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Abstract: In this paper, a new development of differentialadpature method was
proposed. It is known alternating direction imglidormulation of the differential

quadrature method (ADI-DQM) for computing the nuro@r solutions of the two-

dimension Burger equations. The results confirnt thes method has a high accuracy,
good convergence and less workload comparing Wwélother numerical methods.
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1. Introduction

Consider the two-dimensional Burger equations:

aul aul aul 1 azul azul _
W+au1%+auzg—ﬁ<axz +ay2 =0 (x,y)EQ, t>0 (161)
ou, ou, ou, 1 (0%u, 0d%u,
W+aula+auzg—ﬁ(axz +ay2 =0 (x,y)E.Q, t>0 (1b)
with the initial conditions

u1(x:y’0) =®1(x,y) , Uvz(x:y’o) =®2(x,y) (].C)
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and the boundary conditions

ul(foIt) = f(x:y’t)

uz(x,y,t)=g(x,y,t)}(x’y)ean’ t>0 (1d)

where(l is the computational domain with the bounda®y Re is the Reynolds numbew,constant
u, and u, are velocity components aig, @,, fandg are the known functions.

Burgers' equation is a fundamental nonlinear gadtigerential equation from fluid mechanics.
It occurs in various areas of applied mathemasosh as modeling of dynamics, heat conduction,
shock waves, and acoustic waves [3,9]. Equatibn$ énd(1b) are a special form of incompressible
Navier-Stokes equations without having pressure tend continuity equation. The first attempt to
solve Burgers’ equation analytically was given bgtdnan, who derived the steady solution for a
simple one-dimensional Burgers’ equation, which wsed by Burger to model turbulence. In the past
several years, numerical solutions to one-dimemgioBurgers’ equation and system of
multidimensional Burgers’ equations have attraceldt of attention of the researchers [13]. Many
researchers use the Equationgg(land mentioned in [1,3,4,9,13,14] .We compare rthmerical
results of ADI-DQM for solving problem(1) with thesults of other numerical methods such as the
differential quadrature method (DQM), the radiakisafunction (RBF) [1] and the finite element
method ( FEM) [4] .The purpose of this paper ismtooduce and apply our new improvement of DQM
that is known the alternating direction implicitriaulation of the differential quadrature method for
solving two-dimensional Burger equation. The restittat we obtain from our proposed method will
be saved and compared to prove the efficiencyefribthod in accuracy and stability. The advantages
of this work are that the ADI-DQM reduces the comapional workload and improvement with regard

to its accuracy and rapid convergence.

2. Differential Quadrature Method

The differential quadrature is a numerical techaigised to solve the initial and boundary
value problems. This method was proposed by Bellmathe early 1970s[2]. The essence of the
method is that the partial (ordinary) derivativésaofunction with respect to variable in governing
equation, are approximated by a weighted linear etifiinction values at all discrete points in that

direction (here, leh = Ax = Ay denote the step size of spatial space Z&ni$ the step size with

respect to timg then the equation can be transformed into a fsetdinary differential equations or
algebraic equations. According to the DQM, #i& -order partial derivative%xi: of a function
uy(x,y) ata point(x;y;) and thest"-order partial derivative%% of a functionu, (x,y) at a point

(xi,y;) » can be approximated by the same formula givghlhas:
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N
0"u
0 7”1 - Z AEI:) ul(xk' y) ) [ = 1'2' 'N (2)
X7 x=x; o
M
d5u
9] s1 - ZBI'(lS) uy (%, 1) ) j=12,.M 3)
y Yy=Yj =1

whereﬁlf,:) ,B(S) are the respective weighting coefficients for tHe-order andst*-order derivatives
with respect toc andy respectively. Bellman et al. [2] proposed two raaghes to compute the

weighting coeﬁicientﬂf,?,B](ls) To improve Bellman’s approaches in computing tireighting
coefficients, many attempts have been made bynmesas. Quan and Chang [7, 8] introduced one of
the most valuable attempts. After that, Shu’s [ibljoduced a general approach, which was inspired
from Bellman’s approach, was made available in lttexature. Shu’s[11] give Shu’s recurrence

formulation for higher order derivatives as:

(r-1)
_ Af
Alglrc)zr(Algir DAgz?_ﬁ) , k,i=1,..,N, 2<r<N-1,i+k (4)
and
Ay = ZA(” , 1<r<N-1 ,i#k ,i=12.,N )

whereAE,? are the weighting coefficients of the first orderivative given below

M® (x;)
(x; — x )M ()

Ag,? = for i+k

whereM (x) = (x — x1)(x — x3) ... (x — xy) and MD(x,) = ]‘[ﬁyzl(xi —x) i #]

The same formulas can be obtained for weightingfictents of the high order derivatives
with respect tg. By using equations (2) and (3), we can approxeénthe partial derivatives of the

equation {a) to obtain the system of ordinary differential ajons as:

N M
aul n
rral +Zau1ijAg,?u1kj +Zau2l]B( ) = (Z A(z)ulk] ZB(Z)ulil) (6)
U k=1 =1

Approximating the first-order derivative with resp to the temporal variable by using the
forward differences and then arrangement the tefmesjuation (6), we obtain the system of algebraic

equations as:
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n+1

N
T + n 4D @ B ——p® 7
At QU4 ~ Re u1k (auzj 'l ug, = (7)

The similar formulas can be obtained for equati) (

3. Alternating Direction For mulation of the DQM

Peaceman and Rachford [6] introduced the altempatirection implicit technique in the mid-
50s for solving the system of algebraic equatiarigch results from finite difference discretizatioh
partial differential equations (PDEs). From iteratimethod’s perspective, ADI method can be
considered as a special relaxation method, whéig aystem is simplified into a number of smaller
systems such that each of them can be solvedesffigiand the solution of the whole system is gotte
from the solutions of the sub-systems in an iteeatinethod. Using alternating direction implicit

method into equation (7), we get the following tsystems of algebraic equations in the form:

n+—

u N
U, 1
— 74 Z <au1 A(l) A(z))u z + z:(a'u2 B(l) B(z)) uy, = (8)
2 k=1
n+
u{l+1 ulnz N 1 1
ij i n+
— L+ z (aulijzAg,? P A(2)>u z4 Z(au UZB(l) B(Z))uf{l =0 (9)
2 k=1

Formula (8) is used to compute function valueallinterval mesh points along rows and is
known as a horizontal traversexossweep. While, Formula (9) is used to compute famctialues at

all interval mesh points along columns and is kn@sra vertical traverse gr—sweep.

In the same procedure we approximate equafibhlfy using ADI-DQM to obtain the systems

of algebraic equations.

4. Numerical Experiments and Discussion

In this section, we apply ADI-DQM on three tesbiplems to demonstrate the efficiency of the

ADI-DQM. Other researchers also considered thesklpms.

Problem 1.(Ali A. [1])

We consider Burger equation (1) with= 1, Re = 100, L = 1 and initial conditions in the following
forms:

3 1 3 1
4 4(1 + eRey—x)/8)’ uz(x,,0) = 4 4(1 + eRe—0)/8 )

ul(xf)/l O) = (10)
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The exact solutions are given by

1 3 1
u1(x; Y, t) = Z - 4(1 + eRe(4y—4x—t)/32) ’ Uz (xl Y t) = Z + 4(1 + eRe(4y—4x—t)/32 )

(1)

The boundary conditions can be obtained easily ffbh) by usinge, y = 0, 1. In this problem,
we found numerical results fay and u, and use equally spaced grid points. In Table 1sheev the
errors obtained in solving problem 1 with the ADRD and DQM at = 0.01, At = 0.001 ,Re =
100 and(x,y) € [0, 1] for different values oh. In Fig. 1, we show the exact and approximate
solutions of the problem 1. The results confirnt #hB1-DQM has a high accuracy, good convergence

comparing with DQM.

Table 1. Errors obtained for problem 1 with= 0.01, At = 0.001 andRe = 100
Error normsfor the u,

Error normsfor the u,

h Max |error| of | Max |error| of| Max |error| of | Max |error| of

DQM

ADI-DQM

DQM

ADI-DQM

0.2 | 5.298339E-06 | 1.106499E-06 8.713128E-06 | 1.443198E-06
0.11 | 4.392205E-06 | 2.331511E-07 1.268978E-05 | 1.720921E-06
0.09 | 3.794236E-06 | 7.300147E-08 1.493134E-05 | 2.342516E-06

10
10
a- Exact 11-point

b- ADI-DQM 11-point

Fig. 1. Exact and approximate solution of the problemthwti= 0.01, At = 0.001 andRe = 100

Problem 2.( Zheng B. [14])
We consider Burger equation (1) with= —2 , Re = 1, L = 1 and initial conditions in the following

forms:

x+y
1+x+y

x+y

- 12
1+x+y 12)

1 1
w,(x,7,0) = u(6,,0) = 5 +
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The exact solutions are given by

x+y+t
1+x+y+t’

x+y+t

—_— 13
1+x+y+t (13)

1 1
w6 =5 u(6y,0) = 5 +

The boundary conditions can be obtained easily fid®) by usingx,y = 0,1. In this
problem, we found numerical results igrandu, and use equally spaced grid points. In Table 2, we
show the errors obtained in solving problem 2 wite ADI-DQM and DQM at = 0.01, At =
0.0001and(x,y) € [0, 1] for different values oh. In Fig. 2, we show the exact and approximate
solutions of the problem 2. The results confirnt #hBI-DQM has a high accuracy, good convergence

comparing with DQM.

Table 2. Errors obtained for problem 2 with= 0.01, At = 0.0001

Error normsfor the u,
Max Max

Error normsfor the u,
of | Max |error]|

h Max |error| of |error| |error|

DQM

ADI-DQM

DQM

ADI-DQM

0.2 | 2.361438E-05 | 1.308369E-05 5.866786E-05 | 2.824992E-05
0.11 | 5.864640E-05 | 1.066213E-05 2.391282E-04 | 7.368749E-05
0.09 | 7.547103E-05 | 5.775655E-06 3.770356E-04 | 9.814879E-05

v 1.0 10 X 1.0
b- ADI-DQM 11-point

1.0

a- Exact 11-point

Fig. 2. Exact and approximate solution of the problem hwit= 0.01and At = 0.0001

Problem 3.(Ali A. [1])
We consider Burger equation (1) with=1,Re =1, L =1 and initial conditions in the

following forms:
uy(x,y,0) = sin(mx) sin(my) (14a)
u,(x,v,0) = (sin(mx) + sin(2mx)) (sin(mwy) + sin(2mwy)) (14b)

The boundary conditions are given by
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u(0,y,t) =u (1, y,t) =0 , uy(x,0,t) =u(x,1,t) =0 (15a)
u,(0,vy,t) = u,(0,y,t) =0, uy(x,0,t) =u,(x,1,t) =0 (15b)

In this problem, no analytical solution is avaikbr this system, but only several data points
at time 0.01, we computed values of the velocitpnponents:; andu, and use equally spaced grid
points . In Table 3, we show the numerical resoftthe solving problem 3 with the ADI-DQM and
DQM atRe =1, At = 0.001and(x,y) € [0,1] for different values of points on grid points. €Th
approximate solutions of the problem 3 are showrFign 3. We are using grid poin2 x 12

withvelocity components. Numerical results of tmelgpem 3 given at Tables 4 and 5.

u2(x,y,t
ul (kYD

00 00 Lo 00
ADI-DQM 11-point ADI-DQM 11-point

Fig.3. Approximate solution of the problem 3 with= 0.01, Re = 1 andAt = 0.001

5. Comparison with other Schemes

Comparison 1.

We compare the numerical results of problem 1 ofl-BQM with the results of other
numerical methods such as DQM, multi quadric RBF)(MBF)) [1], Spline of degree seven RBF
((r")(RBF)) [1] and thin plate Spline RBF (TPS(RBF)) [1]. Tl shows the number of grid points
and maximum absolute error in the numerical sohgticesulted from using ADI-DQM with other
methods. The error measurements resulted from ADMDs more accurate than the methods DQM,
MQ(RBF), ¢-”)(RBF) and TPS(RBF). Moreover, the number of grid pobytsising ADI-DQM is less
than the other methods.

Table 3.Comparison of the numerical results of the for peobl for different method at
t =0.01 At =0.001 andRe = 100

Method Number of grid points | Max|error| of u; Max|error|of u,
ADI-DQM 11 x 11 7.300E-08 2.343E-06
DQM 11 x 11 3.795E-06 1.493E-05
MQ(RBF) [1] 20 x 20 4.522E-07 3.590E-06
TPS(RBF) [1] 20 x 20 1.841E-05 1.003E-04
r” (RBF) [1] 20 x 20 6.926E-06 5.344E-05
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Comparison 2:

We compare the numerical results of problem 3 ofl-BQM with the results of other
numerical methods such as DQM , MQ(RBF) [1], TPER[1], and FEM [4]. Tables 4 and 5 show
the number of grid points andnumerical solutiorsutted from using ADI-DQM with other methods.

Table 4. Comparison of the numerical results of the values, dor different method at = 0.01
anke = 1, for problem 3.

Method At Grid Numerical results of the values of

poins (0.1,0.1)| (0.2,0.8)| (0.4,0.4) (0.7,0.1) (0.9,0.9)
ADI-DQM | 0.001 |12x12 |0.07243|0.27741 |0.71996 | 0.20482 | 0.07974
DQM 0.001 |12x12 |0.07262 0.27692 | 0.71977 | 0.20402 | 0.07994
MQ[1] 0.0012 | 20x 20 |0.07251|0.27778 | 0.72174 | 0.20484 | 0.07944
TPS[1] |0.001 |20x20 |0.07238|0.27769 | 0.72173 | 0.20468 | 0.07931
FEM[4] |0.0006 |20x 20 |0.07257 |0.28842 |0.72210 | 0.20117 | 0.07947

Table5. Comparison of the numerical results of the vahfas, for different method at = 0.01
anke = 1, for problem 3.

Method At Grid poins | Numerical results of the values of

(0.1,0.1)] (0.2,0.8)| (0.4,04) (0.7,0.1) (0.9,0.9
ADI-DQM | 0.001 |12x12 |0.42610-0.12319 | 1.65214 | 0.06714 | 0.01320
DQM 0.001 |12x12 |0. 42543 -0.12276 | 1.65157 | 0.06657 | 0.01350
MQ[1] 0.0012 | 20x 20 | 0.43087 | -0.12410 | 1.65244 | 0.06705 | 0.01335
TPS[1] 0.001 |20x20 |0.42932|-0.12371 | 1.65240 | 0.06793 | 0.01305
FEM[4] | 0.0006 | 20x 20 | 0.44336 | -0.12366 | 1.65499 | 0.06621 | 0.01367

6. Error Analysisand Stability of DQM

We can resolve another mission of the truncatmaoren the differential quadrature method.
Depending on the DQM is identical to Lagrange pofyial interpolation of orddd —1, Chen [5] has
presented new formulas for the analysis of truncaérror distribution of derivative in this method.
The truncation error of the first-order derivataygproximation by the DQM at the grid poxis
given as;

KM (x;)
N!
whereK; = Max{[u™ (&)|} & is unknown function of variable, ande® (x;) denotes the error

eW(x) < = K™ (x;) (16)

distributions of the first- order derivative. Fdret truncation error of the second-order derivative

approximation by DQM is given as,
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MD (.
6@ ()| < 2K, (1+ |AF )% = K,e®(x,) (17)

whereK, = Max{([u™ (&)|,|&u™M* ()]}, e@ (x;) denotes the error distributions of the second-

order derivative. While the stability, from equati(6) we obtained the systems of algebraic equstion
in the form:

[Al{u} = {b} — {s} (18)
where [4] is the coefficient matrix containing the weightiogefficients the dimension of the matrix
[A] is(N — 2)(M — 2) by (N — 2)(M — 2) {u}is a vector of unknown functional values at ak th
interior points {b} is a vector still containing discretized time datives of u and{s} vector contains
known values of: at the boundary grid points. The stability anaysi this equation is based on the
eigenvalue distribution of the DQ discretizationtrixalA]. If [A] has eigenvalues and corresponding
eigenvectok;, (i=1,2,...,K) K being the size of the matii#], the similarity transformation reduces the

system(18) of the from[1].

du3 _ S 19
— = DIV} + (5} (19)

where[D] = [P]7'[A][P] {U} = [P]""{u} and {S} = —[P]"*{s}

Since[D]is a diagonal matrix, Equation (19) is an uncouetof ordinary differential equations and

[P] is a nonsingular matrix containing the eigertwexas columns. Considering ttiéequation of (19)

dU;

This system has the solution

=

K
W =P} = ) U= ) [vi@et + 2 cehe - )¢,

i=1
and this solution is stable as»> oo if

R(}) <0 . i=12,..,K (21)

whereR (1;) denotes the real part #f. This is the stability condition for the systen81We explain

the stability condition (21) in case using of gpdints4 x 4 on problems 1, 2 and 3. The eigenvalues

of the matrix [A] are;

For problem1,R( A,) = —0.105,R(1,) = —0.105,R( 43) = —0.044 and,R(1,) = —0.044,
For problem 2R(1,) = —27.15,R(4,;) = —43.8, R(A3) =—-27.8 and,R(1,) = —43.1,
For problem 3R(1,) = —35.08, R(4,) = —20.0, R(43) = —50.31 and,R(4,) = —31.60.
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This means the stability condition (21) is hold.ngoand Lam (2002)[15] have shown that too large
numbers of grid points may lead to instability. \é@clude from the above discussion that accuracy
requires large number of grid points, but stabitdguires the opposite. The accuracy and stalafity
the numerical solutions depend on the choice af goints selected. Here, we use equally spaced
types, which are introduced by Shu and Richard8Z)Lp10], Shu et al (2001) [12].

7. Conclusions

In this work, we employed the ADI-DQM to solve tBarger equation in two-dimension. The
numerical results show that the ADI-DQM has thehbigaccuracy and convergence as well as the less
computation workload by using few grid points. Thseults show that ADI-DQM has a good potential
for solving Burger equations. Moreover, the effag of the method is proved in accuracy and

stability.
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