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In this paper, we introduce the analytical approximate solutions for one and
two-dimension compressible Navier-Stokes equations by applying a
relatively new method named splitting decomposition homotopy
perturbation method. The new methodology depends on combining Adomian
decomposition and Homotopy perturbation methods with the splitting time
scheme for differential operators. The numerical results which we obtained
from the solutions of the two problems, show that the new method is
efficient with good converge and high accuracy compared with the two
standard methods i.e. Adomian decomposition method and Homotopy
perturbation method.

© 2017 The Authors. Published by IASE. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Navier-Stokes equations are non-linear partial
differential equations which are called compressible
if the density of fluid is changed. The names of these
equations are taken from the two physicists Claude-
Louis Navier and George Gabriel Stokes in the
nineteenth century. Also, these equations are
considered as the most important physical equations
which describe a large number of phenomena of
different applications in many research fields that
may be used in modeling weather, liquid flow in
channels and pipes, gas flow around flying bodies,
and movement of stars in the galaxy. Many scientists
and researchers attempted to find solutions for these
equations by different acting methods; For example,
Fonseca (2016) used Tanh-method to find analytic
solution of one and two-dimensional compressible
Navier-Stokes equations. Perron et al. (2004) applied
finite volume method to solve three-dimensional
Navier-Stokes equation. Wahab et al. (2015)
presented analytical approximate solutions for
Navier-Stokes equation by using homotopy
perturbation method. Shahmohamadi and
Mohammadpour (2014) suggested analytic solution
for three-dimensional Navier-Stokes equation by
using homotopy analysis method and Pade'-
approximate method. Al-Saif (2015) proposed
Adomian decomposition methods to introduce
analytical approximate solutions for two-
dimensional Navier-Stokes equations. Where,
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Adomian decomposition method (ADM) and
homotopy perturbation method (HPM) are active
and strong in finding solutions for mathematical
model in physics and engraining problems ones, so
we can apply them to solve partial (ordinary)
differential equations either linear or non-linear for
initial-boundary value problems. The name of the
first method is taken from the scientist who
discovered it; namely, Adomian (1988), and the
second was found for the first time by the Chinese
Mathematician; He (1999). There are several
researchers who attempted to develop and improve
these two methods through the past few years; for
example, Luo et al. (2006) revised ADM cases
involving inhomogeneous boundary conditions using
a suitable  transformation. They solved
inhomogeneous heat and wave equations. Zhu et al.
(2005) present a new algorithm for calculating
Adomian polynomials. The algorithm requires less
formula than the previous method developed by
Adomian. Luo (2005) suggested active methods for
ADM which is a two-steps Adomian decomposition
method (TSADM) to reach the solution. TSADM
reduces the repetitive mathematical processes that
are applied to find the solution and also he makes
comparison for the results. The results showed that
TSADM is an active and efficient method which has
high accuracy in finding solutions. Also, in many
works (Zhang and Lu, 2011; Inc, 2004; Ali and Al-
Saif, 2008), the authors use ADM to find analytic and
approximate solutions for different problems. In the
same direction of modification, the HPM is active to
find solutions for non-linear equations (Jin, 2008;
Hemeda, 2012; Ganji et al., 2007). Recently in Al-Saif
and Al-Griffi (2017); we follow the example of
researchers in the development of these two
methods. We combine Adomian decomposition and
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Homotopy perturbation methods with the splitting
time scheme for differential operators to discover a
new methodology namely splitting decomposition
homotopy perturbation method (SDHPM), which is
applied to solve unsteady one-dimensional Navier-
Stokes equation. The numerical results that are
obtained by SDHPM showed that it is quite accurate,
reasonable convergent and easily implemented.
From the literature review and depending on our
humble knowledge, we observed that the ADM and
HPM are not yet used to study the current problems.
This matter was the motive for us to use them in the
present study with the application of both developed
methods that are presented previously in Al-Saif and
Al-Griffi (2017), to examine their validity.

The aim of this paper is to extend the application
of our proposed method SDHPM (Al-Saif and Al-
Griffi, 2017) to solve unsteady state one and two-
dimensional compressible Navier-Stokes equations.
The numerical results which we obtained showed
the efficiency and activity of a relative new method
to solve one and two-dimension compressible
Navier-Stokes equations, and compare its reliability,
efficiency and accuracy with standard ADM and
HPM.

2. The main idea of the SDHPM method

In this section, the basic idea of SDHPM will be
discussed. It depends on the algorithms of ADM and
HPM. To illustrate the main idea of the Adomian
decomposition method and Homotopy perturbation
method, we consider the general equation as in the
differential operators form:

Lu+Ru+Nu=g (1a)
with the initial condition;
uy = u(x,0), (1b)

where L is an easily invertible linear differential
operator, R is the remaining linear part, Nu is the
nonlinear term, u = u(x, t) is exact solution of Eq. 1,
and g = g(x, t) is known analytic function.

Algorithm of ADM: The application of the Adomian
decomposition method (Adomian, 1988) on Eq. 14, is
as the following:

u=L"1(g) - L'(Ru) — L"'(Nu) (2)

where L71(.) = fot(.)dt is the inverse operator of

-9
ot
The decomposition method represents the
solution of Eq. 2 as the following infinite series:
U= Yyioln (3)

The nonlinear
decomposed as:

operator Nu = W(u) is

Nu =330 An (4)
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where A4,, are Adomian 's polynomials (Seng et al,
1996), which are define as:

Ap = 28 [P (EoAw)],_, n=012,.. (5)

substituting Egs. 3 and 4 into Eq. 2, we have
U= oly = Ug— L_I(R(Z%O:o un)) - L_l(z;?:oAn) (6)
consequently, it can be written as:

uy =0+ L 1(g)
uy = =L (R(ug) — L1 (4p)
u, = —L"Y(R(uy) —L7Y(4) (7)
Uy = —L " (R(y) = L (Ay_y)

where @ = u(x, 0) is the initial condition.

Hence all the terms of u are calculated and the
general solution is obtained according to ADM as u =
Ym=oUy. The convergence of this series has been
proved in Seng et al. 1996. However, for some
problems this series cannot be determined (Celik et
al, 2006), so we use an approximation of the
solution from truncated series

Uy = Z%:o Un
with

lim Uy = . (8)
Algorithm of HPM: To illustrate the basic idea of the
homotopy technique (Liao, 1995; Liao, 1997) for Eq.
1, with the boundary condition:
B(w,2) =0,

0

)

where, B is a boundary operator, we construct a
homotopy v(r,p): Q X [0,1] = R which satisfies:

H(v,p) = (1 —p)[L(w) — L(up)] + p[L(w) + R(W) +

N@w)-g]=0, pe[01] (10a)

or

H(v,p) = L(v) — L(up) + p L(ug) + p[R(v) + N(v) — g] =
0, (10b)

where, p € [0,1]is an embedding parameter,u,is an
initial approximate of Eq. 1, which satisfies the
boundary conditions. Obviously, from Eq. 10 we
have;

H(,0) = L) — L(uy) =0,
Hwv,)=LWw)+RWw)+N@w)—g=0

(11)
(12)

Which the latter is actually, Eq. 1 with solution
u(r) and Eq. 11 has uy(r) its solution, so we
have v(r,0) = uy(r), v(r,1) = u(r), where r=x €
Q, is spatial independent variable. The changing
process of p from zero to unity is just that of v(r, p)
from uy(r) to u(r). In topology, this is called
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deformation, and (v) —L(u,), and L(v) +R(v) +
N(v) — g are called homotopic.

Assume that the solution of Eq. 10 can be written
as a power series inp:

v=v,+pv+pv,+ 13)

setting p = 1 results in the approximate solution of
Eq. 1:

u=lirqv=v0+v1+v2+---. (14)
p—

Algorithm of SDHPM: Now, from above algorithms
we can construct the basic idea of algorithm of
SDHPM as follows: we decomposed the linear
differential operator Lin Eq. 1a into two parts of
differential operators:
L(w) = aL(w) + BL(h), (15)
where @ + 8 = 1, a, € [0,1]. By this definition, we
can split Eq. la into two types of differential

operator equations; one is linear and another is non-
linear as:

Lw)+R(w) =0,
L)+ N(h) — g = 0.

(16)
(17)

We apply ADM as explained above on Eq. 16 to
find the solution as series w,;, n = 1,2, ... depending
on the initial condition u,, then using the result as an
initial condition for the series solution h,, n =

2, ... that is obtained by using algorithm of HPM for
Eq. 17 respectively. Repeating this iterative
procedure between Eq. 16 and Eq. 17 by exchange, in
order to reach to the original series solution u,,, n =
1,2, ..., then use (8) to obtain on the solution u.

2.1. Algorithm analysis of SDHPM for one-

up = u(x,0), po = p(x,0) (20)

where u represent the velocity component of the
fluid, p its density and the parameters p; and pu, are
the kinematic viscosities of the fluid.

Now, we start applying the ADM algorithm for
Egs. 18-19 with the initial conditions (20), n = 2,

and divided Eq. 19 onp. IfL; = i Ly = % Ly, =
aa > then the Eqgs. 18-19 can rewrite with operator
form as:

Ltp+pLxu+upr =0, (21)
Lou+ulyu—2 Lxxu £2Lyxth + 2kLyp = 0. (22)

By taking the inverse operator L;?, the Egs. 21-22
are given by;

p(,0) = p(x,0) — L' (p Lew) — L (uLyp) = 0, (23)
u(x, t) = u(x,0) — Ly (ul,u) + Lit (% Lxxu) +
Lt (2L — L7 (2kLyp) = 0. (24)

The components solutions can be written as;
u(x, t) = YooUn,and p(x,t) = Xy p, with the
nonlinear operator Nu = ¥(u) = ulL,u.

The associated decomposition method is given
by:

Uy = U,(X, 0), Po = p(x! 0) [253)
Pns1 = —LEI(Pn xUn) — Lzl(un xPn) 1
Upyr = —Lt (lp(un)) + Lt (_Lxxun) +4 (25b)

Lt (3,; +1Lxxun) —Ltl(Zkapn_H) J

We decomposed W according to the series
Yo oAy, where A, is calculated by the Adomian
polynomial, then we obtain:

dimensional CNSE A uo
0= U5~
: . . Jduy dug
Consider the unsteady state one-dimensional Ay = uo x T (26)
. L : . a a
compressible Navier-Stokes equations as the form: A, = uo X 24, 61:1 +u, 31;0
Petpuy+up,=0, (18) '
p Uy + utty) — pylyy — By, + nkp™'p, = 0. (19) . . .
with the initial conditions: and so on. Consequently the iterative solutions are;
Po =p(x10)ru0 =u(x: 0) \
p1 = —Le (poLyxtto) — Li* (uoLypo) i
= —L7*(A) + Li* (B Luttg) + L7 (£Laxto) = LT (ZKLapy)
P1 (27)
p2 = L' (p1Lxuy) — L' (uyLypy) |
I

w = —L7M 4 + 17 (& Lxxu1)+Lt (#2 Lty ) = L (2kLypy) )

and so on.

Now, by using HPM algorithm to Eqs. 18-19, we
have:

HEp) = A=) [L -2 4p [L+ r 2 +v2] =0
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7} a [7}
Hw,p)=(1-p) [ =22 +p [+ v+ 2k -

B 0%V pp azv] _

f 0x%2  3f 0x?

or

9f _9po _ [_ w "Po]

ot ot P fax oax =0
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v duy _ v f | u10%v | py 0%v] _ 9 2 Ly due _ _ 2

P TV ket T am T e =0. at(vg+pvl+p vyt ) at—pa[ (vo +pvy +p?v, +
"‘)_(V0+PV1+P2V2+"')_ _(fo+Pf1 +p%f +

By assuming the solution as a power series in p, Ha

we have: T Gorofi et )ax2 32 (o + vy + P2z +) +
N _%

9 2 3po 2 3(fotpfitp?fot+-) 0x? o +pvs + p vyt )

2 (fo+ph+Pfa+) =L =p [~(fo+phi+P*fo +

...):_x(vo + Uy 4 PPy + ) — (Vg + pyy + PP, + By equating the terms which have the same

0 owers of p; we get
)3 o +pfs + P2 ) = 5] P pwes

vy 0Ouyg

0.9 _9p0 _ 9vo _ Oug _
ot ot 0 and, at ot 0
af, , @ af a av, | @ a2
phi St T v S =2 =0 and, <2 +=2+v Oax'"”l(z fo) 52+
a2
L (2 fo) vo =0 (28)
p® Zz + ‘70% +tvig, afo +fog, aV1 +fig, avo =0 and, ? + Vo7 aV1 + 171% + 12— fo) vazl
[ 2 0%y, 2 p 02
wh 52 +“;(2 ~f)a—2h52=0
and so on.
Then the gnalytical approximate solution can be hy = hy + L7 ( 2 (Wl aaul) 2 (Pl %)) , where hy =
found by setting p = 1 as;
p=limf=fotfitfp+- pr=aw, +phy. (40)
wi =wi + Lt (2 (e “?) ) (41)
and By = b+ 1 (<2 (wi 5) - 4k 22
u= zl)lln V=vy+v + v, + o (29) 2 (u1 %)) , where k= w;} (42)
u, =aw,+ph; (43)
now, we are applying the SDHPM algorithm for Eq. :
18 as the form: so on.
By applying (16) and (17) witha = = 0.5 on The successive solutions that can be written as a
(18), we obtain: sum;
Lw) = p = —2L;" (u Lyp) (30) ( o
i Xt)=po+pr+p+ =20 Xt
L(h) = p = —2L71(p Lyw) (31) P Po+p1tp: n=0Pn (%)
applying ADM for (30) with initial conditions u, = and
u(x,0), = p(x,0) to obtain;
(x,0), po = p(x,0) u(x,t) =ug+uy +uy + = Yoo Un(x, 0).
- 9po
wy =wy+ L 2u , Where wy = p,, 32 . .

! o ( 0 ox ) 0= Po (32) The convergence of these series will be proved
applying HPM for (31) with the result of (32) to theoretically in the next section. However, for some
obtain; problems these series cannot be determined, so we

use an approximation of the solution from truncated
hy = hy + L;? (—2 (W1 %) - %) , where hy = w;(33) series:
then Vi = ZnzoPn(x, )
pr=aw;+Bhy. (34) with
Using the same procedure on Eq. 19 to obtain: IVlll_rflo Vi =p

* * el a *
wy =wg + L7t (2 (,ul ) auz") , where wj = u,, (35) and

* * - « 0wy a
ow; " " Uy = Zn=0 U, (x, t)
8t) , where hy = wy

(36) with
then
lim Uy = u.
u =aw;+phi (37) M=co . .
The acceleration for this convergence means the

After repeating this procedure between two need to few terms of the above equation, for
schemes (ADM &HPM) by exchange, we have: obtaining the formula which approximates to the
wy =wy + L7t ( 2u, Zpl) (38) exact solution.
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2.2. Algorithm analysis of SDHPM for two-
dimensional CNSE

Consider the unsteady state two-dimensional
compressible Navier-Stokes equation as the form:

prtpuc+pv,+tup,+vp, =0, (44)
p (ut + uu, + vvy) = U (Usex + Uyy) = 2(Upy + Vyy) +
nkp™lp, =0, (45)
p (vt +uv, + vvy) =ty (Vex + 1) — %(vyy + Uyy) +
nkp" 'p, =0, (46)

po = p(x,0),uy = ulx, 0) vy = v(x,0),

wy =wy + L7t (—Zu0 — 2, Oap") , where wy = p,

hy = hy + L;? (—2 (W1 aau‘)) -2 (W %) - awl) , where hy = w,

13y at
9%u,

ay? 3 dx

%u,

wr =wj + Lt <2 (,ul ) 5 T 2l

dy

+2&i(%)) ,Where wg = u,

with the initial conditions:
uy = u(x,0), vy = v(x,0), pg = p(x,0). 47)

where u and v represent the velocity component of
the fluid, p its density and the parameters p; and p,
are the kinematic viscosities of the fluid.

As the same manner in section (2-1), we can
apply algorithm of SDHPM which is represented by
Egs. 30-43 on Eqgs. 44-46 after the division of Egs.
45- 46 on p with n = 2, to obtain:

S>pp=aw +h

Su; =aw;+fh]

hy = hy+ Lt (=2 (wi B2) — 4k 22— 2 (v, 22) - 24) | where hy = wi

1
WI* = WS* + L?l (2 (“1 dy?
—2 (wy 2L — 4k 22—

09y at

ay oy
hyt=hy Lt 2 (g 2h) + 422 (29) | where by = wit
1 0 t 0 9x 3 9x \ 9y ’ 0 1

_ I‘—zpoi(%) _owy
3 Ox\dy at

a 8%y
)ﬂ+2ulﬁ) , where wj* = v,

- v =aw; + B hi"

Then, after repeating this procedure between two schemes (ADM &HPM) by exchange, we have:

w, = wy + Lt ( 2ulap1—2v1%)

b= 174 (<2 (1 22) - 2 (22) - 20 52) -2 (0 %2) ) where by = w,

pz=aw,+ph,
9%u, 9%u, _Zi_
)2t op, S 2k

ws =w; + L7t <2 (,ul

b = i 17t (<2 (10 22) - 2 (1, 22) - 402 - 2 (v 22

u, =aw;,+ph;
wit = wit + L7t ( (

) a8

hy = by + Lt

v, =awy" + B hy
So on.

3. Numerical test and discussion

The theoretical analysis of SDHPM is applied here
to find the analytical approximate solution of two
test problems: The first is one-dimensional CNSE and
the second is two-dimensional CNSE.

Test problem 1D (P1) CNSE: The one-dimensional
CNSE (18, 19) with exact solutions

u =ay+ aqtanh(§), p =cy+c;tanh(é), whereé =
x —at

and initial conditions
Uy = ag + a, tanh(x), py = ¢y + ¢, tanh(x)

where;

av. v 6p1 vy
2 (v 1) 2 (v °) 4k~ (u -
0 ady 1 oy 0 9x

4#2 a (aul) _ 2#291_(%) _ Zﬂzpoi
3 dx \ dy 3 dx\ady 3 0Ox

o)
dy

) -2 (vl Z—?’)) ,where hi = w;

u%)+

1
dax *k *k
,where hi* = w;

a’ky,

ag = -
0 —akp,—a2k?uZ-4acok?u3+8cok3u2
2acoku;

—akp,—Ja?k2pZ—aacok?uZ+8cok3 2
4cok i,

—akp,—Ja?k2pZ—aacok?uZ+8cok3 2
ayk?(a%?—4acy+8cok)u?

—akp,—Ja?k2pZ—aacok?uZ+8cok3 2
2

a, =2 <2au2 - ac—?z —4ku, —

=2 (—akuz —Ja2k?y2 — dacok?u? + 860k3y§) /3cok?

a \/kz(a2—4aco+850k)y.%) /3C k
0

cok

and a is the constant speed.

The iterative solutions for this problem with n =
2 by using SDHPM can be obtained after we split the
linear operator of time of Egs. 18-19 as in Egs. 16-17,
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then by using algorithm of SDHPM for Egs. 18-19 successive analytical approximate solution of Egs. 18
that is represented by Egs. 30-43, we get the and 19 as the following:

Po = €y + ¢q tanh(x), uy = ay + a, tanh(x),
p1 = Co + ¢; tanh(x) + a;cqt%(ag + a; tanh(x))(tanh(x)? — 1)?,
27243 o5 2 i 2y2 i 2 2
wo=ag+a tanh(x) + 16a5q*t smh(x)(cosh(x)3 COSSIE?)S? )*(3sinh(x)?— cosh(x) )’
P2 = ¢o + ¢ tanh(x) + a?c;qt*(aq + a, tanh(x))(tanh(x)? — 1)3(3tanh(x)? — 1) +
2a,c,t5(tanh(x)?-1)?(5a, tanh(x)?+2a, tanh(x)—a,)[60 ta?q? sinh(x)7]
45 cosh(x)? +
2a,c,t5(tanh(x)?-1)?(5a, tanh(x)?+2a, tanh(x)—a,)[9ka, c, cosh(x)”—36ka, ¢, sinh(x)?cosh(x)®]
45 cosh(x)” +
2a,¢,t5(tanh(x)?-1)?(5a, tanh(x)?+2a, tanh(x)—a,)[27ka,c, sinh(x)*cosh(x)3+18kayc, sinh(x)cosh(x)®]

45 cosh(x)7

_ 16t3kac,q cosh(x)® _ 4a,qt* sinh(x)(cosh(x)?-sinh(x)?)?(60ka,c, cosh(x)® sinh(x))
Uy = Qo+ aq tanh(x) + 3 cosh(x)? 15 cosh(x)11 '
where; g = p; + K2 for u,,p,. Fig. 2 explains the surface plot of exact

Table 1 shov?/s the comparison of numerical and analytic approximate solutions resulted from the
results between the present study, ADM and HPM, present study. Moreover, Fig. 3 shows the
and Fig. 1 illustrates the exact and analytic comparison of the exact and analytic approximate
approximate solutions for the present study at t = 1 solutions for three method (SDHPM, ADM, HPM) at
and the analytic approximate solutions in different t t=1

Table 1: L, and L., comparison of present study, ADM and HPM for p1
Error Measurmets L L L L
oot L) () G ()

Methods
ADM 1.13x 1072 820x 1073 1.60x107? 6.50 x 1073
538x 1073 280x1073 6.88x1073 290x103
HPM 6.94x 1073 6.62x 1073 1.60x1072 1.58x 1073
2.64 x 10:2 2.51 x 10:2 6.88 x 10:2 6.33 x 10::
SDHPM 6.18 x 10 5.97 x 10 1.59 x 10 427 x 10
2.72x1075 2.62x10"5 880x10=* 1.86x10-5
1 T T T 1 T T T
o . 0
m— U2(t=0.1)
—  (t=1)
(t=2)
—  (t=3)
o o ul(SDHPM) t=1 —  (t=4)
—1-0 O U2(SDHPM) t=1 i _qk (t=5) _
uexact — (t=8)
1 1 | 1 1 1
—4 _2 0 2 4 -4 -2 0 2 4
X X
1 T T T 1 T T T

or 1 0
N p2(t=0.1).
—  (t=1)
(t=2)
(t=3)
& © pl(SDHPM) t=1 —  (t=4)
_,lLlo © p2(SDHPM) t=1 i e (t=5) i
pexact — (t=8)
1 1 1 1 1 1
-4 -2 0 2 4 -4 -2 0 2 4
X X

Fig. 1: Exact and analytic approximate solutions (u, p) and u,, p,) with different times for P1
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=0.09-0.14
®-0.01-0.09
m-0.11--0.01
=-0.21--0.11
m-0.31--0.21
m-0.41--0.31

0.09
-0.01
-0.11

-0.21

u-EXxact

-0.31
-0.41

0.05-0.1
0-0.05
=-0.05-0
0.1

0.05

-0.05
-0.1
-0.15
-0.2
-0.25
-0.3

o Excat

S © UL(SDHPM) t=1
— UL(HPM) t=1
_,l|®® ui(ADM) i
eee yexact
1 1 1
—2 -2 o] 2 4
X
1 T T T

O O pl(SDHPM) t=1
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Fig. 3: Comparison between Exact and analytic approximate solutions (u, p) for P1

The measurement of L, and L, errors for the
velocity and density, which are shown in Table 1,
ensure the ability of the suggested new method and
its accuracy in finding the analytic approximate
solutions of one-dimensional compressible Navier-
Stokes equation. From our computations, which we
found by using Mathcad.15 software; for SDHPM, we
noted that the convergence of this method is
increased att < 5, while in the two other methods
(ADM & HPM) the solutions are convergent to the
exact solution at t < 1. Then; one can say that, the
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new method is effective and good method to find the
solutions of one-dimensional CNSE compared to the
two standard methods (ADM, HPM).

Test problem (P2) 2D CNSEs: The two-dimensional
CNSEs (44-46) with exact solutions

u =a— by tanh(§), v = by tanh(§),p = ¢y +
2“leltanh(f)z, where § = x +vy — at + &;

and initial conditions
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Uy = a — by tanh(x +y + &),
vy = by tanh(x + y + &),

Po=Co + 2”;b1 tanh(x +y + &)?,

where, ¢, ,b;, &,k are arbitrary constants and a is
the speed constant. Now, by applying the algorithm
of SDHPM for Eqgs. 44-46 that is introduced in section
2.2, we get the successive analytical approximate
solution of Eqs. 44-46 as the following:

p1=Co +”lTb1 § (26 +4at(6? - 1)),
u; = a— b8 — byt(6% — 1)((a— by 8) — 8u,6),
v, = by8 + byt(5% — 1) (5 (by+8u —%2) + (a - b15)),
b b2 u,t%(2p1b1 8% +cok)(8%-1)2
pr = (0o + 252207 ) |1+ (remane et ) -
b1p2t3[85(2—362)(62—1)](a—b15)+2b1(62—1)2(352—1)]
3

2ab p t?(36%-46%+1)

+ k

((a - b15) + b1 +

4b,p,t8(a—b,8)(8%-1)
3
4b?p2t38(362-1)(6%-1)?

+ 4b1ﬂ15i(52—1) (

a+

= + 4byu t8(6%2 — 1) +
b1pt8(2b1py 8% +cok) (62-1)

U, =a-— bi%(l + 10bypu, t%56% + 80u2t26%) —

b,t(a — by8)(6% — 1),

vy = by6 + byt(82 — 1)(b18 + (a — b,8)) + 5 (byt?(a —
b18)(6 — 1)(8 + 1)(2as — 3b,6 + by)).

where; § =tanh(x +y + &) ,p1 =3q +3u; — Uy, 02 =
q+m,q=p+2

Tables 2 and 3 show the comparison of numerical
results of the present study, ADM and HPM for p2 at
t = 0.1,1. Fig. 4 explains the comparison of absolute
errors between the present study, ADM and HPM for
p2att = 0.1,1 for (u,, v,).

Fig. 5 illustrates the surface plot of exact and
analytic approximate solutions for SDHPM to the
two-dimensional compressible Navier-Stokes
equations.

From the tables of errors which explain a
comparison between the present study, ADM and
HPM for different values of time by using the
measurement of L, and L, errors for the velocity
and density, the effect and the accuracy of the
present study are noted in comparison to the other
methods (ADM, HPM). In addition, to a good
convergence, and from our computations, which we
found by using Mathcad.15 software for SDHPM, we
note that the convergence of this method increases
at t < 5. Moreover, from the plots of absolute errors
for the three methods (SDHPM, ADM, HPM), we
show the efficiency and the high accuracy of SDHPM.
So, one can say that the new method is better and
more accurate as compared to the standard methods
(ADM & HPM).

Table 2: L, and L, comparison of the present study, ADM and HPM for P2 att = 0.1

Error Measurmets L, L, L, L, L, L,

T Methods L. (W) L. (up) .. (vy) L. (v2) .. (p1) L. (p2)
ADM 7.48x105 1.14x105 7.45x105 7.25x105 5.46x10* 1.07x10°5
7.01x105 8.27x106 7.25x105 6.69x10> 2.03x10+4 3.99x10¢
HPM 7.89x105 7.58x105 7.65x105 7.51x105 1.11x10-5 1.79x10-¢
8.14x105 7.53x105 7.68x105 7.38x105 3.95x10-6 1.53x10-6
SDHPM 7.61x106 4.03x106 3.19x106¢ 3.95x108 6.03x10°% 7.03x10-1t
6.49x107 3.43x107 2.72x10¢ 4,01x108 6.19x10° 7.01x10-11

Table 3: L, and L, comparison of the present study, ADM and HPM for P2 att =1

Error Measurmets L, L, L, L, L, L,
T Methods L. (u1) L. (u2) L. (v1) L. (v2) L. (p1) L. (p2)
ADM 7.38x10* 7.97x105 7.42x105 7.25x105 5.69x10* 1.07x10*
6.67x10* 4.73x105  7.22x105  4.55x105  2.39x10* 3.99x10-5
HPM 7.71x10* 7.43x10* 7.50x10* 7.40x10* 1.12x10* 1.83x10°
7.80x10+  7.19x10*  7.34x10* 7.05x10* 3.99x105 1.53x10
SDHPM 3.51x105 1.04x10¢ 9.06x10¢ 3.25x10¢ 5.63x107 8.06x108
3.03x105  9.15x107 7.31x10¢ 3.10x107 5.94x107 8.63x108
4. Convergence analysis of SDHPM Il 2= (u,u) (49)
where, R is real numbers.
In this section, we study the analysis of The Adomian decomposition method is

convergence in the same manner as (Alkalla et al.,
2013; Inc, 2005; Jang, 2007) for the decomposition
method to the nonlinear 1D compressible Navier-
Stokes Eqgs. 18-19. Let as consider the Hilbert space
H which may be defined as H = L?>(Q X [0,1]), the set
of applications; u: Q x [0,1] - R with

[ o129 < +oo (48)
and scalar product and induced norm:

wv)=[ ax[od] uvdQ

and

convergent if the following conditions are satisfied;

(I): (Le(Aw), Au) = kg | Au Xk, >0,Vu, i €H
(II,): Whatever may be M > 0, there exist a constant
C(M) > 0 such that for u, 1 € H with [ u IS M, @ |l
< M, we have:

(L(Aw),w) < C (M, (s + “?)) I Aw llw

for everyw € H.
(1,): (Le(Ap), Ap) = ky 1 Ap I,k > 0,V p,p €H
(I1,): Whatever may be M > 0, there exist a constant

C(M) > 0 such that for p,p € Hwith | p IS M, p |l
< M, we have:



A. S. J. Al-Saif, Takia Ahmed J. Al-Griffi / International Journal of Advanced and Applied Sciences, 4(12) 2017, Pages: 133-144

Le(@p),w) < C(M) 1 Ap Il w I

for everyw € H.

1x10°4
) 5x107°
>
S
w
o o
o ADM (x,0,0.1)
0 0 HPM (x,0,0.1)
— SDHPM (x,0,0.1)
— 5 1 1 1
-0 2 0 2 4
X
1x1073 E
— —4l i
S 5x10
S
i}

o« ADM (0,y,0.1)

0O HPM (0,,0.1)

— SDHPM (0,y,0.1)
1 1

~5x107*
~4 P 0 2 4

y

Now, we will use the following theorem to satisfy
the above conditions as (Alkalla et al, 2013; Inc,
2005).

O T T O T
w0t o o 1
O
[¢]
o
_ | o
g 510
—_ Q
o Q
= e
w ¢
0
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~4 ) 0 2 4
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Fig. 4: Comparison of absolute errors of(u, v) between SDHPM, HPM and ADM

Theorem 1: If (I,) and (II,) are satisfied, then ADM
of Eq. 21 is convergent.

Proof: It is easy to prove (Ip) and(IIp) as the same
manner in (Al-Saif, 2015; Alkalla et al, 2013; Inc,
2005) to obtain on the results: Then condition (Ip)
holds withk; = —M(1 — §3), where §5 are constant
and the condition (Ilp) is satisfied with C(M) =

—M(1 - 6,), where §, is constant. Hence prove is
complete.

Le(f) = Le(po) + p [ fLy(v) — vLy(f) — L (po)]

Theorem 2: If (I,,) and (II,) are satisfied, then ADM
of Eq. 22 is convergent.

Proof: It is easy to prove (I,) and (II,) as the same
manner in (Al-Saif, 2015; Alkalla et al., 2013; Inc,
2005) to obtained on the results: Then condition (I,,)

holds withk; = §,M — (ﬂ1 + %) 61, where 6,,6, are
constants and the condition (II,) is satisfied
with C (M, (,u1 + %)) =M - (,u1 + %) Hence the

prove is complete. Let us consider Egs. 18 and 19
(after we apply the HPM) in the following form:

L) = Ly(utg) +p [~vLe(0) = ZKLy(F) + 2 Loy (0) + 221, (0) - Lt(uo)]} 0

applying the inverse operator, L;* to both sides of Eq. 50, we obtain

f=po+p L' [—fLx(¥) — vLe(f) — Le(po)]
v =g + P L7 [0Le(0) = 2Li(f) + 2 L (0) + 2 L () = L)) GU
suppose that

v=3Zo0' Yy
and

f=220 P'p;

(52)
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Substituting (52) into the right-hand side of Eq. 51, yields

f=p0+p L[~ E20p'pi Le(Z20P'wi) — Ti20P'wi Ly (20 P'pi) — Le(po)])

v=uy+pLlit|

if p = 1, the exact solution may be obtained as;

- (Z?io P'u; L (32, Piui)) — 2kLy(E20p'p:) + l

oo i U oo i
mldxx(zho pu;) + F{;%Lxx(zi:o p'u;) = Le(uo) J

p= L[~ (ZiZopi Le(EZou) — (ZiZo i L (EiZo p0))]
w= L7 [ ~(S s e (B0 ) = 2KLe(E 0 p0) + o L (20 ) + 35 Lux (EE20 )
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Fig. 5: Surface plot of exact and approximate solutions for SDHPM for P2

To study the convergence of this method, let us
state the following theorem.

Theorem 3: (Sufficient Condition of Convergence
(Biazar and Aminikhah, 2009)): Supposes that X and
Y are Banach spaces and N:X — Y is a contractive
nonlinear mapping, which is:

vww' EX; INW)—NWHISyllw—w*l, 0<y<
1.

Then according to Banach's fixed point theorem N
has a unique fixed point u, that is N(u) = u. Assume
that the sequence generated by homotopy
perturbation method can be written as;

Wo=NWn_y), Woy =X W, n=123..

and suppose that:
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Wy = wy € B.(W) where B,(w) ={w* e X|llw—-w" <
r) (54)

Then we have:

(OW, € B.(w),. (i) Al_r& W, = w.

As the same manner above we can study the
convergence for two-dimensional compressible
Navier-Stokes equations. Depending on the above
theorems and their proofs, the convergence of
SDHPM (sufficient condition of convergence) is to be
hold. Also, the combination of the theorems gives us
guarantee for convergence of the solutions that are
obtained by SDHPM.

We illustrate the convergence of splitting
Adomian decomposition homotopy perturbation
method theoretically by applying the sufficient
condition of convergence. According to the theorems
of convergence, the convergence of splitting
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Adomian decomposition homotopy perturbation
method for the non-linear CNSEs (18-19) and (40-
46) will be illustrated as follows respectively. By
using definitions (48) and (49) and supposing that

Wn = N(Wn—l)r Wn—l =Up-1 = Pn-1

t ap;j ou;
Pn =21 fo (—uja—x’— p; 6_x}) dt, n=123,..

—yn f(wﬂ_ 9 _
Un = Zi=0 fo 3p  0x? 2k ox

)dt, n=123..

auj_k
ax

Zi:ouk

with the theorem 3 (Sufficient Condition of
Convergence) for the nonlinear mappingN, a
sufficient condition for convergence of the SDHPM is
the strict contraction of N.

For problem 1, we have:

Il ug —u lI=Il ay + a4 tanh(x) — ay — a, tanh(x — at) Il , Il
po — p II=1l ¢g + ¢4 tanh(x) — ¢y — ¢; tanh(x — at) ||

Tuy —ullsllug—ully, y=0994 <1, lp;—pl<=I
po—plly, y=0985<1,
Nuy, —uliSlug—ully? y2=0012<1, 1l p,—pl<I

po—p ly? y?=0.791 <1,

lTu, —ull<llug—ully™ lpp—plI<lpo—plly™

Therefore,

lim lu, —ull<lim lug—ully™=0, lim |l p,—
n—oo n—oo n—oo

pllsrgi_r)gollpo—plly”=0.
be hold.

For the Problem 2, we have

Il ug —ull=Il @y — by tanh(x +y + &) —ay +

bytanh(x +y + & —at) |, | vg — v = by tanh(x +y +
&) —bytanh(x+y+ & —at) I, po—p 1=l ¢y +
kkﬂltanh(x +y+&)—co— Zb;(”l tanh(x + y + & — at)
Ty —ullsllug—ully,y =09813 <1, vy — v lI=I
vo—viy y=00636<1

I'pr—p ISl po—plly,y =0.0613 <1,

lu, —u i<l ug —u ll y24,y? = 08911 < 1,1 v, — v II<Il
vo—vly3y?=0.0274< 1,

lps—plI< llpo—plly? y?=00115<1,

lu, —ullsllug—ully™, lvy—vislve—vl

', pp—pl<lipp—plly™

therefore,

lim lu, —ull<lim lyg—ully™=0,lim v, —vI <
n—oo n—oo n—-oo

lim [vg—vly"=0, lim lp,—plI<lim [l pg—p |l
n—oo n—oo n—oo

Yt =0,

be hold.

5. Conclusion

In this paper, we proposed a new scheme called
splitting decomposition homotopy perturbation
method (SDHPM) to solve one and two-dimensional
compressible Navier-Stokes equations. The results
show that the SDHPM is an efficient method with
good convergence and high accuracy to find

143

analytical approximate solutions of two test
unsteady state compressible problems. The
convergence of this method increased at t < 5 while
for the standard two methods ADM and HPM att <
1. In addition to the measurement of L, and L
errors for the velocity and density for the two
problems explained, the high accuracy of the present
study compared to the other two methods (ADM,
HPM) is proved. Also, the application of SDHPM gave
a simple powerful tool to obtain the solutions. Then,
we conclude that the SDHPM is an efficient method
with reasonable convergence and high accuracy to
find analytic approximate solutions of one and two-
dimensional compressible Navier-Stokes equations
compare with ADM and HPM. Finally, from analysis
of results, we can say that the tests are confirming
the validity of a new method SDHPM to handle
current complicated problems.
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