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Abstract: In this paper, a new development of differential quadrature method was 

proposed. It is known alternating direction implicit formulation of the differential 

quadrature method (ADI-DQM) for computing the numerical solutions of the two-

dimension Burger equations. The results confirm that this method has a high accuracy, 

good convergence and less workload comparing with the other numerical methods. 
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1. Introduction 

Consider the two-dimensional Burger equations: 
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with the initial conditions 

                         ����, 	, 0� � ∅���, 	�					,					����, 	, 0� � ∅���, 	�	                                                  �1�� 
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and the boundary conditions 

����, 	, �� = ���, 	, ������, 	, �� =  ��, 	, ��! ��, 	� ∈ �	Ω		,					t > 0																																																																																													�1"� 
where Ω is the computational domain with the boundary	�Ω, � is the Reynolds number , � constant,
�� and  �� are velocity components and ∅�, ∅�, �and	  are the known functions. 

Burgers' equation is a fundamental nonlinear partial differential equation from fluid mechanics. 

It occurs in various areas of applied mathematics, such as modeling of dynamics, heat conduction, 

shock waves, and acoustic waves [3,9]. Equations (1�� and �1�) are a special form of incompressible 

Navier-Stokes equations without having pressure term and continuity equation. The first attempt to 

solve Burgers’ equation analytically was given by Bateman, who derived the steady solution for a 

simple one-dimensional Burgers’ equation, which was used by Burger to model turbulence. In the past 

several years, numerical solutions to one-dimensional Burgers’ equation and system of 

multidimensional Burgers’ equations have attracted a lot of attention of the researchers [13]. Many 

researchers use the   Equations (1a-d) and mentioned in [1,3,4,9,13,14] .We compare the numerical 

results of ADI-DQM for solving problem(1) with the results of other numerical methods such as the 

differential quadrature method (DQM), the radial basis function (RBF) [1] and the finite element 

method ( FEM) [4] .The purpose of this paper is to introduce and apply our new improvement of DQM 

that is known the alternating direction implicit formulation of the differential quadrature method for 

solving two-dimensional Burger equation. The results that we obtain from our proposed method will 

be saved and compared to prove the efficiency of the method in accuracy and stability. The advantages 

of this work are that the ADI-DQM reduces the computational workload and improvement with regard 

to its accuracy and rapid convergence. 

2. Differential Quadrature Method 

The differential quadrature is a numerical technique used to solve the initial and boundary 

value problems. This method was proposed by Bellman in the early 1970s[2]. The essence of the 

method is that the partial (ordinary) derivatives of a function with respect to variable in governing 

equation, are approximated by a weighted linear sum of function values at all discrete points in that 

direction (here, let ℎ = ∆� = ∆	 denote the step size of spatial space and ∆� is the step size with 

respect to time), then the equation can be transformed into a set of ordinary differential equations or 

algebraic equations. According to the DQM, the %&'  -order partial derivatives 
()*+(,)  of a function 

����, 	�  at a point ��-, 	.� and the /&'-order partial derivatives 
(0*+(10  of a function ����, 	�  at a point 

��-, 	.� , can be approximated by the same formula given in [11],as: 



Int. J. Modern Math. Sci. 2012, 3(1): 1-11        

   

Copyright © 2012 by Modern Scientific Press Company, Florida, USA 

3

�2����2 3,4,5 �67-8�2�
9

84�
����8, 	�															,																																	: = 1,2, … ,=																																																		�2� 

�>���	> 3141? =6@.A�>�
B

A4�
����, 	A�															,																																	C = 1,2, … ,D																																																		�3� 

where7-8�2�	, @.A�>� are the respective weighting coefficients for the %&' -order and /&'-order derivatives 

with respect to � and 	 respectively.  Bellman et al. [2] proposed two approaches to compute the 

weighting coefficients7-8�2�	, @.A�>� . To improve Bellman’s approaches in computing the weighting 

coefficients, many attempts have been made by researchers. Quan and Chang [7, 8] introduced one of 

the most valuable attempts. After that, Shu’s [11] introduced a general approach, which was inspired 

from Bellman’s approach, was made available in the literature. Shu’s[11] give Shu’s recurrence 

formulation for higher order derivatives as: 

7-8�2� = % F7--�2G��7-8��� − 7-8�2G����- − �8�H		 , I, : = 1,… ,=, 2 ≤ % ≤ = − 1		, : ≠ I																										�4� 
and 

7--�2� = −67-8�2�								, 1 ≤ % ≤ = − 1												,			: ≠ I							, : = 1,2, … , =																																											�5�
9

84�
 

where 7-8��� are the weighting coefficients of the first order derivative given below   

7-8��� = D�����-���- − �8�D�����8� 																																					�N%				: ≠ I 

where D��� = �� − ����� − ���… �� − �9�		�O"		D�����-� = ∏ Q�- − �.R			: ≠ C9.4�  

The same formulas can be obtained for weighting coefficients of the high order derivatives 

with respect to 	. By using equations (2) and (3), we can approximate the partial derivatives of the 

equation (1�) to obtain the system of ordinary differential equations as: 

����� 3-.
S +6���-.7-8�����8. +6���-.@.A���

B

A4�

9

84�
��-A = 1� �67-8�����8. +6@.A�����-A �

B

A4�

9

84�
																								�6� 

 Approximating the first-order derivative with respect to the temporal variable by using the 

forward differences and then arrangement the terms of equation (6), we obtain the system of algebraic 

equations as:   



Int. J. Modern Math. Sci. 2012, 3(1): 1-11        

   

Copyright © 2012 by Modern Scientific Press Company, Florida, USA 

4

��5?SU� 
 ��5?S∆� �6V���5?S 7-8��� 
 1� 7-8���W ��X?S +6����5?S @.A��� −
B

A4�

9

84�
1� @.A������5YS = 0																															�7� 

The similar formulas can be obtained for equation (1�) 

3. Alternating Direction Formulation of the DQM 

Peaceman and Rachford [6] introduced the alternating direction implicit technique in the mid-

50s for solving the system of algebraic equations, which results from finite difference discretization of 

partial differential equations (PDEs). From iterative method’s perspective, ADI method can be 

considered as a special relaxation method, where a big system is simplified into a number of smaller 

systems such that each of them can be solved efficiently and the solution of the whole system is gotten 

from the solutions of the sub-systems in an iterative method. Using alternating direction implicit 

method into equation (7), we get the following two systems of algebraic equations in the form: 

��5?SU
+[ − ��5?S∆&
�

+6V���5?S 7-8��� − 1� 7-8���W ��X?SU+[ +6����5?S @.A��� −
B

A4�

9

84�
1� @.A������5YS = 0																													�8� 

��5?SU� − ��5?SU
+[

∆&
�

+6����5?SU
+[7-8��� − 1� 7-8������X?SU+[

9

84�
+6����5?SU

+[@.A��� −
B

A4�
1� @.A������5YSU� = 0																			�9� 

 Formula (8) is used to compute function values at all interval mesh points along rows and is 

known as a horizontal traverse or � −sweep. While, Formula (9) is used to compute function values at 

all interval mesh points along columns and is known as a vertical traverse or 	 −sweep. 

 In the same procedure we approximate equation (1�) by using ADI-DQM to obtain the systems 

of algebraic equations. 

4. Numerical Experiments and Discussion   

 In this section, we apply ADI-DQM on three test problems to demonstrate the efficiency of the 

ADI-DQM. Other researchers also considered these problems. 

Problem 1.(Ali A. [1])  

We consider Burger equation (1) with � = 1, � = 100 , ^ = 1 and initial conditions in the following 

forms: 

����, 	, 0� = 34 − 14�1 + e`a�1G,�/c	�	 , ����, 	, 0� = 34 + 14�1 + e`a�1G,�/c		�																															�10� 
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The exact solutions are given by 

����, 	, �� = 34 − 14�1 + e`a�d1Gd,G&�/e�	�	 , ����, 	, �� = 34 + 14�1 + e`a�d1Gd,G&�/e�		� 													�11� 
The boundary conditions can be obtained easily from (11) by using �, 	 = 0, 1. In this problem, 

we found numerical results for �� and  �� and use equally spaced grid points. In Table 1, we show the 

errors obtained in solving problem 1 with the ADI-DQM and DQM at � = 0.01, ∆� = 0.001 , � =
100  and ��, 	� ∈ 	 [0, 1]  for different values of ℎ . In Fig. 1, we show the exact and approximate 

solutions of the problem 1. The results confirm that ADI-DQM has a high accuracy, good convergence 

comparing with DQM. 

 

                 Table 1. Errors obtained for problem 1 with � = 0.01, ∆� = 0.001 and � = 100 

 Error norms for the  �� Error norms for the  �� 

ℎ Max |%%N%|  of 
DQM 

Max |%%N%|  of 
ADI-DQM 

Max |%%N%|  of  
DQM 

Max |%%N%|  of 
ADI-DQM 

0.2 
0.11 
0.09 

5.298339E-06 
4.392205E-06 
3.794236E-06 

1.106499E-06 
2.331511E-07 
7.300147E-08 

8.713128E-06 
1.268978E-05 
1.493134E-05 

1.443198E-06 
1.720921E-06 
2.342516E-06 
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               Fig. 1. Exact and approximate solution of the problem 1 with  � = 0.01,  ∆� = 0.001 and � = 100 
 

 

Problem 2.( Zheng B. [14]) 

We consider Burger equation (1) with � = −2 ,  � = 1	, ̂ = 1 and initial conditions in the following 

forms: 

����, 	, 0� = 12 − � + 	1 + � + 			,																						����, 	, 0� = 12 + � + 	1 + � + 																																																		�12� 
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The exact solutions are given by 

����, 	, �� = 12 − � + 	 + �1 + � + 	 + �		,														����, 	, �� = 12 + � + 	 + �1 + � + 	 + �																																											�13� 
The boundary conditions can be obtained easily from (13) by using �, 	 = 0, 1.	  In this 

problem, we found numerical results for �� and �� and use equally spaced grid points. In Table 2, we 

show the errors obtained in solving problem 2 with the ADI-DQM and DQM at � = 0.01, ∆� =
0.0001and ��, 	� ∈ 	 [0, 1] for different values of ℎ. In Fig. 2, we show the exact and approximate 

solutions of the problem 2. The results confirm that ADI-DQM has a high accuracy, good convergence 

comparing with DQM. 

 

                 Table 2 . Errors obtained for problem 2 with � = 0.01, ∆� = 0.0001	 
 Error norms for the  �� Error norms for the  �� 

ℎ Max |%%N%|  of 
DQM 

Max |%%N%|  of 
ADI-DQM 

Max |%%N%| 
DQM 

Max |%%N%| 
ADI-DQM 

0.2 
0.11 
0.09 

2.361438E-05 
5.864640E-05 
7.547103E-05 

1.308369E-05 
1.066213E-05 
5.775655E-06 

5.866786E-05 
2.391282E-04 
3.770356E-04 

2.824992E-05 
7.368749E-05 
9.814879E-05 
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               Fig. 2. Exact and approximate solution of the problem 2 with � = 0.01and  ∆� = 0.0001 

 

Problem 3.(Ali A. [1])  

We consider Burger equation (1) with � = 1	, � = 1  , ^ = 1  and initial conditions in the 

following forms: 

����, 	, 0� = /:O�j�� sin�j	�																																																																																																																							�14�� 
����, 	, 0� = �/:O�j�� + sin�2j����/:O�j	� + sin�2j	��																																																																			�14�� 
The boundary conditions are given by 
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���0, 	, �� = ���1, 	, �� = 0			,			����, 0, �� = ����, 1, �� = 0																																																																	�15�� 
���0, 	, �� = ���0, 	, �� = 0		,			����, 0, �� = ����, 1, �� = 0																																																																		�15�� 
 In this problem, no analytical solution is available for this system, but only several data points 

at time 0.01, we computed values of the velocity components �� and �� and use equally spaced grid 

points . In Table 3, we show the numerical results of the solving problem 3 with the ADI-DQM and 

DQM at � = 1, ∆� = 0.001and ��, 	� ∈ 	 [0, 1] for different values of points on grid points.  The 

approximate solutions of the problem 3 are shown in Fig. 3. We are using grid point 12 × 12	 
withvelocity components. Numerical results of the problem 3 given at Tables 4 and 5.   
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               Fig.3. Approximate solution of the problem 3 with � = 0.01,	� = 1	and ∆� = 0.001 

 

5.  Comparison with other Schemes 

Comparison 1: 

We compare the numerical results of problem 1 of ADI-DQM with the results of other 

numerical methods such as DQM, multi quadric RBF (MQ(RBF)) [1], Spline of degree seven RBF 

((%o��RBF��	 [1] and thin plate Spline RBF (TPS(RBF)) [1].  Table 4 shows the number of grid points 

and maximum absolute error in the numerical solutions resulted from using ADI-DQM with other 

methods. The error measurements resulted from ADI-DQM is more accurate than the methods DQM, 

MQ(RBF), (%o��RBF� and TPS(RBF). Moreover, the number of grid points by using ADI-DQM is less 

than the other methods. 

 
Table 3.Comparison of the numerical results of the for problem 1 for different method at 
 � = 0.01 ,∆� = 0.001 and � = 100 

Max|%%N%|of �� Max|%%N%| of �� Number of grid points Method 
2.343E-06 
1.493E-05 
3.590E-06 
1.003E-04 
5.344E-05 

7.300E-08 
3.795E-06 
4.522E-07 
1.841E-05 
6.926E-06 

11 × 11 11 × 11 20 × 20 20 × 20 20 × 20 

ADI-DQM 
DQM 
MQ(RBF)  [1] 
TPS(RBF) [1] %o (RBF)  [1] 
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Comparison 2: 

We compare the numerical results of problem 3 of ADI-DQM with the results of other 

numerical methods such as DQM , MQ(RBF) [1],  TPS(RBF) [1], and FEM [4].  Tables 4 and 5 show 

the number of grid points andnumerical solutions resulted from using ADI-DQM with other methods.  

 
Table 4. Comparison of the numerical results of the values of �� for different method at � � 0.01 
              and � = 1, for problem 3. 

Method ∆� Grid 
points 

Numerical results of the values of �� 
(0.1,0.1) (0.2,0.8) (0.4,0.4) (0.7,0.1) (0.9,0.9) 

ADI-DQM 

DQM        
MQ[1]      
TPS[1]    
FEM[4] 

0.001  
0.001  
0.0012 
0.001  
0.0006 

12 x 12 
12 x 12 
20 x 20 
20 x 20 
20 x 20 

0.07243 
0. 07262 
0.07251 
0.07238 
0.07257 

0.27741 
0.27692 
0.27778 
0.27769 
0.28842 

0.71996 
0.71977 
0.72174 
0.72173 
0.72210 

0.20482 
0.20402 
0.20484 
0.20468 
0.20117 

0.07974 
0.07994 
0.07944 
0.07931 
0.07947 

 
 
 
Table 5. Comparison of the numerical results of the values of �� for different method at � = 0.01 
              and � = 1, for problem 3. 

Method ∆� Grid points Numerical results of the values of �� 
(0.1,0.1) (0.2,0.8) (0.4,0.4) (0.7,0.1) (0.9,0.9) 

ADI-DQM 

DQM        
MQ[1]      
TPS[1]    
FEM[4] 

0.001  
0.001  
0.0012 
0.001  
0.0006 

12 x 12 
12 x 12 
20 x 20 
20 x 20 
20 x 20 

0.42610 
0. 42543 
0.43087 
0.42932 
0.44336 

-0.12319 
-0.12276 
-0.12410 
-0.12371 
-0.12366 

1.65214 
1.65157 
1.65244 
1.65240 
1.65499 

0.06714 
0.06657 
0.06705 
0.06793 
0.06621 

0.01320 
0.01350 
0.01335 
0.01305 
0.01367 

 

6. Error Analysis and Stability of DQM 

 We can resolve another mission of the truncation error in the differential quadrature method. 

Depending on the DQM is identical to Lagrange polynomial interpolation of order 1−N , Chen [5] has 

presented new formulas for the analysis of truncation error distribution of derivative in this method. 

The truncation error of the first-order derivative approximation by the DQM at the grid pointix is  

given as;  
s�����-� ≤ t�D�����-�

=! = t������-�                                                                                                               �16� 

where t� = D��vw��9��x�wy  ,ξ is unknown function of variable � , and �����-�  denotes the error 

distributions of the first- order derivative. For the truncation error of the second-order derivative 

approximation by DQM is given as, 
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ws�����-�w ≤ 2t� z1 + {7--
���{| D�����-�

=! = t������-�																																																																																	�17� 

where t� = D��v�w��9��x�w, wx,��9U���x�w�y , �����-� denotes the error distributions of the second- 

order derivative. While the stability, from equation (6) we obtained the systems of algebraic equations 

in the form: 

g7h}�~ = }�~ − }/~																																																																																																																																																�18� 

where  g7h is the coefficient matrix containing the weighting coefficients, the dimension of the matrix 

g7h is �= − 2��D − 2�	�		�= 
 2��D 
 2�	 ,}�~ is a vector of unknown functional values at all the 

interior points ,}�~ is a vector still containing discretized time derivatives of  � and }/~ vector contains 

known values of � at the boundary grid points. The stability analysis of this equation is based on the 

eigenvalue distribution of the DQ discretization matrix g7h. If g7h has eigenvalues �- and corresponding 

eigenvector x-, (i=1,2,…,K) K being the size of the matrix g7h, the similarity transformation reduces the 

system(18) of the from[1]. 

"}�~
"� � g�h}�~ � }�~																																																																																																																																			�19� 

where	g�h � g�hG�g7hg�h ,}�~ � g�hG�}�~  and  }�~ � 
g�hG�}/~ 
Since g�his a diagonal matrix, Equation (19) is an uncoupled set of ordinary differential equations and 

[P] is a nonsingular matrix containing the eigenvectors as columns. Considering the :&'equation of (19) 

"�-"� � �-�- � �-																																																																																																																																												�20� 

This system has the solution  

}�~ = g�h}�~ = 6 �-x- = 6 ��-�0��5& + /-
�-

��5& − 1�� x-
�

-4�

�

-4�
 

and this solution is stable as � → ∞ if 

���-� < 0																																	, : = 1,2, … , t																																																																																					�21� 

where ���-� denotes the real part of �-. This is the stability condition for the system (18). We explain 

the stability condition (21) in case using of grid points 4 × 4 on problems 1, 2 and 3. The eigenvalues 

of the matrix [A] are;  

For problem1,  ��	��� � 
0.105	, ��	��� � 
0.105, ��	�e� � 
0.044	and, ���d� � 
0.044, 

For problem 2, ����� = −27.15	, ��	��� � 
43.8,				���e� � 
27.8		  and, ���d� � 
43.1 ,  

For problem 3, ����� = −35.08, ����� = −20.0,				���e� � 
50.31	 and, ���d� � 
31.60.  
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This means the stability condition (21) is hold. Zong and Lam (2002)[15] have shown that too large 

numbers of grid points may lead to instability. We conclude from the above discussion that accuracy 

requires large number of grid points, but stability requires the opposite. The accuracy and stability of 

the numerical solutions depend on the choice of grid points selected. Here, we use equally spaced 

types, which are introduced by Shu and Richards (1992) [10], Shu et al (2001) [12].  

7. Conclusions 

 In this work, we employed the ADI-DQM to solve the Burger equation in two-dimension. The 

numerical results show that the ADI-DQM has the higher accuracy and convergence as well as the less 

computation workload by using few grid points. The results show that ADI-DQM has a good potential 

for solving Burger equations. Moreover, the efficiency of the method is proved in accuracy and 

stability. 
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