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Abstract 

 The structural stability of a double diffusive convection in a porous medium of the 

Forchheimer type was studied, when the density of fluid depends on temperature and 

concentration as a cubic and linear function, respectively. It has been shown that for this problem, 

with thermal convection in a plane infinite layer, the resonance can occur between the internal 

layers that arise. The main parameter is the internal heat source and its presence may lead to 

oscillatory convection in linear instability inducing resonance. Thus, in this study, the structural 

stability problem of continuous dependence on the heat source itself for a model of nonisothermal 

flow in a porous medium of Forchheimer type was analyzed. Furthermore, the continuous 

dependence of the solution on changes in the Forchheimer coefficients has been shown. 

 

 Keywords: Structural stability, Double diffusive, Darcy’s law, Forchheimer theory, 

Cubic density.  

  

1.  Introduction 

 The problem of double diffusive convection in a horizontal layer of porous material 

saturated with an incompressible fluid has attracted the attention of many writers, see cf. 

Straughan [1]. An important category of such problem is the structural stability in porous media, or 

continuous dependence on the model itself. In general, in the field of continuum mechanics, or in 

partial differential equations, structural stability is prominent, cf. Hirsch and Smale [2]. The 

continuous dependence on modelling, for the elasticity field, was initiated in a seminal paper of 

Knops and Payne [3], and these authors have produced improved results in Knops and Payne [4]. 

Payne [5-7] also developed the field of structural stability, and since then many papers have 

emerged. References to these can be found in the field of porous media in chapter 2 of the book by 

Straughan [1], with recent contributions from Aulisa et al. [8], Ciarletta et al. [9], Hoang and 

Ibragimov [10], Harfash [11-13], Liu [14], Liu et al. [15, 16]. 

In this paper, we continue with Straughan [17] and Gentile and Straughan [18] who studied 

the continuous dependence on the heat source in a penetrative convection model in a Forchheimer 

porous medium when the density depends in quadratic and cubic manner on the temperature field, 

respectively. For many applications, the quadratic dependence is insufficient and a cubic 

dependence is necessary, cf. McKay and Straughan [19], Straughan ([20], pp. 143-144). 

Moreover, in a situation where fluid flow is not small, it is possible to introduce Forchheimer 

coefficients in the Darcy equations (see [21, 22]), with the idea being that the pressure gradient is 

no longer proportional to the velocity itself, cf. Straughan ([1], p. 12), Néel [23]. Here we deal with 

the Forchheimer model with quadratic degree. We first analyse the continuous dependence of the 

solution on changes in the heat source. Then we check the continuous dependence on Forchheimer 

coefficients. A separate analysis is provided for each of the parameters, which is necessary 
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because the bounds obtained are different in each case. 

For Forchheimer theory, Straughan [24] showed that with heat source and nonlinear 

density, penetrative convection may occur simultaneously in different layers in a porous medium, 

resulting a resonance phenomenon. The oscillatory convection results from an interaction between 

the effects of nonlinear density and heat source. It is therefore important to demonstrate the 

continuous dependence on the heat source. Since the model we are studying is highly nonlinear, 

the analysis, as shown here, is non trivial. 

 

2.  Basic Equations 

 We take the momentum equation in a saturated material of Forchheimer type to have the 

form,  

                               
     

       (1) 

 where   ,   and   are velocity, temperature and pressure,   and   are Forchheimer 

coefficients, and          and    are vectors incorporating the gravity field which, without loss of 

generality, we take such that                   and      . The standard indicial 

notation is assumed throughout, with, for example, subscript,  denoting      , and subscript,   

denoting     . The balance of mass equation for an incompressible fluid is  

         (2) 

 while the temperature and concentration equations have, respectively, the following forms  

                (3) 

                (4) 

 Let   be a bounded domain in    with boundary   smooth enough to allow application of the 

divergence theorem. Then, Equations (1)-(3) are defined on        , for     a fixed time. 

The boundary conditions we employ are that  

                                   (5) 

 and  

                                                        (6) 

 where   and   are prescribed functions and   is the unit outward normal to  . The initial 

condition is  

                                              (7) 

 where    and    are prescribed functions. Let the boundary-initial value problem comprised of 

Equations (1)-(3) together with conditions (5)-(7) be denoted by  .  

 

3.  A priori estimates 

 Firstly, we need to find some a priori estimates for various norms of   and   which are 

important to derive the continuous dependence of a solution of problem   on the heat source   

and Forchheimer coefficients   and    To find these estimates, the functions 

                            and        have been introduced as solutions to the following 

boundary value problems  

 
                                  
                             

 (8) 

  

 
                                  
                             

 (9) 
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 (10) 

  

 
                                  

                              
 (11) 

 and then last step is  

 
                                     

                               
 (12) 

where   is a positive integer to be specified later. Now, multiply Equation (1) by    integrate 

over  , and apply the Cauchy-Schwarz and arithmetic-geometric mean inequalities, to see that  

 

          
       

               
          

              

                                        

           
 

 
     

 

 
     

 

 
     

 

 
    

 

           
 

 
     

 

 
    

  
 

 
     

 

 
    

           
 

 
     

 

 
          

      
        

 (13) 

 Thus, from inequality (13), it follows that  

 
 

 
          

       
  

 

 
          

      
         (14) 

 which leads to the following bounds  

 

     
 

 
          

      
        

    
  

 

  
          

      
        

    
  

 

  
          

      
        

 (15) 

 We now form the expressions  

 ∫  
 

 
∫  
 

                             (16) 

  

 ∫  
 

 
∫  
 

                           (17) 

  

 ∫  
 

 
∫  
 

                              (18) 

 and  

 ∫  
 

 
∫  
 

                              (19) 

where   is some number such that      . Next, integrate by parts in (16) and employ the 

boundary condition (8)   to see that  

 

 

 
     ∫  

 

 
        

 

 
      ∫  

 

 
                       

  ∫  
 

 
           ∫  

 

 
∫  
 

           ∫  
 

 
∮  
 

  
  

  
       ∫  

 

 
         

 (20) 

 We next bound the cubic term on the right of (20) as follows, where    is the maximum of   on 

       ,  
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√∫  

 

 
               

      
    ∫  

 

 
       

           
   

   

 
∫  

 

 
               

      
     

 

   
∫  

 

 
        

 (21) 

where we have used the Cauchy-Schwarz and arithmetic-geometric mean inequalities and where 

     is a constant to be chosen. Then, by using the Cauchy-Schwarz and arithmetic-geometric 

mean inequalities and with     , we arrive at  
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∮  
 

 
  

  
       

 

 
∫  

 

 
       ∫  

 

 
       

(22) 

 We now return to Equation (17) and perform various integrations by parts to find with the aid of 

the Cauchy-Schwarz and arithmetic-geometric mean inequalities,  
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 (23) 

where    is the maximum value of   on        . Inequality (15)   is next employed in (23) 

and then with further use of the arithmetic-geometric mean inequality in (23) we may show that  
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 (24) 

 Next, after integration by parts in (18) and some rearrangement we may produce  

 

 

 
    

  
 

 
     

  
 

 
∫  
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 ∫  
 

 
          ∫  
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        ∫  

 

 
∮  
 

  
  

  
        

 (25) 

Hence, with further use of the Cauchy-Schwarz and the arithmetic-geometric mean inequalities, 

from (25) we deduce  
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 (26) 

 Form the identity (19), by integrations by parts one then finds  
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 (27) 
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 Next, making further use of the arithmetic-geometric mean inequality in (27) we may derive  
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 (28) 

 Next, add (22), (24), (26) and (28) to obtain  

 

 

 
     

 

  
     

 

 
    

  
 

 
    

  
 

 
∫  
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 (29) 

where      is a term we will show is bounded by data and is defined by  
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 (30) 

 Payne and Straughan [25] show that for a function   satisfying  

 
                 
                  

 (31) 

 then one may use a Rellich identity, cf. Payne and Weinberger [26], to determine constants       

such that  

         ∮  
 

 
  

  
     ∮  

 
            (32) 

 where    denotes the surface gradient over the boundary. They also show that  

                  ∮  
 

      (33) 

 where  

       
 

 
  

  
   

with   solving the boundary value problem,  

                  
                      

Thus, inequalities (33) and (32) lead to bounds for      in terms of data. In fact, one may show  
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 We put  

 

          
   

 

 
 

   
 

 
 

   
 

 
 

   
 

 
  

  

 
 
   

 

 
 

 

 
 

   
 

 
 

   
 

 
 

   
 

 
  

  
   

 

 
 

   
 

 
 

 

 
 

   
 

 
 

   
 

 
    

   
 

 
 

   
 

 
 

   
 

 
 

   
 

 
 

 

 
   

 (36) 

 and then from (29) we may derive  

             (37) 

 where we have introduced the function      defined by  

      ∫  
 

 
 
 

 
     

 

  
     

 

 
    

  
 

 
    

      (38) 

 Upon setting  

    ∫  
 

 
                   (39) 

 one integrates (37) to show  

          (40) 

 Upon further setting            , one uses (39) to find  

 
 

 
     

 

  
     

 

 
    

  
 

 
    

         (41) 

 Thus, (41) and (40) yield  

 
                          

  

 
                  

                  
      

∫  
 

 
              ∫  

 

 
     

  

 
         ∫  

 

 
    

         ∫  
 

 
    

      
 (42) 

 Furthermore, from inequality (29) we then find  

 
∫  

 

 
                          ∫  

 

 
      

 

 
   

∫  
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 (43) 

 The next step is to derive a bound for               . To this end, we form the combination  

 ∫  
 

 
∫  
 

                                (44) 

 After some integrations by parts we then show  
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 then  
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             ∫  
 

 
∫  
 

       

 (46) 

Now, by using the maximum principle, arithmetic-geometric mean inequality and bound (15)   

we have  

 

  ∫  
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√ 
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 (47) 

where    denotes the maximum value of   on  . Then with the aid of the Cauchy-Schwarz and 

the arithmetic-geometric mean inequalities one sees that  
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        ∫  

 

 
        (48) 
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 and  
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                (51) 

 Then use of (47)-(51) in (46) leads to  
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√ 
   

    √∫  
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 (52) 

 An application of inequalities (33) and (32) together with (42) and (43) yields  
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 (53) 

 Then, a further application of the Cauchy-Schwarz leads to  

  ∮  
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A. A. Hameed and A.J. Harfash                Continuous Dependence of double diffusive… 

8 
 

  ∫  
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           (55) 

 and  
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∮  
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∮  
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∮  
 

                (56) 

 where      is the surface measure of  . By employing (54)-(56) in (53), we thus derive  
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 (57) 

 Denote the coefficients of the first to sixth terms in parentheses, on the right of (58), by      , . . 

. ,      , then  

 
∫  
 

      ∫  
 

  
                       

  

  ∫  
 

 
     

                
               ∫  

 

 
∮  
 

        
 (58) 

 Let      has the form  

           
                     

    ∫  
 

 
     

                
      

                                                                                             (59) 

 then we find  

 ∫  
 

            ∫  
 

 
∮  
 

              (60) 

 Inequality (60) is now integrated, and then we take the      power, to find  

              ∫  
 

 
                         (61) 

 Let now     and then (61) leads to  

    
       

                 
     

        
     

       (62) 

  

Lemma 3.1  If             , then  

    
       

                (63) 

  Proof: Multiply (4) by      for     (where we assume the concentration is scaled to be 

non-negative, otherwise   is chosen as an even integer). Thus,  

 
 

  
∫  
 

            ∫  
 

               ∫  
 

      (64) 

 We may integrate this and drop non-positive terms on the right to deduce  

  ∫  
 

          ∫  
 

  
 
        (65) 

 Let now     in (65) to find the desired result.               

 Inequality (62) and (63) are a priori estimates we are seeking for   and  , respectively. 

We henceforth denote the right-hand side of (62) and (63) by    and   , respectively.  

4.  Continuous dependence on   

 Let             and             be solutions to   for the same values of        and 

   but for different heat source functions        and       . Define the difference variables 
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         and   by  

                                     
It is easily verified that            satisfies the boundary-initial value problem  

 

                                                    

                   
       

                     

                   

 (66) 

 on        , together with  

 
                                          
                                 

 (67) 

 Multiply (66)    by    and integrate over  . Using the Cauchy-Schwarz inequality and 

arithmetic-geometric mean inequality one obtains  
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 (68) 

 where         , and      
         

  with    being the maximum value of  , 

analogous to   . Now, we observe with the aid of the triangle inequality, that  

 ∫  
 

                  
 

 
∫  
 

                
 

 
∫  
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 and, similarly  
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∫  
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 (70) 

 Next, we put (69) and (70) in (68), to find  

      
  

 
    

  
  

 
    

  
 

 
     

    
               (71) 

 Furthermore, multiply (3) and(4) by   and  , respectively, and integrate over   to see after 

integrated by parts, discard the negative terms, and used a little rearrangement that  

 
 

  
          

  
 

 
      (72) 

  
 

  
     

  
 

 
      (73) 

 where    being the maximum value of  . From (72) and (73), we have  

 
 

  
                 

 

 
   

    
        (74) 
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 Upon insertion of (71) in (74) we see that  

 
 

  
                 

 

 
   

    
       

    
               (75) 

 Let  

   
 

 
   

    
       

    
    

then, upon integration of (75) we find  

                
         

 
   (76) 

 Thus, we have established continuous dependence on   in the    measure of   and  . 

Additionally, from inequalities (76) in(71) we then derive  

      
  

 
    

  
  

 
    

  
 

 
     

    
       

         

 
   (77) 

 Therfore, we also have continuous dependence on   in the       and    measures of  . 

 

5.  Continuous dependence on   

 Now, to investigate continuous dependence on  , we let             and             

be solutions to (1)-(4) for the same boundary-initial-value problems for different coefficients    

and    . Define the difference variables and constant as  

                                       (78) 

 Then            solves the boundary-initial-value problem  

                                                               
                                                                                       (79) 

  

         (80) 

  

                     (81) 

  

                     (82) 

 To establish continuous dependence on   we rearrange the    and    terms as  

                 
 

 
               ̃               (83) 

 where  ̃  
     

 
. Hence, from (83) and (79) we arrive at  

 
   

 

 
               ̃                              

                                     
 (84) 

Furthermore, from (84), the Cauchy-Schwarz inequality and arithmetic-geometric mean inequality 

we may derive  

 

     
 

 
∫  
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 (85) 

 since, from (69) we have  

 ̃ ∫  
 

                  
 ̃

 
∫  
 

                
 ̃

 
∫  
 

                        (86) 

 and from (70), we obtain  

  ∫  
 

                    
 

 
∫  
 

                  
 

 
∫  
 

                (87) 
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 then, we use (86) and (87) in (85), to find  
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∫  
 

              

 
 

 
     

    
              

 

 
∫  
 

                    

 (88) 

 From this point the proof splits into two parts depending on whether     or    . Suppose 

   , we then use the Cauchy-Schwarz and arithmetic-geometric mean inequalities to see that  
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 If we use (89) in (88), we find  
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 (90) 

 where  

    
 

 
     

    
    

Now, we will find bounds for      and     . By multiplying (1) by    and and integrating 

over  , we then obtain  

 
          

       
                               

 
 

 
     

 

 
     

 

 
     

 

 
    

  
 

 
     

 

 
    

  
 

 
     

 

 
     

 (91) 

 which lead to the following bound  

 
 

 
          

       
      (92) 

 where    
 

 
    

  
 

 
     

 

 
    

  
 

 
     

 

 
    . Thus, we have the following 

estimates  

                     
  

  

 
           

  
  

 
     (93) 

 and similarly we have  

                     
  

  

 
           

  
  

 
     (94) 

 Then, from (90), (93) and (94) we find  

 
 

 
                         (95) 

 where    
  

     

Suppose now that    , we then have from (88) that  

 

 

 
     

 ̃
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 ̃
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 (96) 

 We then use the Cauchy-Schwarz and arithmetic-geometric mean inequalities as follows:  

 
 

 
 ∫  

 
                     

  

  ̃
∫  
 

              
 ̃

 
∫  
 

                 (97) 

 We now employ (97) in (96) to find, after discard the positive term, that  

 
 

 
                   

  

  ̃
∫  
 

               (98) 

 By inserting the estimates (93) and (94) in (98), we find  
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where    
  

  ̃
  Thus, we have for both cases     and    , that  

 
 

 
                         (99) 

 where              . Thus, we find  

                           (100) 

 Also, it is easy to show that  

 

 

  
     

  
 

 
     

 

  
     

  
 

 
     

 (101) 

 which lead to  

 
 

  
            

 

 
   

    
        (102) 

 Use of (100) in (102) and then integration the resulted equation allows us to see that  

                 
          

  
   (103) 

 where  

    
 

 
   

    
      

and  

     
 

 
   

    
      

Inequality (103) establishes continuous dependence of   and   in    on the Forchheimer 

coefficient  . A similar continuous dependence estimate for    may then be established with the 

help of (100) and (103).  

6.  Continuous dependence on   

 

We commence with a study of continuous dependence on the coefficient  . Therefore, let 

            and             be solutions to Equations (1)-(4) for the same boundary and initial 

conditions, but for different coefficient    and    . Define the difference variables   ,   ,  and 

  and constant   by  

                                                           (104) 

 and then we find that            satisfy the boundary-initial value problem  

 

                                                       

                   
       

                   

                   

 (105) 

 We write  

                   
 

 
                 ̃               (106) 

 where  ̃            . Multiply (105)   by    and integrate over  , and then use (106) and 

(69) in the resulting equation from (105)   to find  

 

     
 

 
∫  
 

                
 

 
∫  
 

                      

 
 

 
∫  
 

                       ̃ ∫  
 

                   

 
 

 
     

 

 
     

    
              

 (107) 

 We use (87) for  ̃ in (107) then discard the   terms from the resulting equation to find  
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∫  
 

                   

 
 ̃

 
∫  
 

                  
 (108) 

 Next, the Cauchy-Schwarz and arithmetic-geometric mean inequalities are employed to see that  
 

 
 ∫  

 
                       

  

  ̃
∫  
 

              
 ̃

 
∫  
 

                   (109) 

 Substituting (109) in (108) to obtain  

 

 

 
     

 

 
     

    
              

  

  ̃
∫  
 

             

               
  

  ̃
∫  
 

              
 (110) 

 We next employ the estimates (93) and (94) in (110) to arrive at  

 
 

 
                            (111) 

 where     
 

  ̃
  . Next, by using the above bound in (102), and after integration we find  

                 
           

   
   (112) 

 where     
 

 
   

    
     and     

 

 
   

    
     . The continuous dependence for    

on the Forchheimer coefficient   follows directly from (111) and (112). 

 

7.  Conclusions 

 The equations for double diffusive convection in a porous medium of Forchheimer’s law 

are analysed when the density of fluid depends on temperature and concentration as a cubic and 

linear function. The question of continuous dependence of the solution on the heat source and 

Forchheimer coefficients is one which belongs to the general class of structural stability problems. 

Structural stability (or continuous dependence on the model itself) is one of major importance and 

it may be argued that it is as or more important than the widely accepted notion of stability as 

continuous dependence upon the initial data. Therefore, we establish rigorous a priori bounds with 

coefficients which depend only on boundary data and initial data and which demonstrate 

continuous dependence of the solution on changes in     and  .  
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ي وسط مسامي عندما تكون الكثافة معتمدة على درجة الاستمرارية المعتمدة للحل لمسألة الحمل 
 
المزدوج الانتشار ف

 الحرارة

 

 , ايات عبد الكريم حميدعقيل جاسم حرفش

 قسم الرياضيات ، كلية العلوم ، جامعة البصرة ، البصرة ، العراق 

 

 المستخلص

ي وسط مسامي من نوع فورشايمر ، عندما تعتمد كثافة 
 
تمت دراسة الاستقرارية الهيكلية لمسالة الحمل المزدوج الانتشار ف

 . كت   على درجة الحرارة كدوال تكعيبية وخطية ، على التوالي
وقد تبي   أن لهذه المشكلة ، مع الحمل الحراري  السائل والتر

ي طبقة لانهائية، فان الرني   
 
بي   الطبقات الداخلية للمائع يمكن أن يحدث. المشكلة الرئيسية هي مصدر الحرارة  فقط وف

 . ي حالة عدم الاستقرار الخطي مسببا حالة الرني  
 
ي هذه  الداخلىي وقد يؤدي وجوده إل حصول الحمل المتذبذب ف

 
لذا، ف

لمستمر للحل على مصدر الحرارة نفسه الدراسة ، تم تحليل مشكلة الاستقرار الهيكلىي للمسألة من حيث دراسة الاعتماد ا

ي وسط مسامي من نوع فورشايمر. علاوة على ذلك ، تم إظهار الاعتماد المستمر للحل على 
 
لنموذج الحمل المزدوج الانتشار ف

ي معاملات فورشايمر. 
 
ات ف  التغيت 

 

 


