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Abstract

The structural stability of a double diffusive convection in a porous medium of the
Forchheimer type was studied, when the density of fluid depends on temperature and
concentration as a cubic and linear function, respectively. It has been shown that for this problem,
with thermal convection in a plane infinite layer, the resonance can occur between the internal
layers that arise. The main parameter is the internal heat source and its presence may lead to
oscillatory convection in linear instability inducing resonance. Thus, in this study, the structural
stability problem of continuous dependence on the heat source itself for a model of nonisothermal
flow in a porous medium of Forchheimer type was analyzed. Furthermore, the continuous
dependence of the solution on changes in the Forchheimer coefficients has been shown.

Keywords: Structural stability, Double diffusive, Darcy’s law, Forchheimer theory,
Cubic density.

1. Introduction
The problem of double diffusive convection in a horizontal layer of porous material

saturated with an incompressible fluid has attracted the attention of many writers, see cf.
Straughan [1]. An important category of such problem is the structural stability in porous media, or
continuous dependence on the model itself. In general, in the field of continuum mechanics, or in
partial differential equations, structural stability is prominent, cf. Hirsch and Smale [2]. The
continuous dependence on modelling, for the elasticity field, was initiated in a seminal paper of
Knops and Payne [3], and these authors have produced improved results in Knops and Payne [4].
Payne [5-7] also developed the field of structural stability, and since then many papers have
emerged. References to these can be found in the field of porous media in chapter 2 of the book by
Straughan [1], with recent contributions from Aulisa et al. [8], Ciarletta et al. [9], Hoang and
Ibragimov [10], Harfash [11-13], Liu [14], Liu et al. [15, 16].

In this paper, we continue with Straughan [17] and Gentile and Straughan [18] who studied
the continuous dependence on the heat source in a penetrative convection model in a Forchheimer
porous medium when the density depends in quadratic and cubic manner on the temperature field,
respectively. For many applications, the quadratic dependence is insufficient and a cubic
dependence is necessary, cf. McKay and Straughan [19], Straughan ([20], pp. 143-144).
Moreover, in a situation where fluid flow is not small, it is possible to introduce Forchheimer
coefficients in the Darcy equations (see [21, 22]), with the idea being that the pressure gradient is
no longer proportional to the velocity itself, cf. Straughan ([1], p. 12), Néel [23]. Here we deal with
the Forchheimer model with quadratic degree. We first analyse the continuous dependence of the
solution on changes in the heat source. Then we check the continuous dependence on Forchheimer
coefficients. A separate analysis is provided for each of the parameters, which is necessary
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because the bounds obtained are different in each case.

For Forchheimer theory, Straughan [24] showed that with heat source and nonlinear
density, penetrative convection may occur simultaneously in different layers in a porous medium,
resulting a resonance phenomenon. The oscillatory convection results from an interaction between
the effects of nonlinear density and heat source. It is therefore important to demonstrate the
continuous dependence on the heat source. Since the model we are studying is highly nonlinear,
the analysis, as shown here, is non trivial.

2. Basic Equations

We take the momentum equation in a saturated material of Forchheimer type to have the
form,

V; + alVlUi + blVlZUi =-T; + ng + hiTZ + LiT3 + Il'C, (1)

where v;, T and m are velocity, temperature and pressure, a and b are Forchheimer
coefficients, and g;, h;, L; and I; are vectors incorporating the gravity field which, without loss of
generality, we take such that |g| <1, |h| <1, [L| <1 and |I| < 1. The standard indicial
notation is assumed throughout, with, for example, subscript,i denoting d/ dx;, and subscript, t
denoting d/ dt. The balance of mass equation for an incompressible fluid is

Ui,i = 0, (2)

while the temperature and concentration equations have, respectively, the following forms
T +vT; = AT +Q, 3
C,t + UiC’i = AC. (4)

Let Q be a bounded domain in R* with boundary T' smooth enough to allow application of the
divergence theorem. Then, Equations (1)-(3) are defined on Q x (0,7], for T < oo a fixed time.
The boundary conditions we employ are that

vin=0, on I'Xx][0,7T], (5)
and
T(x,t) =h(x,t), Cxt)=k(xt), x€eIl, te[0,T], (6)
where h and k are prescribed functions and n is the unit outward normal to I'. The initial
condition is
T(x,0) =Ty(x) and C(x,0) = Cy(x), (7)
where T, and C, are prescribed functions. Let the boundary-initial value problem comprised of
Equations (1)-(3) together with conditions (5)-(7) be denoted by 2.

3. A priori estimates
Firstly, we need to find some a priori estimates for various norms of T and C which are
important to derive the continuous dependence of a solution of problem P on the heat source Q
and Forchheimer coefficients a and b. To find these estimates, the functions
G(xt),K(x,t),1(x,t),F(x,t) and H(x,t) have been introduced as solutions to the following
boundary value problems
AG =0, in Q,

G = h(x,t), on T, (8)
AK == 0, in QF
K = k(x,t), on T, 9)
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Al =0, in Q,
I=h3(x1), on T, (10)
AF =0, in Q,
F = h5(x,t), on T, (11)
and then last step is
AH =0, on (,
H = h?~1(x,t), in T, (12)

where p is a positive integer to be specified later. Now, multiply Equation (1) by v; integrate
over , and apply the Cauchy-Schwarz and arithmetic-geometric mean inequalities, to see that
IvIP+allvI3+bllvii=(g.T v)+ (hT?v) + (LT3 v) + (1.C,vy)
< (T,v;) + (T3 v) + (T3, v) + (C,v)
STUVIPHSIT 2+ N v 12420 T 13 (13)
= I VIZHZ N T UE+ v 124211 C 112
= % Il v I|2+§(II T2 +ITI:+ITIE+IC I3,
Thus, from inequality (13), it follows that
§ IviIZ+allvIi3+bllvIi< %(II TIEHNT NG +IT NG+ C %), (14)
which leads to the following bounds

IV IES 2T 02 +0T I3 +0T 18 +1C 12),
IV IS = (N T 12 1T IS +IT 1S +1C112), (15)

3
IV IG<— (T 12 +1T 13+ T 1g +1 C 11%).
We now form the expressions

Jy Jo (T = 6)(Ts + v,T; — AT — Q)dxds = 0, (16)

f5 f, (€ = K)(Cs + v,C; — AC)dxds = 0, (17)

Jy J, (T3 = D(Ts +v,T; — AT — Q)dxds = 0, (18)

™ fy f, (T® = F)(Ts + v,T; — AT — Q)dxds = 0, (19)

where t is some number such that 0 < t < 7. Next, integrate by parts in (16) and employ the
boundary condition (8) , to see that

SUT 024 [5 N VT I ds <51 To 12+ f, (T,Q)ds + (T, G) + |(To, Go)l

t t t 0G t (20)
+1Jy (Gs,T)ds| + [} f, GviTydxds + [, §. h(5)dAds + | f, (G,Q)ds].

We next bound the cubic term on the right of (20) as follows, where G,,, is the maximum of G on
I'x[0,T],
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fy f, GviT;dxds < Gm\/ft v Ii2 ds fJ I VT |12 ds

< ¥m \/f (NTN2+NCNZ+NT NG +IT ||6)de I VT |12 ds (21)

< _9‘;7:“1 Jo QUT 12 41 C U2 +IT I3+ T 18)ds +-— f; Il VT I ds,
g

where we have used the Cauchy-Schwarz and arithmetic-geometric mean inequalities and where
a, > 0 is a constant to be chosen. Then, by using the Cauchy-Schwarz and arithmetic-geometric
mean inequalities and with a; = 2, we arrive at

SUT P42 [NV 12 ds < 200 G 12+ 1T 12 +1 To 1245 11 Go 1242 [ 1l G 11? ds
F+2) [T 12 ds + 22 [0 C 1P+ T 1+ T 19)ds (22)

+= fsSthAd + - fsﬁ( )ZdAd ¥ f 1GI2ds+ [, 11 QI?ds.

We now return to Equation (17) and perform varlous integrations by parts to find with the aid of
the Cauchy-Schwarz and arithmetic- geometric mean inequalities

—IICI|+f IIVCIIZdS<—|IK|I+ IICI|2+I|C0|I+—||K0||2
to o WK 1P ds + % f; ||C||2ds+—f 1VC I1? ds (23)

+KZ [3 1V I2 ds+2 [, §. k?dAds +5 f; §. (5)2dAds,

where K, is the maximum value of K on T'x[0,T]. Inequallty (15) ; is next employed in (23)
and then with further use of the arithmetic-geometric mean inequality in (23) we may show that

el +Zfo IVCI=ds < I K I” +11 Co 17+ 2 Il Ko |l +5fo I Ks II* ds
2 2

G [N C 12 ds + 22 5 (T 12 +I T I+ T 1€)ds (24)
1 pt 2 1 ot 0K 2

+5f0 $. k?dAds +;f0 $. (5,) dAds.

Next, after integration by parts in (18) and some rearrangement we may produce

SIT =21 To I3+ f; VT2 12 ds = [ (T3,Q)ds — (I, T) + (I, To)
+f0t (T,I5)ds — f Jo IviTdxds +f (1,Q)ds —f $. h(—)dAds = 0.

Hence, with further use of the Cauchy-Schwarz and the arithmetic- geometrlc mean inequalities,
from (25) we deduce

ST SNV 2 ds < LJT NI 0 ds + G+ 2By [E T ds

(25)

3 ) iy rt 4 1 4 2,1 1 2
FCHZ) o NT I ds+5 10 To I3+ 4 1112420 o 1242 1 To I 26
2
+fy WVT U2 ds+ 22 [0 (1 C 1% +1 T I9)ds + 3 f, §. h2dAds

+-J, § ( )2dAds + [0 I TI2 ds+2 [ QI ds+ [ 11 Q IIf ds.
Form the |dent|ty (19), by mtegratrons by parts one then finds
ad
SIT U= =1 To Ig+2 f, VT2 12 ds — [ §. hS(5)dAds — [ (T5,Q)ds
+(Fo, To) + [ (Fs, TYds — [} f,, Fv;Tdxds + f, §. h®(5)dAds 7)
+ [y (F,Q)ds — f, §. h(5-)dAds = 0.
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Next, making further use of the arithmetic-geometric mean inequality in (27) we may derive
1 6 5 pt 32 1 6 B 2 1 2 5 pt 6
v II6+;f0 I VT= |I° ds =c I TollgtZ I FI +§” Tl +ng I Tllgds

1

+=fy WQUS ds +5 1 Fo I+ I Ty 1242 f; W Es 12 ds +5 [ I T 11% ds

F 2R QT 40 C I HIT IS I T W)ds + 2 1 19T 12 ds (28)
+- f $. h*dAds + - f $. (—)ZdAds+5f0 I F I ds+5f0 I Q I ds.
Next, add (22), (24), (26) and (28) to obtain
SUT 24+ 0 C P4 N T I+ I T 08+ [ 1 VT 12 ds
+2 0 NVC 2 ds+2 [0 IVT? I ds +3 f) Il VT I? ds
<[220 4 My Oy i) (8 72 g
+[9Gm+ +9Km+@+9Fm]f I C I ds (@)
+[9GT’”+9K’”+ +9’"‘+ﬂ]fO I T 1% ds
[0 g My Sy S 3 T ds + E (D),
where E(t) is aterm we will show is bounded by data and is defined by
E) =21 G IZ+ZIK 12+ 4 1 F 1244 1112420 To 1242 [ 11Q 12 ds +3 Il Go 117
20 Ko 1245 1 Lo 124 2 1l Fo 1242 11 To I§ +11 Co 1245 1 To 113
2 NG 12 ds+5[5 1 Ko 17 ds+2f3 I L 1% ds +2 [, Il Es I? ds )
+2 [ §. k2dAds +2 [] & h2dAds +3 [ 6. Go)2dAds
+2 0 § Co?dAds +2 [} 6. (5)2dAds +2 [ 6. (5)2dAds
ol NG ds+ [0 NI ds+2 [0 I FI2ds+= [, 1Q IS ds+= [ 1QIfds.
Payne and Straughan [25] show that for a function qb satisfying
Sem on T @)

then one may use a Rellich identity, cf. Payne and Weinberger [26], to determine constants ¢4, ¢,
such that

I Vo 117+ ¢y . ( )sz < §. c2|VsM|?dA, (32)
where V; denotes the surface gradient over the boundary. They also show that
2V, V) +Il ¢ 1< ¥y §. M2dA, (33)

where
Y1 = max| 3£,
with ¥ solving the boundary value problem,
AY = -1, in Q,
Y =0, on TI.
Thus, inequalities (33) and (32) lead to bounds for E(t) in terms of data. In fact, one may show
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E(t) < D(t),
where

D(t) = 2 Il To I+ 7 I To I3+ Il Ty 1 +1 Ko 124+ 2 [ 11 Q 1% ds

+ofy NQUEds +< [0 1Q IS ds+ G+ ) [ § h2dAds

+2 [ & k2dAds + 2, §. h?dA + 26 h3dA + 4, §. hodA

+ﬁ¢ hSdA + 4, §. h0dA + 224, héOdA+f¢15ﬁ k?dA +22 4. h3dA
= [y § IVshi2dAds + 22 [ 6. |Vsh*2dAds + 22 [ 6, [Vsh*|2dAds

+zf0 $. |Vsk|2dAds + % [y $ h*h2dAds + 2 fo §. h*hZdAds

t P t / t
+—1’l;1 fo ¢, k2dAds + 71f0 gﬁr hédAds + 21 fo gﬁr h1°dAds+Il Cy 1%
We put

9Gm 9Km+9lm+9Fm % 9c;m+%+

9Khn | m | IFR

K =max{4(2+—"+ +—+—-),
2 2 2

9G%, +9Km + +91m 9F2, 9G? 9Km +91m 9Fm

4(=~ =6 St —)}
and then from (29) we may derlve
J'=K] <D(),
where we have introduced the function J(t) defined by
t 1 5 1 1
J() = fo GIT "2+E Il C "2+Z T Ili+g Il T I1§)ds.
Upon setting
t
= [, D(s)exp(K(t — 5))ds,
one integrates (37) to show

J(®) < D;.
Upon further setting D, (t) = XD, + D, one uses (39) to find

—||T|| + e 117 +—||T||4 —||T||2<Dz(t)
Thus, (41) and (40) yield
Il T I2< 4D,, I C 112< EDz, I TI4< 4D,, I TIE< 6D,

[T I2<4Dy,  [JNCIP<ZD,  [J IT 1< 4Dy, [T IE< 6D,

Furthermore, from inequality (29) we then f|nd
J5 I VT I2< 4D, [y 1VC 122Dy,

Jy VT2 12< 2Dy, i 1vTd P< 2

The next step is to derive a bound for supgyor |T]. To this end, we form the combination

fot fQ (sz_l - H)(T:S + viTi — AT — Q)dXdS =0.
After some integrations by parts we then show

(34)

(35)

(36)

(37)
(38)

(39)
(40)

(41)

(42)

(43)

(44)

% A %(Tzl’)dxds — [} f, T?~'ATdxds — [ [, T?~'Qdxds — (H,T) + (Ho, To)

— [ [, HuTidxds + [, (Hg,T)ds + [, [, HATdxds + [, [, HQdxds = 0

)

(45)



Basrah Journal of Science Vol., 37 (1), 1-15, 2019

then
f, T?dx + M [y [ V(IP)V(T?Ydxds = [, TePdx + 2p(H,T)

—2p(Ho, Tp) — 2p f (Hg, T)ds + 2p f J HvT;dxds + 2p f 45h —~dAds  (46)

+2p [} [, T?P~'Qdxds — 2p [} [, HQdxds.
Now, by using the maximum principle, arithmetic-geometric mean inequality and bound (15) ,
we have

2p fot Jo, HviT dxds < 2pH,, J fot Il vI?ds fot | VT |12 ds -

3Hm,

<2Zp— (Jfot NTN2+HNCNZ+NT NG +IT IIS)dS)\/fOt Il VT 1I% ds,

where H,, denotes the maximum value of H on T'. Then with the aid of the Cauchy-Schwarz and
the arithmetic-geometric mean inequalities one sees that

—2p fot (Hs,T)ds < 2p J fot | Hg 112 ds fot | T 12 ds, (48)
—2p f! § h M dads < 2p J & § h2dads [* §, Chy2aads, (49)
2p [, [, T?~'Qdxds < [, [, Q%ds+ (2p —1) [, [, T?Pdxds, (50)
and
2p [; [, HQdxds < [ [ Q*ds+ (2p—1) [, [, H?»/@~Ddxds. (51)

Then use of (47)-(51) in (46) leads to

J, T?dx < [ TePdx+ 2p(I T I H | +1 To Il Ho 1) + 2p\/f0t I Hg 2 ds [, I| T I12 ds

+§_ph,ﬁ"1jft IT 12 ds+ [, NCIZds+ [, NT s ds+ [, ITIE ds\/f(f I VT 112 ds

+szf §, h2dads [* §, Cy2dads +2 [ [, QP dxds

+2p— 1) f, [, T?dxds + (2p — 1) [ [, H?P/@P~Ddxds.
(52)
An application of inequalities (33) and (32) together with (42) and (43) yields
f, T?dx < [ TZPdx + 2p(\[4D,+II Ty 1)1/ (6. h*P=2dA)Y/?

+2pJ4Dﬂplf 6. [(h?P~1) (|2dAds + > phi? ~'\[(22D; + 4Dy)

+2p\/f $. h*dAds (CZ)f $. |V h2P- 1|2dAds+2f IO ||2” ds

(53)

+(2p - 1) fo Jo, T?dxds + ¥, (2p — 1) fo J, h*Pdxds.
Then, a further application of the Cauchy-Schwarz leads to

(. K*P72dA)Y? < P~ (, dA)Y/? = wmm (54)
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t _ —2, ¢t h2P ot
(J, $. h*P~*h2dAds)/? < BP 72 §. hidAds)'/? = Uy hZdAds)Y/?,  (55)
and

2p
Uy § h*77HVshI2dAds)? < W22 () 6 Vsh|?dAds)V/? = S5 (f; &, [Vsh|2dAds)"/2,  (56)
where m(T) is the surface measure of I'. By employing (54)-(56) in (53), we thus derive
f TZde < [ TPdx+2 [ 1Q I ds+ (2p— 1) [, [, T?Pdxds
22 (JAD1+I To )y *Raf Im(DIY? + 22 (4D (2p — Dhef (Jy 6 hidAds)!/2

1/2 57
+3P(22D21h+4D2) B2 + 1y (2p — 1)t mD)RZP (57)
4 222P70) 2"(2” D ) (f $. 1V h|2dAds)z ;4. h2dAds)zh?.

Denote the coeff|C|ents of the first to sixth terms in parentheses, on the right of (58), by r;(p), . .
, Te(p), then
Jo T?Pdx < [, TEPdx + (ry + 15 + 14 + 15 + 16)hZY (58)
+2 [5 1Q I35 ds + Yyt m(DAZ (2p — 1) + (2p — 1) [, §. T?dxds.
Let B(p) has the form
B(p) =N Ty I+ (1o + 13 + 14 + 75 + 16)hit + zf 1Q I3 ds + st m(DhY (2p —
1), (59)
then we find
t
fﬂ T?Pdx < (2p— 1) fo gﬁr T??dxds + B(p). (60)
Inequality (60) is now integrated, and then we take the 1/2p power, to find
[R' (D] < [f, B(p)e®P~Dds]V/2. (6)
Let now p — oo and then (61) leads to
S IT| < max{|To|m, [Suplle. Suplhml} (62)
Lemma3.1 If C(x,0) € L”(2), then
sup |C| < max[|Cy|m]- (63)

Qx[o0,T]
Proof: Multiply (4) by ¢P~* for p > 1 (where we assume the concentration is scaled to be
non-negative, otherwise p is chosen as an even integer). Thus,

d _
Efﬂ CPdx = —p(p— 1) [, CP7?|VC|*dx — Kp [, CPdx. (64)
We may integrate this and drop non-positive terms on the right to deduce
[, CPdx]'/P < [f, CFdx]'/?. (65)
Let now p — oo in (65) to find the desired result. [

Inequality (62) and (63) are a priori estimates we are seeking for T and C, respectively.
We henceforth denote the right-hand side of (62) and (63) by T,, and C,,, respectively.
4. Continuous dependence on Q
Let {u;, S, ¢, m} and {v;, T,C,m,} be solutionsto P for the same values of h, k, T, and
C, but for different heat source functions R(x,t) and Q(x,t). Define the difference variables
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w;, 6,¢,q and 11 by
Wl-=ui—vi,9=S—T,¢=<p—C,q=R—Q,H=7T1—7r2.

It is easily verified that {w;, 6, ¢, m} satisfies the boundary-initial value problem

w; + afluly; — [v|vi] + b[|ul?u; — |v|*v;] = —T1; + g;0 + hy(S + T)6

+L;0(S? + ST + T?) + I;¢,

Wii = 0, (66)

Q't + WiT,i + ul-B,l- = A0 + q,

b+ wiC; +udp; =Ad.
on Q x (0, T], together with

wn; =0, =0, ¢ =0, on I'x (0,T], (67)
0(x,0) =0, ¢(x,0) =0, XEQ,

Multiply (66) ; by w; and integrate over Q. Using the Cauchy-Schwarz inequality and
arithmetic-geometric mean inequality one obtains

Iwi*+a [ [lalu; = [vlvwidx + +b [ [Jul*u; — |[v]*v;]wdx

= (895, wi) + (Ri(S + T)8,wy) + (LiO(S* + TS + T*)p, wy) + (I b, w;)

< (0,w) + (Sm + T (0, W) + (S + TS + T2) (0, W) + (¢, wy)

= (H'Wi) + Xm(e' Wi) + Ym(e' Wi) + ((ib' Wi)
STUW IR 10 14+ 1w P+ 2X2 0100 1242 1l w2+ 2 Y2 16117
=l W I+ 1 ¢ 112
<ZHw IR+ 21+ X2+ Y216 12 +1 ¢ 17],
where X,, = Sy, + T, and Yy, = SZ + T,,S,, + T2 with S,,, being the maximum value of S,
analogous to T,,. Now, we observe with the aid of the triangle inequality, that

f [lafu; = |v]v]w;dx = —f [la] + |v|]]Jww;dx + 2 f [lu| = [vI]*(lu] + [v])dx

(68)

N o

>~ [, [ul + [v]wiwgdx = = [ u— v|ww;dx (69)
= ;fg |wi|w;w;dx = 5 w3,
and, similarly
b

b [, [lul*u; — [v|?v;]widx = f [ul? + V2 lwywidx + 2 [, [lul? = [VI*]*(Ju| + [v])dx

b
> = [y [ul? + [vI*Iww;dx > ;fQ [lul + [v[]*w;w;dx (70)

b

> f lu; — v;|>wyw;dx = Z Il wll.
Next we put (69) and (70) in (68), to find
Il w |I2+37a Il w |I§+% |l wli3< - (1 + X2 + YO0 1% +1 ¢ 17]. (71)

Furthermore, multiply (3) and(4) by 6 and ¢, respectlvely and integrate over ( to see after
integrated by parts, discard the negative terms, and used a little rearrangement that

— I| 0 11*<ll q II? -i- = w3, (72)
= 2 ¢ I12< G II w |12, (73)

where C,,, being the maximum value of C. From (72) and (73), we have
%[II 017+l ¢ II*] <ll g I|2+%(C$1 +T2) Il w2, (74)

9
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Upon insertion of (71) in (74) we see that
10012 +1 ¢ 12 <N q 17+ (C2 + TZ)(L+ XZ + Y21 6 12 +1 ¢ I7]. (75)
Let
K =2 (Ch+T2)(1+X5+Y2),
then, upon integration of (75) we find
1617+ ¢ 12 q 112 [ZEE0=), (76)

Thus, we have established continuous dependence on Q in the L? measure of 6 and ¢.
Additionally, from inequalities (76) in(71) we then derive
exp(Kt)—-1

3 3b 9
Tw 2+ 220w I3+ 221wl - (1 + X2+ Y2) 1l g 12 [ 2=,
Therfore, we also have continuous dependence on Q inthe L?, L3 and L* measures of w.

(77)

5. Continuous dependence on a
Now, to investigate continuous dependence on a, we let (u;, S, @, m;) and (v;, T, C,m,)
be solutions to (1)-(4) for the same boundary-initial-value problems for different coefficients a,
and a, . Define the difference variables and constant as
wi=u;—v;, 0=S-T, ¢=¢—-C, 1 =n; —m,, a=a; —a,. (78)
Then (w;, 8, ¢, 1) solves the boundary-initial-value problem
w; + [aq|uu; — ay|v|v;] + b[|ul?u; — |v|*v;] = —11; + g0 + hy(S + T)O + L;6(S* +

ST + T?) + I;¢, (79)
WL',L' = 0, (80)
H,t + WiT,L' + ul-H,l- = AG, (81)
¢+ wiC; +u;dp; = Ag. (82)
To establish continuous dependence on a we rearrange the a; and a, terms as
a ~
a;ufu; — az|v|v; =~ [[ufw; + |v|v;] + affufu; — [v]v], (83)

where @ = % Hence, from (83) and (79) we arrive at
wi + = [lulu; + [v|v] + aflulu; — [viv] + b[Jul?u; — [v[*v;]
=—I; +g;0 + hy(S+T)6 + L;0(S* + ST + T?) + [;¢.

Furthermore, from (84), the Cauchy-Schwarz inequality and arithmetic-geometric mean inequality
we may derive

w2+ %fg [lulw; + |v]vlwdx + @ [, [lulu; — |[v]v;]w;dx
+b [ [lul?w; — |v]*v]wdx
= (giH, Wi) + (hl(S + T)H, Wi) + (LIH(SZ + ST + TZ),Wi) + (Ii¢, Wi)
< 20w 2+ 2+ X5+ V116 12 +1 ¢ 17],
since, from (69) we have
a f, [ulw; — [vivJwidx = 2 [, [lu] + [v[]]wiwidx + 2 [, (Jul* = [v)?[Ju] + |v]]dx,(86)
and from (70), we obtain
b b
b [, [al?u; — [vI?v]widx > 2 [ [Iu|? + [vI*Iwwidx + 2 [, [[u]® — [v|]’]?dx,  (87)

(84)

(85)

10



Basrah Journal of Science Vol., 37 (1), 1-15, 2019

then, we use (86) and (87)~in (85), to find ~
SIw 124+ 2 [ () + [VDwawgdx + 3 [ (Jul = [vD)2(Jul + [v])dx

b b
+2 Jo [ul? + [vIPlwwidx + 2 [, [[u]? — [v]?*]?dx (88)

<2+ XE+ VD017 +1 ¢ 12 =2 [ [[ulwgw; + [v]vw]dx.
From this point the proof splits into two parts depending on whether b > 0 or b = 0. Suppose
b = 0, we then use the Cauchy-Schwarz and arithmetic-geometric mean inequalities to see that
2 b
o [ulww; + [vivwldx| < o= [, (wa + vv)dx + 2 [, [ul® + v ]wwdx. (89)
If we use (89) in (88), we find
1 3 2
S w IS > (L + X5+ YD 0 12 +1 ¢ 12] + = [, [[u]® + |v[*]dx 0)
2 2
=K 1012+ 2]+ lul+ v

where
3

Ky =>(1+ X5 + ).
Now, we will find bounds for || u [I? and || v [I2. By multiplying (1) by v; and and integrating
over ), we then obtain
IviZ+allvi3+b Il vIis (T,v) + (T?v) + (T3, v) + (C,v;)
SSUVIPHZNT 1242 IV IZ+ 2N T I+ IV IZH2 N T IS+ v 2+ 1 C 112,
which lead to the following bound
SIVIPHalvIE+b I vIi<K, (92)

where K, =2 I T I3+ < I v I2+2 I T I+ I v I2+ 1| € I2. Thus, we have the following
estimates

(91)

IVIPS3K, =K;, IVIESZ=K,, IvIi<Z=Ks (93)
and similarly we have
lulP< 3K, =K, Nul3<Z=K,, luli<?Z=Ks (94)
Then, from (90), (93) and (94) we find
SIw I K[ 6 1% +I ¢ 112] + a?Ks, (95)

where K¢ = :%.
Suppose now that b = 0, we then have from (88) that
SIw 1242 [ (ul + [VDwiwidx + 2 [, (Ju] = [VD2(lu] + |v])dx
< K[l 617 +11 ¢ 112] =2 [, [luluw; + [v]v;w]dx.
We then use the Cauchy-Schwarz and arithmetic-geometric mean inequalities as follows:

2 ~
o Tulww; + [vivw]dx| < o [, (lul® + [vI*)dx + [, (Ju] + [v)wwidx.  (97)

We now employ (97) in (96) to find, after discard the positive term, that
2
SIwW IR K[l 0 12 +1 ¢ 12] + = [, (luf® + [v[*)dx. (98)
By inserting the estimates (93) and (94) in (98), we find
§ Il w < Kq[ll 6 112 +1l ¢ 1I*] + a®K5,

(96)

11
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where K, = z—g. Thus, we have for both cases b > 0 and b = 0, that

§ Il w < Kq[ll 6 112 +1l ¢ I*] + a®Ksg, (99)
where Kg = max{Kg, K,}. Thus, we find
Il wIP< Ky[ll 6 117 +1l ¢ 1”] + 3a%Kg. (100)

Also, it is easy to show that

d 2 Th 2
— <—Illw
~16 1< 2wl

2 (101)

S IP<iwl?

which lead to
Z10012 +1 ¢ 12] <3 (T3 + C2) Il w I (102)
Use of (100) in (102) and then integration the resulted equation allows us to see that
1617 +1l ¢ 17 a?Kyo[Z2C20, (103)
where ’
Ko == (T2 + C2)Ky,
and

Kio = %(Tnzt + CH)Kg,
Inequality (103) establishes continuous dependence of 8 and ¢ in L? on the Forchheimer
coefficient a. A similar continuous dependence estimate for w; may then be established with the
help of (100) and (103).
6. Continuous dependence on b

We commence with a study of continuous dependence on the coefficient b. Therefore, let
(u;, S, p,my) and (v;, T, C,m,) be solutions to Equations (1)-(4) for the same boundary and initial
conditions, but for different coefficient b, and b, . Define the difference variables u;, 6 ,¢ and
IT and constant b by
wi=u—-v;, 0=S-T, ¢=E—-c, ll=mn;—m, b=D>by—b,, (104)
and then we find that (w;, 6, ¢, ) satisfy the boundary-initial value problem
w; + aflulu; — |[v]v;] + [by|ul?u; — by |v|*v;] = —T1; + g;60 + hy(S + T)6
+L;0(S? + ST + T?) + I;¢,
Wi,i = O, (105)
0 +wiT; +u;60; = A,
b +wiC;+udp; = A0,
We write
by lul?u; — by|VI2v; = 2 [uf?u; + [v|2v;] + B[ ufu; — [v]vi] (106)
where b = ((b; + b,)/2. Multiply (105) ; by w; and integrate over Q, and then use (106) and
(69) in the resulting equation from (105) ; to find
Iw 124+ 2 [ (Jul + [VDwiwidx + 2 [ (lal? = [vI?)(lu] + [v])dx

b ~
+- Jo [ulPww; + [vPvwildx + b [, [lul*u; — [v|*v]w;dx (107)
<EIwIPHI 1+ X2+ VD017 +1 ¢ 12

We use (87) for b in (107) then discard the a terms from the resulting equation to find

12
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3 I WIRS S+ X5+ Y0012+ 12 =3 f, [uluw; + [VIvowi]dx 08
7 108
b

== Jo [ul? + [v*]wywidx.

Next, the Cauchy-Schwarz and arithmetic-geometric mean inequalities are employed to see that
b b? b
1 g TulPww; + [vI2vwildx] < == [, (lul* + [v|*)dx + = [, [lu]® + |v]*]w;w;dx.(109)
Substituting (109) in (108) to obtain
2
SIW IS 21+ X2+ D00 17 +1 ¢ 12+ == [ (Jul* + [v]*)dx

2 (110)
< K[l 6 17+l ¢ 17] + 55 f,, (lul* + [v[*)dx
We next employ the estimates (93) and (94) in (110) to arrive at
=1l W I2< 3K, [ 6 12 +11 ¢ I12] + 3b2Ky, (111)
where K, = %KS. Next, by using the above bound in (102), and after integration we find
1617 +1l § 1< b?K,,[ZEC2E, (112)

where K;; = %(Tn% + C2)K,; and K, = %(T,?l + C2)K,,. The continuous dependence for w;
on the Forchheimer coefficient b follows directly from (111) and (112).

7. Conclusions

The equations for double diffusive convection in a porous medium of Forchheimer’s law
are analysed when the density of fluid depends on temperature and concentration as a cubic and
linear function. The question of continuous dependence of the solution on the heat source and
Forchheimer coefficients is one which belongs to the general class of structural stability problems.
Structural stability (or continuous dependence on the model itself) is one of major importance and
it may be argued that it is as or more important than the widely accepted notion of stability as
continuous dependence upon the initial data. Therefore, we establish rigorous a priori bounds with
coefficients which depend only on boundary data and initial data and which demonstrate
continuous dependence of the solution on changes in Q,a and b.
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