2𝑓2 +

⋯) +
𝜇1

(𝑓0+𝑝𝑓1+𝑝
2𝑓2+⋯)

𝜕2

𝜕𝑥2
(𝑣0 + 𝑝𝑣1 + 𝑝

2𝑣2 +⋯) +

𝜇2

3(𝑓0+𝑝𝑓1+𝑝
2𝑓2+⋯)

𝜕2

𝜕𝑥2
(𝑣0 + 𝑝𝑣1 + 𝑝

2𝑣2 +⋯) −
𝜕𝑢0

𝜕𝑡
]  

 
By equating the terms which have the same 

powers of p; we get 

 

𝑝0 : 
𝜕𝑓0

𝜕𝑡
−
𝜕𝜌0

𝜕𝑡
= 0          𝑎𝑛𝑑,            

𝜕𝑣0

𝜕𝑡
−
𝜕𝑢0

𝜕𝑡
= 0 

𝑝1 : 
𝜕𝑓1

𝜕𝑡
+
𝜕𝜌0

𝜕𝑡
+ 𝑣0

𝜕𝑓0

𝜕𝑥
+ 𝑓0

𝜕𝑣0

𝜕𝑥
= 0             𝑎𝑛𝑑,

 𝜕𝑣1

𝜕𝑡
+
𝜕𝑢0

𝜕𝑡
+ 𝑣0

𝜕𝑣0

𝜕𝑥
+ 𝜇1(2 − 𝑓0)

𝜕2𝑣0

𝜕𝑥2
+

                                                                 
𝜇2

3
(2 − 𝑓0)

𝜕2𝑣0

𝜕𝑥2
= 0

𝑝2 : 
𝜕𝑓2

𝜕𝑡
+ 𝑣0

𝜕𝑓1

𝜕𝑥
+ 𝑣1

𝜕𝑓0

𝜕𝑥
+ 𝑓0

𝜕𝑣1

𝜕𝑥
+ 𝑓1

𝜕𝑣0

𝜕𝑥
= 0     𝑎𝑛𝑑,

𝜕𝑣2

𝜕𝑡
+ 𝑣0

𝜕𝑣1

𝜕𝑥
+ 𝑣1

𝜕𝑣0

𝜕𝑥
+ 𝜇1(2 − 𝑓0)

𝜕2𝑣1

𝜕𝑥2
−

                                                                                             𝜇1𝑓1
𝜕2𝑣0

𝜕𝑥2
+
𝜇2

3
(2 − 𝑓0)

𝜕2𝑣1

𝜕𝑥2
−
𝜇2

3
𝑓1

𝜕2𝑣0

𝜕𝑥2
= 0

⋮ }
 
 
 
 

 
 
 
 

                           (28) 

and so on. 
 
Then the analytical approximate solution can be 

found by setting 𝑝 = 1 as; 
 

𝜌 = lim
𝑝→1

𝑓 = 𝑓0 + 𝑓1 + 𝑓2 +⋯  

 

and 
 

𝑢 = lim
𝑝→1

𝑣 = 𝑣0 + 𝑣1 + 𝑣2 +⋯                                               (29) 

 

now, we are applying the SDHPM algorithm for Eq. 
18 as the form: 

By applying (16) and (17) with𝛼 = 𝛽 = 0.5 on 
(18), we obtain: 

 

𝐿(𝑤) = 𝜌 = −2𝐿𝑡
−1(𝑢 𝐿𝑥𝜌)                                                      (30) 

𝐿(ℎ) = 𝜌 = −2𝐿𝑡
−1(𝜌 𝐿𝑥𝑢)                                                       (31) 

 

applying ADM for (30) with initial conditions 𝑢0 =
𝑢(𝑥, 0), 𝜌0 = 𝜌(𝑥, 0) to obtain; 
 

𝑤1 = 𝑤0 + 𝐿𝑡
−1 (−2 𝑢0

𝜕𝜌0

𝜕𝑥
)   ,   𝑤ℎ𝑒𝑟𝑒  𝑤0 = 𝜌0,               (32) 

  

applying HPM for (31) with the result of (32) to 
obtain; 
 

ℎ1 = ℎ0 + 𝐿𝑡
−1 (−2(𝑤1

𝜕𝑢0

𝜕𝑥
) −

𝜕𝑤1

𝜕𝑡
)   ,   𝑤ℎ𝑒𝑟𝑒  ℎ0 = 𝑤1(33) 

 

then 
 

𝜌1 = 𝛼 𝑤1 + 𝛽 ℎ1 .                                                                    (34) 
 

Using the same procedure on Eq. 19 to obtain: 
 

𝑤1
∗ = 𝑤0

∗ + 𝐿𝑡
−1 (2 (𝜇1 +

𝜇2

3
)
𝜕2𝑢0

𝜕𝑥2
)   ,   𝑤ℎ𝑒𝑟𝑒  𝑤0

∗ = 𝑢0,   (35) 

ℎ1
∗ = ℎ0

∗ + 𝐿𝑡
−1 (−2(𝑤1

∗ 𝜕𝑤1
∗

𝜕𝑥
) − 4𝑘

𝜕𝑤1

𝜕𝑥
−

𝜕𝑤1
∗

𝜕𝑡
)   ,   𝑤ℎ𝑒𝑟𝑒  ℎ0

∗ = 𝑤1
∗  

                                                   (36) 

then  
 

𝑢1 = 𝛼 𝑤1
∗ + 𝛽 ℎ1

∗                                                                         (37) 
 

After repeating this procedure between two 
schemes (ADM &HPM) by exchange, we have: 

𝑤2 = 𝑤1 + 𝐿𝑡
−1 (−2 𝑢1

𝜕𝜌1

𝜕𝑥
)  ,                                                   (38) 

ℎ2 = ℎ1 + 𝐿𝑡
−1 (−2 (𝑤1

𝜕𝑢1

𝜕𝑥
) − 2 (𝜌1

𝜕𝑤1
∗

𝜕𝑥
))   ,   𝑤ℎ𝑒𝑟𝑒  ℎ1 =

 𝑤2                                                                (39) 
𝜌2 = 𝛼 𝑤2 + 𝛽 ℎ2 .                                                                      (40) 

𝑤2
∗ = 𝑤1

∗ + 𝐿𝑡
−1 (2 (𝜇1 +

𝜇2

3
)
𝜕2𝑢1

𝜕𝑥2
)  ,                                       (41) 

ℎ2
∗ = ℎ1

∗ + 𝐿𝑡
−1 (−2 (𝑤1

∗ 𝜕𝑢1

𝜕𝑥
) − 4𝑘

𝜕𝜌1

𝜕𝑥
−

2(𝑢1
𝜕𝑤1

∗

𝜕𝑥
))   ,   𝑤ℎ𝑒𝑟𝑒  ℎ1

∗ = 𝑤2
∗                                              (42) 

𝑢2 = 𝛼 𝑤2
∗ + 𝛽 ℎ2

∗                                                                         (43) 
⋮ 

so on.  
The successive solutions that can be written as a 

sum; 
 

𝜌(𝑥, 𝑡) = 𝜌0 + 𝜌1 + 𝜌2 +⋯ = ∑ 𝜌𝑛(𝑥, 𝑡)
∞
𝑛=0   

 
and 
 
𝑢(𝑥, 𝑡) = 𝑢0 + 𝑢1 + 𝑢2 +⋯ = ∑ 𝑢𝑛(𝑥, 𝑡).

∞
𝑛=0   

 
The convergence of these series will be proved 

theoretically in the next section. However, for some 
problems these series cannot be determined, so we 
use an approximation of the solution from truncated 
series: 

 
𝑉𝑀 = ∑ 𝜌𝑛(𝑥, 𝑡)

∞
𝑛=0   

 

with 
 

lim
𝑀→∞

𝑉𝑀 = 𝜌  

 

and 
 

𝑈𝑀 = ∑ 𝑢𝑛(𝑥, 𝑡)
∞
𝑛=0    

 

with 
 
lim
𝑀→∞

𝑈𝑀 = 𝑢.  

The acceleration for this convergence means the 
need to few terms of the above equation, for 
obtaining the formula which approximates to the 
exact solution. 
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2.2. Algorithm analysis of SDHPM for two-
dimensional CNSE 

Consider the unsteady state two-dimensional 
compressible Navier-Stokes equation as the form: 
 
𝜌𝑡 + 𝜌 𝑢𝑥 + 𝜌 𝑣𝑦 + 𝑢 𝜌𝑥 + 𝑣 𝜌𝑦 = 0,                                     (44) 

 𝜌 (𝑢𝑡 + 𝑢𝑢𝑥 + 𝑣𝑣𝑦) − 𝜇1(𝑢𝑥𝑥 + 𝑢𝑦𝑦) −
𝜇2
3
(𝑢𝑥𝑥 + 𝑣𝑥𝑦) +

𝑛𝑘𝜌𝑛−1𝜌𝑥 = 0,                                                                             (45) 
  𝜌 (𝑣𝑡 + 𝑢𝑣𝑥 + 𝑣𝑣𝑦) − 𝜇1(𝑣𝑥𝑥 + 𝑣𝑦𝑦) −

𝜇2
3
(𝑣𝑦𝑦 + 𝑢𝑥𝑦) +

𝑛𝑘𝜌𝑛−1𝜌𝑦 = 0,                                     (46) 

 

with the initial conditions: 
 
𝑢0 = 𝑢(𝑥, 0),  𝑣0 = 𝑣(𝑥, 0), 𝜌0 = 𝜌(𝑥, 0).                            (47) 
 

where 𝑢 and 𝑣 represent the velocity component of 
the fluid, 𝜌 its density and the parameters 𝜇1 and 𝜇2 
are the kinematic viscosities of the fluid.  

As the same manner in section (2-1), we can 
apply algorithm of SDHPM which is represented by 
Eqs. 30-43 on Eqs. 44-46 after the division of Eqs. 
45- 46 on 𝜌 with 𝑛 = 2, to obtain: 
 

𝜌0 = 𝜌(𝑥, 0), 𝑢0 = 𝑢(𝑥, 0),  𝑣0 = 𝑣(𝑥, 0),   

𝑤1 = 𝑤0 + 𝐿𝑡
−1 (−2 𝑢0

𝜕𝜌0

𝜕𝑥
− 2𝑣0

𝜕𝜌0

𝜕𝑦
)   ,   𝑤ℎ𝑒𝑟𝑒  𝑤0 = 𝜌0                     

ℎ1 = ℎ0 + 𝐿𝑡
−1 (−2 (𝑤1

𝜕𝑢0

𝜕𝑥
) − 2 (𝑤1

𝜕𝑣0

𝜕𝑦
) −

𝜕𝑤1

𝜕𝑡
)   ,   𝑤ℎ𝑒𝑟𝑒  ℎ0 = 𝑤1

} → 𝜌1 = 𝛼 𝑤1 + 𝛽 ℎ1   

𝑤1
∗ = 𝑤0

∗ + 𝐿𝑡
−1 (2 (𝜇1 +

𝜇2

3
)
𝜕2𝑢0

𝜕𝑥2
+ 2𝜇1

𝜕2𝑢0

𝜕𝑦2
+ 2

𝜇2

3

𝜕

𝜕𝑥
(
𝜕𝑣0

𝜕𝑦
))  , 𝑤ℎ𝑒𝑟𝑒  𝑤0

∗ = 𝑢0

ℎ1
∗ = ℎ0

∗ + 𝐿𝑡
−1 (−2(𝑤1

∗ 𝜕𝑤1
∗

𝜕𝑥
) − 4𝑘

𝜕𝜌0

𝜕𝑥
− 2(𝑣0

𝜕𝑣0

𝜕𝑦
) −

𝜕𝑤1
∗

𝜕𝑡
)  , 𝑤ℎ𝑒𝑟𝑒  ℎ0

∗ = 𝑤1
∗

} → 𝑢1 = 𝛼 𝑤1
∗ + 𝛽 ℎ1

∗   

𝑤1
∗∗ = 𝑤0

∗∗ + 𝐿𝑡
−1 (2 (𝜇1 +

𝜇2

3
)
𝜕2𝑣0

𝜕𝑦2
+ 2𝜇1

𝜕2𝑣0

𝜕𝑥2
)  , 𝑤ℎ𝑒𝑟𝑒  𝑤0

∗∗ = 𝑣0

ℎ1
∗∗ = ℎ0

∗∗ + 𝐿𝑡
−1

(

 
 

−2(𝑤1
∗∗ 𝜕𝑤1

∗∗

𝜕𝑦
) − 4𝑘

𝜕𝜌0

𝜕𝑦
−

2(𝑢0
𝜕𝑤1

∗∗

𝜕𝑥
) + 4

𝜇2

3

𝜕

𝜕𝑥
(
𝜕𝑢0

𝜕𝑦
)

−2
𝜇2𝜌0

3

𝜕

𝜕𝑥
(
𝜕𝑢0

𝜕𝑦
) −

𝜕𝑤1
∗∗

𝜕𝑡 )

 
 
  , 𝑤ℎ𝑒𝑟𝑒   ℎ0

∗∗ = 𝑤1
∗∗

}
  
 

  
 

→ 𝑣1 = 𝛼 𝑤1
∗∗ + 𝛽 ℎ1

∗∗.  

 
Then, after repeating this procedure between two schemes (ADM &HPM) by exchange, we have: 
 

𝑤2 = 𝑤1 + 𝐿𝑡
−1 (−2 𝑢1

𝜕𝜌1

𝜕𝑥
− 2𝑣1

𝜕𝜌1

𝜕𝑦
)  

ℎ2 = ℎ1 + 𝐿𝑡
−1 (−2 (𝜌1

𝜕𝑢0

𝜕𝑥
) − 2 (𝜌0

𝜕𝑢1

𝜕𝑥
) − 2 (𝜌1

𝜕𝑣0

𝜕𝑦
) − 2 (𝜌0

𝜕𝑣1

𝜕𝑦
))   ,   𝑤ℎ𝑒𝑟𝑒  ℎ1 = 𝑤2  

𝜌2 = 𝛼 𝑤2 + 𝛽 ℎ2   

𝑤2
∗ = 𝑤1

∗ + 𝐿𝑡
−1 (2 (𝜇1 +

𝜇2

3
)
𝜕2𝑢1

𝜕𝑥2
+ 2𝜇1

𝜕2𝑢1

𝜕𝑦2
+ 2

𝜇2

3

𝜕

𝜕𝑥
(
𝜕𝑣1

𝜕𝑦
))  

ℎ2
∗ = ℎ1

∗ + 𝐿𝑡
−1 (−2 (𝑢0

𝜕𝑢1

𝜕𝑦
) − 2 (𝑢1

𝜕𝑢0

𝜕𝑦
) − 4𝑘

𝜕𝜌1

𝜕𝑥
− 2(𝑣0

𝜕𝑣1

𝜕𝑦
) − 2 (𝑣1

𝜕𝑣0

𝜕𝑦
))  , 𝑤ℎ𝑒𝑟𝑒  ℎ1

∗ = 𝑤2
∗  

𝑢2 = 𝛼 𝑤2
∗ + 𝛽 ℎ2

∗   

𝑤2
∗∗ = 𝑤1

∗∗ + 𝐿𝑡
−1 (2 (𝜇1 +

𝜇2

3
)
𝜕2𝑣1

𝜕𝑦2
+ 2𝜇1

𝜕2𝑣1

𝜕𝑥2
)  

ℎ2
∗∗ = ℎ1

∗∗ + 𝐿𝑡
−1 (

2 (𝑣0
𝜕𝑣1

𝜕𝑦
) − 2 (𝑣1

𝜕𝑣0

𝜕𝑦
) − 4𝑘

𝜕𝜌1

𝜕𝑦
− 2(𝑢0

𝜕𝑣1

𝜕𝑥
) − 2 (𝑢1

𝜕𝑣0

𝜕𝑥
) +

4
𝜇2

3

𝜕

𝜕𝑥
(
𝜕𝑢1

𝜕𝑦
) − 2

𝜇2𝜌1

3

𝜕

𝜕𝑥
(
𝜕𝑢0

𝜕𝑦
) −  2

𝜇2𝜌0

3

𝜕

𝜕𝑥
(
𝜕𝑢1

𝜕𝑦
)

) ,𝑤ℎ𝑒𝑟𝑒 ℎ1
∗∗ = 𝑤2

∗∗  

𝑣2 = 𝛼 𝑤2
∗∗ + 𝛽 ℎ2

∗∗ 
⋮ 

So on. 
 

3. Numerical test and discussion 

The theoretical analysis of SDHPM is applied here 
to find the analytical approximate solution of two 
test problems: The first is one-dimensional CNSE and 
the second is two-dimensional CNSE. 

 

Test problem 1D (P1) CNSE: The one-dimensional 
CNSE (18, 19) with exact solutions  
 

𝑢 = 𝑎0 + 𝑎1 tanh(𝜉) ,    𝜌 = 𝑐0 + 𝑐1 tanh(𝜉) ,   𝑤ℎ𝑒𝑟𝑒 𝜉 =
𝑥 − 𝑎𝑡  
 

and initial conditions  
𝑢0 = 𝑎0 + 𝑎1 tanh(𝑥) , 𝜌0 = 𝑐0 + 𝑐1 tanh(𝑥)  

 
where;  

 

𝑎0 = 𝑎 +
𝑎2𝑘𝜇2

−𝑎𝑘𝜇2−√𝑎
2𝑘2𝜇2

2−4𝑎𝑐0𝑘
2𝜇2

2+8𝑐0𝑘
3𝜇2

2
−

2𝑎𝑐0𝑘𝜇2

−𝑎𝑘𝜇2−√𝑎
2𝑘2𝜇2

2−4𝑎𝑐0𝑘
2𝜇2

2+8𝑐0𝑘
3𝜇2

2
+  

4𝑐0𝑘𝜇2

−𝑎𝑘𝜇2−√𝑎
2𝑘2𝜇2

2−4𝑎𝑐0𝑘
2𝜇2

2+8𝑐0𝑘
3𝜇2

2
+

𝑎√𝑘2(𝑎2−4𝑎𝑐0+8𝑐0𝑘)𝜇2
2

−𝑎𝑘𝜇2−√𝑎
2𝑘2𝜇2

2−4𝑎𝑐0𝑘
2𝜇2

2+8𝑐0𝑘
3𝜇2

2
  

𝑎1 = 2(2𝑎𝜇2 −
𝑎2𝜇2

𝑐0
− 4𝑘𝜇2 −

𝑎 √𝑘2(𝑎2−4𝑎𝑐0+8𝑐0𝑘)𝜇2
2

𝑐0𝑘
) /3𝑐0𝑘  

𝑐1 = 2(−𝑎𝑘𝜇2 −√𝑎
2𝑘2𝜇2

2 − 4𝑎𝑐0𝑘
2𝜇2

2 + 8𝑐0𝑘
3𝜇2

2) /3𝑐0𝑘
2  

 
and 𝑎 is the constant speed. 

The iterative solutions for this problem with 𝑛 =
2 by using SDHPM can be obtained after we split the 
linear operator of time of Eqs. 18-19 as in Eqs. 16-17, 
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then by using algorithm of SDHPM for Eqs. 18-19 
that is represented by Eqs. 30-43, we get the 

successive analytical approximate solution of Eqs. 18 
and 19 as the following: 

 
𝜌0 = 𝑐0 + 𝑐1 tanh(𝑥) , 𝑢0 = 𝑎0 + 𝑎1 tanh(𝑥),  
𝜌1 = 𝑐0 + 𝑐1 tanh(𝑥) + 𝑎1𝑐1𝑡

2(𝑎0 + 𝑎1 tanh(𝑥))(tanh(𝑥)
2 − 1)2,  

𝑢1 = 𝑎0 + 𝑎1 tanh(𝑥) +
16𝑎1

2𝑞2𝑡3 sinh(𝑥)(cosh(𝑥)2−sinh(𝑥)2)2(3sinh(𝑥)2−cosh(𝑥)2)

3 cosh(𝑥)7
 ,   

𝜌2 = 𝑐0 + 𝑐1 tanh(𝑥) + 𝑎1
2𝑐1𝑞𝑡

4(𝑎0 + 𝑎1 tanh(𝑥))(tanh(𝑥)
2 − 1)3(3 tanh(𝑥)2 − 1) +  

2𝑎1𝑐1𝑡
5(tanh(𝑥)2−1)2(5𝑎1 tanh(𝑥)

2+2𝑎0 tanh(𝑥)−𝑎1)[60 𝑡𝑎1
2𝑞2 sinh(𝑥)7]

45 cosh(𝑥)7
+

 
2𝑎1𝑐1𝑡

5(tanh(𝑥)2−1)2(5𝑎1 tanh(𝑥)
2+2𝑎0 tanh(𝑥)−𝑎1)[9𝑘𝑎1𝑐1 cosh(𝑥)

7−36𝑘𝑎1𝑐1 sinh(𝑥)
2cosh(𝑥)5]

45 cosh(𝑥)7
+

 
2𝑎1𝑐1𝑡

5(tanh(𝑥)2−1)2(5𝑎1 tanh(𝑥)
2+2𝑎0 tanh(𝑥)−𝑎1)[27𝑘𝑎1𝑐1 sinh(𝑥)

4cosh(𝑥)3+18𝑘𝑎0𝑐1 sinh(𝑥)cosh(𝑥)
6]

45 cosh(𝑥)7
,  

𝑢2 = 𝑎0 + 𝑎1 tanh(𝑥) +
16𝑡3𝑘𝑎1𝑐1𝑞 cosh(𝑥)

9

3cosh(𝑥)9
−
4𝑎1𝑞𝑡

4 sinh(𝑥)(cosh(𝑥)2−sinh(𝑥)2)2(60𝑘𝑎1𝑐1 cosh(𝑥)
6 sinh(𝑥))

15 cosh(𝑥)11
 .  

 

where; 𝑞 = 𝜇1 +
𝜇2

3
.  

Table 1 shows the comparison of numerical 
results between the present study, ADM and HPM, 
and Fig. 1 illustrates the exact and analytic 
approximate solutions for the present study at 𝑡 = 1 
and the analytic approximate solutions in different 𝑡 

for 𝑢2 , 𝜌2. Fig. 2 explains the surface plot of exact 
and analytic approximate solutions resulted from the 
present study. Moreover, Fig. 3 shows the 
comparison of the exact and analytic approximate 
solutions for three method (SDHPM, ADM, HPM) at 
𝑡 = 1. 

 
Table 1: 𝐿2 and 𝐿∞ comparison of present study, ADM and HPM for p1 
𝐸𝑟𝑟𝑜𝑟 𝑀𝑒𝑎𝑠𝑢𝑟𝑚𝑒𝑡𝑠

𝑀𝑒𝑡ℎ𝑜𝑑𝑠
 

𝐿2
𝐿∞

(𝑢1) 
𝐿2
𝐿∞

(𝑢2) 
𝐿2
𝐿∞

(𝜌1) 
𝐿2
𝐿∞

(𝜌2) 

ADM 
1.13 × 10−2

5.38 × 10−3
 

8.20 × 10−3

2.80 × 10−3
 
1.60 × 10−2 

6.88 × 10−3
 
6.50 × 10−3

2.90 × 10−3
 

HPM 
6.94 × 10−3 

2.64 × 10−3
 
6.62 × 10−3

2.51 × 10−3
 

1.60 × 10−2

6.88 × 10−3
 

1.58 × 10−3

6.33 × 10−4
 

SDHPM 
6.18 × 10−4

2.72 × 10−5
 

5.97 × 10−4

2.62 × 10−5
 

1.59 × 10−3

8.80 × 10−4
 

4.27 × 10−4

1.86 × 10−5
 

 

  

  
Fig. 1: Exact and analytic approximate solutions (𝑢, 𝜌) and 𝑢2, 𝜌2) with different times for P1 
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Fig. 2: Surface plot of exact and analytic approximate solutions resulting from SDHPM p1 

 

  

  
Fig. 3: Comparison between Exact and analytic approximate solutions (𝑢, 𝜌) for P1 

 
The measurement of 𝐿2 and 𝐿∞ errors for the 

velocity and density, which are shown in Table 1, 
ensure the ability of the suggested new method and 
its accuracy in finding the analytic approximate 
solutions of one-dimensional compressible Navier-
Stokes equation. From our computations, which we 
found by using Mathcad.15 software; for SDHPM, we 
noted that the convergence of this method is 
increased at 𝑡 < 5, while in the two other methods 
(ADM & HPM) the solutions are convergent to the 
exact solution at 𝑡 < 1. Then; one can say that, the 

new method is effective and good method to find the 
solutions of one-dimensional CNSE compared to the 
two standard methods (ADM, HPM).  

 

Test problem (P2) 2D CNSEs: The two-dimensional 
CNSEs (44-46) with exact solutions 
 

𝑢 = 𝑎 − 𝑏1 tanh(𝜉) , 𝑣 = 𝑏1 tanh(𝜉) , 𝜌 = 𝑐0 +
2𝜇1𝑏1

𝑘
𝑡𝑎𝑛ℎ(𝜉)2,   𝑤ℎ𝑒𝑟𝑒 𝜉 = 𝑥 + 𝑦 − 𝑎𝑡 + 𝜉0;  

 

and initial conditions  
 

4 2 0 2 4

1

0

1

u1(SDHPM) t=1

u1(HPM) t=1

u1(ADM)

uexact

x

4 2 0 2 4

1

0

1

u2(SDHPM) t=1

u2(HPM) t=1

u2(ADM)

uexact

x

4 2 0 2 4

1

0

1

1(SDHPM) t=1

1(HPM) t=1

1(ADM)

uexact

x

4 2 0 2 4

1

0

1

2(SDHPM) t=1

2(HPM) t=1

2(ADM)

uexact

x

-4-2024

-0.41

-0.31

-0.21

-0.11

-0.01

0.09

0

0.5

1

0.09-0.14

-0.01-0.09

-0.11--0.01

-0.21--0.11

-0.31--0.21

-0.41--0.31

x 

t 

u
-E

X
xa

ct
 

-4-2024

-0.411

-0.311

-0.211

-0.111

-0.011

0.089

0

0.5

1

0.089-0.14

-0.011-0.089

-0.111--0.011

-0.211--0.111

-0.311--0.211

-0.411--0.311

t 

x 

u
2

-S
D

P
H

M
 

-4-2024

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0

0.5

1

0.05-0.1
0-0.05
-0.05-0
-0.1--0.05
-0.15--0.1
-0.2--0.15
-0.25--0.2
-0.3--0.25

x 

t 
𝜌

- 
E

xc
a

t
 

-4-2024

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0

0.5

1

0.05-0.1
0-0.05
-0.05-0
-0.1--0.05
-0.15--0.1
-0.2--0.15
-0.25--0.2
-0.3--0.25

x 

t 

𝜌
2

-E
xc

a
t

 



A. S. J. Al-Saif, Takia Ahmed J. Al-Griffi / International Journal of Advanced and Applied Sciences, 4(12) 2017, Pages: 133-144 

140 
 

𝑢0 = 𝑎 − 𝑏1 tanh(𝑥 + 𝑦 + 𝜉0),   
𝑣0 = 𝑏1 tanh(𝑥 + 𝑦 + 𝜉0),                       

𝜌0 = 𝑐0 +
2𝜇1𝑏1

𝑘
𝑡𝑎𝑛ℎ(𝑥 + 𝑦 + 𝜉0)

2,  

 

where, 𝑐0 , 𝑏1 , 𝜉0 , 𝑘 are arbitrary constants and a is 
the speed constant. Now, by applying the algorithm 
of SDHPM for Eqs. 44-46 that is introduced in section 
2.2, we get the successive analytical approximate 
solution of Eqs. 44-46 as the following: 
 

𝜌1 = 𝑐0 +
𝜇1𝑏1

𝑘
 𝛿 (2𝛿 + 4𝑎𝑡(𝛿2 − 1)) ,  

𝑢1 = 𝑎 − 𝑏1𝛿 − 𝑏1𝑡(𝛿
2 − 1)((𝑎 − 𝑏1𝛿) − 8𝜇1𝛿),  

𝑣1 = 𝑏1𝛿 + 𝑏1𝑡(𝛿
2 − 1) (𝛿 (𝑏1 + 8𝜇1 −

4𝜇2

3
) + (𝑎 − 𝑏1𝛿)),   

𝜌2 = (𝑐0 +
𝜇1𝑏1

𝑘
𝛿2) [1 + (

𝑏1
2𝜇2𝑡

2(2𝜇1𝑏1𝛿
2+𝑐0𝑘)(𝛿

2−1)2

3𝑘
) −   

𝑏1𝑝2𝑡
3[8𝛿(2−3𝛿2)(𝛿2−1)](𝑎−𝑏1𝛿)+2𝑏1(𝛿

2−1)2(3𝛿2−1)

3
]  

 +
2𝑎𝑏1𝜇1𝑡

2(3𝛿4−4𝛿2+1)

𝑘
((𝑎 − 𝑏1𝛿) + 𝑏1 +

4𝑏1𝑝2𝑡𝛿(𝑎−𝑏1𝛿)(𝛿
2−1)

3
) +

4𝑏1𝜇1𝑡𝛿(𝛿
2−1)

𝑘
(𝑎 +

          
4𝑏1

2𝑝1
2𝑡3𝛿(3𝛿2−1)(𝛿2−1)2

27
+ 4𝑏1𝜇1𝑡𝛿(𝛿

2 − 1) +

𝑏1𝜇2𝑡𝛿(2𝑏1𝜇1𝛿
2+𝑐0𝑘)(𝛿

2−1)

3𝑘
) ,  

𝑢2 = 𝑎 − 𝑏1𝛿(1 + 10𝑏1𝜇1𝑡
2𝛿2 + 80𝜇1

2𝑡2𝛿2) −
𝑏1𝑡(𝑎 − 𝑏1𝛿)(𝛿

2 − 1),  

𝑣2 = 𝑏1𝛿 + 𝑏1𝑡(𝛿
2 − 1)(𝑏1𝛿 + (𝑎 − 𝑏1𝛿)) +

1

2
(𝑏1𝑡

2(𝑎 −

𝑏1𝛿)(𝛿 − 1)(𝛿 + 1)(2𝑎𝛿 − 3𝑏1𝛿 + 𝑏1)).  
⋮ 

𝑤ℎ𝑒𝑟𝑒;  𝛿 = tanh(𝑥 + 𝑦 + 𝜉0) , 𝑝1 = 3𝑞 + 3𝜇1 − 𝜇2 , 𝑝2 =

𝑞 + 𝜇1, 𝑞 = 𝜇1 +
𝜇2

3
.  

 

Tables 2 and 3 show the comparison of numerical 
results of the present study, ADM and HPM for p2 at 
𝑡 = 0.1,1. Fig. 4 explains the comparison of absolute 
errors between the present study, ADM and HPM for 
p2 at 𝑡 = 0.1,1 for (𝑢2, 𝑣2). 

Fig. 5 illustrates the surface plot of exact and 
analytic approximate solutions for SDHPM to the 
two-dimensional compressible Navier-Stokes 
equations. 

From the tables of errors which explain a 
comparison between the present study, ADM and 
HPM for different values of time by using the 
measurement of 𝐿2 and 𝐿∞ errors for the velocity 
and density, the effect and the accuracy of the 
present study are noted in comparison to the other 
methods (ADM, HPM). In addition, to a good 
convergence, and from our computations, which we 
found by using Mathcad.15 software for SDHPM, we 
note that the convergence of this method increases 
at 𝑡 < 5. Moreover, from the plots of absolute errors 
for the three methods (SDHPM, ADM, HPM), we 
show the efficiency and the high accuracy of SDHPM. 
So, one can say that the new method is better and 
more accurate as compared to the standard methods 
(ADM & HPM). 

 

Table 2: 𝐿2 and 𝐿∞ comparison of the present study, ADM and HPM for P2 at 𝑡 = 0.1 
𝐸𝑟𝑟𝑜𝑟 𝑀𝑒𝑎𝑠𝑢𝑟𝑚𝑒𝑡𝑠

𝑀𝑒𝑡ℎ𝑜𝑑𝑠
 

𝐿2
𝐿∞

(𝑢1) 
𝐿2
𝐿∞

(𝑢2) 
𝐿2
𝐿∞

(𝑣1) 
𝐿2
𝐿∞

(𝑣2) 
𝐿2
𝐿∞

(𝜌1) 
𝐿2
𝐿∞

(𝜌2) 

ADM 
7.48×10-5 

7.01×10-5 

1.14×10-5 

8.27×10-6 

7.45×10-5 

7.25×10-5 

7.25×10-5 

6.69×10-5 

5.46×10-4 

2.03×10-4 

1.07×10-5 

3.99×10-6 

HPM 
7.89×10-5 

8.14×10-5 

7.58×10-5 

7.53×10-5 

7.65×10-5 

7.68×10-5 

7.51×10-5 

7.38×10-5 

1.11×10-5 

3.95×10-6 

1.79×10-6 

1.53×10-6 

SDHPM 
7.61×10-6 

6.49×10-7 

4.03×10-6 

3.43×10-7 

3.19×10-6 

2.72×10-6 

3.95×10-8 

4.01×10-8 

6.03×10-9 

6.19×10-9 

7.03×10-11 

7.01×10-11 

 
Table 3: 𝐿2 and 𝐿∞ comparison of the present study, ADM and HPM for P2 at 𝑡 = 1 

𝐸𝑟𝑟𝑜𝑟 𝑀𝑒𝑎𝑠𝑢𝑟𝑚𝑒𝑡𝑠

𝑀𝑒𝑡ℎ𝑜𝑑𝑠
 

𝐿2
𝐿∞

(𝑢1) 
𝐿2
𝐿∞

(𝑢2) 
𝐿2
𝐿∞

(𝑣1) 
𝐿2
𝐿∞

(𝑣2) 
𝐿2
𝐿∞

(𝜌1) 
𝐿2
𝐿∞

(𝜌2) 

ADM 
7.38×10-4 

6.67×10-4 

7.97×10-5 

4.73×10-5 

7.42×10-5 

7.22×10-5 

7.25×10-5 

4.55×10-5 

5.69×10-4 

2.39×10-4 

1.07×10-4 

3.99×10-5 

HPM 
7.71×10-4 

7.80×10-4 

7.43×10-4 

7.19×10-4 

7.50×10-4 

7.34×10-4 

7.40×10-4 

7.05×10-4 

1.12×10-4 

3.99×10-5 

1.83×10-5 

1.53×10-5 

SDHPM 
3.51×10-5 

3.03×10-5 

1.04×10-6 

9.15×10-7 

9.06×10-6 

7.31×10-6 

3.25×10-6 

3.10×10-7 

5.63×10-7 

5.94×10-7 

8.06×10-8 

8.63×10-8 

 

4. Convergence analysis of SDHPM 

In this section, we study the analysis of 
convergence in the same manner as (Alkalla et al., 
2013; Inc, 2005; Jang, 2007) for the decomposition 
method to the nonlinear 1D compressible Navier-
Stokes Eqs. 18-19. Let as consider the Hilbert space 
𝐻 which may be defined as 𝐻 = 𝐿2(Ω × [0,1]), the set 
of applications; u: Ω × [0,1] → ℜ with 
∫
Ω×[0,1]

𝑢2𝑑Ω < +∞                                                                   (48)  

 

and scalar product and induced norm: 
 
(𝑢, 𝑣) = ∫ Ω×[0,1]

  𝑢 𝑣 𝑑Ω  

 

and 
 

∥ 𝑢 ∥2= (𝑢, 𝑢)                                           (49)  

where, ℜ is real numbers. 
The Adomian decomposition method is 

convergent if the following conditions are satisfied; 
 

(Ι𝑢): (𝐿𝑡(Δ𝑢), Δ𝑢) ≥ 𝑘1 ∥ Δ𝑢 ∥
2, 𝑘1 > 0, ∀ 𝑢, 𝑢̂ ∈ 𝐻 

(ΙΙ𝑢): Whatever may be 𝑀 > 0, there exist a constant 
𝐶(𝑀) > 0 such that for 𝑢, 𝑢̂ ∈ 𝐻 with ∥ 𝑢 ∥≤ 𝑀, ∥ 𝑢̂ ∥
≤ 𝑀, we have: 
 

(𝐿𝑡(Δ𝑢),w) ≤ 𝐶 (𝑀, (𝜇1 +
𝜇2

3
))  ∥ Δ𝑢 ∥∥ 𝑤 ∥   

 

for every 𝑤 ∈ 𝐻. 

(Ι𝜌): (𝐿𝑡(Δ𝜌), Δ𝜌) ≥ 𝑘1 ∥ Δ𝜌 ∥
2, 𝑘1 > 0, ∀ 𝜌, 𝜌̂ ∈ 𝐻 

(ΙΙ𝜌): Whatever may be 𝑀 > 0, there exist a constant 

𝐶(𝑀) > 0 such that for 𝜌, 𝜌̂ ∈ 𝐻 with ∥ 𝜌 ∥≤ 𝑀, ∥ 𝜌̂ ∥
≤ 𝑀, we have: 
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(𝐿𝑡(Δ𝜌), w) ≤ 𝐶(𝑀)  ∥ Δ𝜌 ∥∥ 𝑤 ∥  
 

for every 𝑤 ∈ 𝐻. 

Now, we will use the following theorem to satisfy 
the above conditions as (Alkalla et al., 2013; Inc, 
2005). 

 

  

  
Fig. 4: Comparison of absolute errors of(𝑢, 𝑣) between SDHPM, HPM and ADM 

 

Theorem 1: If (Ι𝜌) and (ΙΙ𝜌) are satisfied, then ADM 

of Eq. 21 is convergent. 
 

Proof: It is easy to prove (Ι𝜌) and(ΙΙ𝜌) as the same 

manner in (Al-Saif, 2015; Alkalla et al., 2013; Inc, 

2005) to obtain on the results: Then condition (Ι𝜌) 

holds with𝑘1 = −𝑀(1 − 𝛿3), where 𝛿3 are constant 

and the condition (ΙΙ𝜌) is satisfied with 𝐶(𝑀) =

−𝑀(1 − 𝛿4), where 𝛿4 is constant. Hence prove is 
complete. 

 

Theorem 2: If (Ι𝑢) and (ΙΙ𝑢) are satisfied, then ADM 
of Eq. 22 is convergent. 
 

Proof: It is easy to prove (Ι𝑢) and (ΙΙ𝑢) as the same 
manner in (Al-Saif, 2015; Alkalla et al., 2013; Inc, 
2005) to obtained on the results: Then condition (Ι𝑢) 

holds with𝑘1 = 𝛿2𝑀 − (𝜇1 +
𝜇2

3
) 𝛿1, where 𝛿1,𝛿2 are 

constants and the condition (ΙΙ𝑢) is satisfied 

with 𝐶 (𝑀, (𝜇1 +
𝜇2

3
)) = 𝑀 − (𝜇1 +

𝜇2

3
). Hence the 

prove is complete. Let us consider Eqs. 18 and 19 
(after we apply the HPM) in the following form: 

 

𝐿𝑡(𝑓) = 𝐿𝑡(𝜌0) + 𝑝 [−𝑓𝐿𝑥(𝑣) − 𝑣𝐿𝑥(𝑓) − 𝐿𝑡(𝜌0)]

𝐿𝑡(𝑣) = 𝐿𝑡(𝑢0) + 𝑝 [−𝑣𝐿𝑥(𝑣) − 2𝑘𝐿𝑥(𝑓) +
𝜇1

𝑓
𝐿𝑥𝑥(𝑣) +

𝜇2

3𝑓
𝐿𝑥𝑥(𝑣) − 𝐿𝑡(𝑢0)]

}                                       (50) 

 

applying the inverse operator, 𝐿𝑡
−1 to both sides of Eq. 50, we obtain 

 

𝑓 = 𝜌0 + 𝑝 𝐿𝑡
−1[−𝑓𝐿𝑥(𝑣) − 𝑣𝐿𝑥(𝑓) − 𝐿𝑡(𝜌0)]

𝑣 = 𝑢0 + 𝑝 𝐿𝑡
−1 [−𝑣𝐿𝑥(𝑣) − 2𝑘𝐿𝑥(𝑓) +

𝜇1

𝑓
𝐿𝑥𝑥(𝑣) +

𝜇2

3𝑓
𝐿𝑥𝑥(𝑣) − 𝐿𝑡(𝑢0)]

}                                                                        (51) 

suppose that 
 

 𝑣 = ∑ 𝑝𝑖𝑢𝑖
∞
𝑖=0   

 
and  

 
𝑓 = ∑ 𝑝𝑖𝜌𝑖

∞
𝑖=0                                                                                            (52) 
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Substituting (52) into the right-hand side of Eq. 51, yields 
 
𝑓 = 𝜌0 + 𝑝 𝐿𝑡

−1[−∑ 𝑝𝑖𝜌𝑖
∞
𝑖=0 𝐿𝑥(∑ 𝑝𝑖𝑢𝑖

∞
𝑖=0 ) − ∑ 𝑝𝑖𝑢𝑖

∞
𝑖=0 𝐿𝑥(∑ 𝑝𝑖𝜌𝑖

∞
𝑖=0 ) − 𝐿𝑡(𝜌0)]

𝑣 = 𝑢0 + 𝑝 𝐿𝑡
−1 [

− (∑ 𝑝𝑖𝑢𝑖
∞
𝑖=0 𝐿𝑥(∑ 𝑝𝑖𝑢𝑖

∞
𝑖=0 )) − 2𝑘𝐿𝑥(∑ 𝑝𝑖𝜌𝑖

∞
𝑖=0 ) +

𝜇1

∑ 𝑝𝑖𝜌𝑖
∞
𝑖=0

𝐿𝑥𝑥(∑ 𝑝𝑖𝑢𝑖
∞
𝑖=0 ) +

𝜇2

3∑ 𝑝𝑖𝜌𝑖
∞
𝑖=0

𝐿𝑥𝑥(∑ 𝑝𝑖𝑢𝑖
∞
𝑖=0 ) − 𝐿𝑡(𝑢0)

]

}
 
 

 
 

                                                     (53) 

 
if 𝑝 → 1, the exact solution may be obtained as; 
 

𝜌 =  𝐿𝑡
−1[−(∑ 𝜌𝑖

∞
𝑖=0 𝐿𝑥(∑ 𝑢𝑖

∞
𝑖=0 )) − (∑ 𝑢𝑖

∞
𝑖=0 𝐿𝑥(∑ 𝜌𝑖

∞
𝑖=0 ))]

𝑢 =  𝐿𝑡
−1 [−(∑ 𝑢𝑖

∞
𝑖=0 𝐿𝑥(∑ 𝑢𝑖

∞
𝑖=0 )) − 2𝑘𝐿𝑥(∑ 𝜌𝑖

∞
𝑖=0 ) +

𝜇1

∑ 𝜌𝑖
∞
𝑖=0

𝐿𝑥𝑥(∑ 𝑢𝑖
∞
𝑖=0 ) +

𝜇2

3∑ 𝜌𝑖
∞
𝑖=0

𝐿𝑥𝑥(∑ 𝑢𝑖
∞
𝑖=0 )]

}  

 

   

 

   

 

   

 

 
Fig. 5: Surface plot of exact and approximate solutions for SDHPM for P2 

 

To study the convergence of this method, let us 
state the following theorem. 

 
Theorem 3: (Sufficient Condition of Convergence 
(Biazar and Aminikhah, 2009)): Supposes that 𝑋 and 
𝑌 are Banach spaces and  N: Χ → Y is a contractive 
nonlinear mapping, which is: 
 
∀ 𝑤,𝑤∗  ∈ 𝑋; ∥ 𝑁(𝑤) − 𝑁(𝑤∗) ∥≤ 𝛾 ∥ 𝑤 − 𝑤∗ ∥ , 0 < 𝛾 <
1. 
 

Then according to Banach's fixed point theorem 𝑁 
has a unique fixed point 𝑢, that is 𝑁(𝑢) = 𝑢. Assume 
that the sequence generated by homotopy 
perturbation method can be written as; 

 
𝑊𝑛 = 𝑁(𝑊𝑛−1),      𝑊𝑛−1 = ∑ 𝑊𝑖

𝑛−1
𝑖=0  ,    𝑛 = 1,2,3, …   

 

and suppose that: 
 

𝑊0 = 𝑤0 ∈ 𝐵𝑟(𝑤)  𝑤ℎ𝑒𝑟𝑒  𝐵𝑟(𝑤) = {𝑤
∗ ∈ 𝑋| ∥ 𝑤 − 𝑤∗ ∥<

𝑟 }.                                                    (54) 

 
Then we have: 

 
(𝑖)𝑊𝑛 ∈ 𝐵𝑟(𝑤),.      (𝑖𝑖) lim

𝑛→∞
𝑊𝑛 = 𝑤.   

 

As the same manner above we can study the 
convergence for two-dimensional compressible 
Navier-Stokes equations. Depending on the above 
theorems and their proofs, the convergence of 
SDHPM (sufficient condition of convergence) is to be 
hold. Also, the combination of the theorems gives us 
guarantee for convergence of the solutions that are 
obtained by SDHPM.  

We illustrate the convergence of splitting 
Adomian decomposition homotopy perturbation 
method theoretically by applying the sufficient 
condition of convergence. According to the theorems 
of convergence, the convergence of splitting 
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Adomian decomposition homotopy perturbation 
method for the non-linear CNSEs (18-19) and (40-
46) will be illustrated as follows respectively. By 
using definitions (48) and (49) and supposing that 
  
𝑊𝑛 = 𝑁(𝑊𝑛−1),   𝑊𝑛−1 = 𝑢𝑛−1 = 𝜌𝑛−1  

𝜌𝑛 = ∑ ∫ (−𝑢𝑗
𝜕𝜌𝑗

𝜕𝑥
− 𝜌𝑗

𝜕𝑢𝑗

𝜕𝑥
)

𝑡

0
𝑑𝑡 ,      𝑛 = 1,2,3, …𝑛

𝑗=0   

𝑢𝑛 = ∑ ∫ (
(3𝜇1+𝜇2)

3𝜌

𝜕2𝑢𝑗

𝜕𝑥2
− 2𝑘

𝜕𝜌𝑗

𝜕𝑥
−

𝑡

0
𝑛
𝑗=0

∑ 𝑢𝑘
𝑗
𝑘=0

𝜕𝑢𝑗−𝑘

𝜕𝑥
) 𝑑𝑡 ,      𝑛 = 1,2,3, …  

 
with the theorem 3 (Sufficient Condition of 
Convergence) for the nonlinear mapping𝑁, a 
sufficient condition for convergence of the SDHPM is 
the strict contraction of 𝑁. 

For problem 1, we have: 
 

∥ 𝑢0 − 𝑢 ∥=∥ 𝑎0 + 𝑎1 tanh(𝑥) − 𝑎0 − 𝑎1 tanh(𝑥 − 𝑎𝑡) ∥ , ∥
𝜌0 − 𝜌 ∥=∥ 𝑐0 + 𝑐1 tanh(𝑥) − 𝑐0 − 𝑐1 tanh(𝑥 − 𝑎𝑡) ∥   
∥ 𝑢1 − 𝑢 ∥≤∥ 𝑢0 − 𝑢 ∥ 𝛾, 𝛾 = 0.994 < 1,     ∥ 𝜌1 − 𝜌 ∥≤∥
𝜌0 − 𝜌 ∥ 𝛾, 𝛾 = 0.985 < 1,   
∥ 𝑢2 − 𝑢 ∥≤∥ 𝑢0 − 𝑢 ∥ 𝛾

2, 𝛾2 = 0.012 < 1,     ∥ 𝜌2 − 𝜌 ∥≤∥
𝜌0 − 𝜌 ∥ 𝛾

2, 𝛾2 = 0.791 < 1,  
⋮  
∥ 𝑢𝑛 − 𝑢 ∥≤∥ 𝑢0 − 𝑢 ∥ 𝛾

𝑛 ,       ∥ 𝜌𝑛 − 𝜌 ∥≤∥ 𝜌0 − 𝜌 ∥ 𝛾
𝑛  

 

Therefore, 
 
lim
𝑛→∞

∥ 𝑢𝑛 − 𝑢 ∥ ≤ lim
𝑛→∞

∥ 𝑢0 − 𝑢 ∥ 𝛾
𝑛 = 0,   lim

𝑛→∞
 ∥ 𝜌𝑛 −

𝜌 ∥ ≤ lim
𝑛→∞

∥ 𝜌0 − 𝜌 ∥ 𝛾
𝑛 = 0,  

 
be hold. 

 
For the Problem 2, we have 

 
∥ 𝑢0 − 𝑢 ∥=∥ 𝑎0 − 𝑏1 tanh(𝑥 + 𝑦 + 𝜉0) − 𝑎0 +
𝑏1 tanh(𝑥 + 𝑦 + 𝜉0 − 𝑎𝑡) ∥ , ∥ 𝑣0 − 𝑣 ∥=∥ 𝑏1 tanh(𝑥 + 𝑦 +
𝜉0) − 𝑏1 tanh(𝑥 + 𝑦 + 𝜉0 − 𝑎𝑡) ∥ , ∥ 𝜌0 − 𝜌 ∥=∥ 𝑐0 +
2𝑏1𝜇1

𝑘
tanh(𝑥 + 𝑦 + 𝜉0) − 𝑐0 −

2𝑏1𝜇1

𝑘
tanh(𝑥 + 𝑦 + 𝜉0 − 𝑎𝑡)  

∥ 𝑢1 − 𝑢 ∥≤∥ 𝑢0 − 𝑢 ∥ 𝛾, 𝛾 = 0.9813 < 1, ∥ 𝑣1 − 𝑣 ∥≤∥
𝑣0 − 𝑣 ∥ 𝛾,   𝛾 = 0.0636 < 1  
∥  𝜌1 − 𝜌 ∥≤ ∥ 𝜌0 − 𝜌 ∥ 𝛾, 𝛾 = 0.0613 < 1,  
∥ 𝑢2 − 𝑢 ∥≤∥ 𝑢0 − 𝑢 ∥ 𝛾

2, 𝛾2 = 0.8911 < 1, ∥ 𝑣2 − 𝑣 ∥≤∥
𝑣0 − 𝑣 ∥ 𝛾

2, 𝛾2 = 0.0274 < 1,   
∥ 𝜌2 − 𝜌 ∥≤  ∥ 𝜌0 − 𝜌 ∥ 𝛾

2, 𝛾2 = 0.0115 < 1,  
⋮ 
∥ 𝑢𝑛 − 𝑢 ∥≤∥ 𝑢0 − 𝑢 ∥ 𝛾

𝑛 ,     ∥ 𝑣𝑛 − 𝑣 ∥≤∥ 𝑣0 − 𝑣 ∥
𝛾𝑛 ,       ∥ 𝜌𝑛 − 𝜌 ∥≤∥ 𝜌0 − 𝜌 ∥ 𝛾

𝑛  

 
therefore, 
 
lim
𝑛→∞

∥ 𝑢𝑛 − 𝑢 ∥ ≤ lim
𝑛→∞

∥ 𝑢0 − 𝑢 ∥ 𝛾
𝑛 = 0 , lim

𝑛→∞
∥ 𝑣𝑛 − 𝑣 ∥ ≤

lim
𝑛→∞

∥ 𝑣0 − 𝑣 ∥ 𝛾
𝑛 = 0 , lim

𝑛→∞
 ∥ 𝜌𝑛 − 𝜌 ∥ ≤ lim

𝑛→∞
∥ 𝜌0 − 𝜌 ∥

𝛾𝑛 = 0,  

be hold.  

5. Conclusion 

In this paper, we proposed a new scheme called 
splitting decomposition homotopy perturbation 
method (SDHPM) to solve one and two-dimensional 
compressible Navier-Stokes equations. The results 
show that the SDHPM is an efficient method with 
good convergence and high accuracy to find 

analytical approximate solutions of two test 
unsteady state compressible problems. The 
convergence of this method increased at 𝑡 < 5 while 
for the standard two methods ADM and HPM at 𝑡 <
1. In addition to the measurement of 𝐿2 and 𝐿∞ 
errors for the velocity and density for the two 
problems explained, the high accuracy of the present 
study compared to the other two methods (ADM, 
HPM) is proved. Also, the application of SDHPM gave 
a simple powerful tool to obtain the solutions. Then, 
we conclude that the SDHPM is an efficient method 
with reasonable convergence and high accuracy to 
find analytic approximate solutions of one and two-
dimensional compressible Navier-Stokes equations 
compare with ADM and HPM. Finally, from analysis 
of results, we can say that the tests are confirming 
the validity of a new method SDHPM to handle 
current complicated problems. 
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