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study question: What is the expression pattern of microRNAs (miRNAs) in human cumulus–oocyte complexes (COCs)?

summaryanswer: Several miRNAs areenriched in cumulus cells (CCs) or oocytes, and are predicted to target genes involved in biological
functions of the COC.

what is known already: The transcriptional profiles of human MII oocytes and the surrounding CCs are known. However, very
limited data are available about post-transcriptional regulators, such as miRNAs. This is the first study focussing on the identification and quan-
tification of small RNAs, including miRNAs, in human oocytes and CCs using a deep-sequencing approach.

study design, size, duration: MII oocytes and CCs were collected from women who underwent IVF.

participants/materials, setting, methods: Using the Illumina/deep-sequencing technology, we analyzed the small
RNAome of pooled MII oocytes (n ¼ 24) and CC samples (n ¼ 20). The mRNA targets of CC and MII oocyte miRNAs were identified using
in silico prediction algorithms. Using oligonucleotide microarrays, genome-wide gene expression was studied in oocytes (10 pools of 19+3
oocytes/each) and 10 individual CC samples. TaqMan miRNA assays were used to confirm the sequencing results in independent pools of
MII oocytes (3 pools of 8+3 oocytes/each) and CC samples (3 pools of 7+3 CCs/each). The functional role of one miRNA, MIR23a, was
assessed in primary cultures of human CCs.

main results and the role of chance: Deep sequencing of small RNAs yielded more than 1 million rawreads. By mapping reads
with a single location to the human genome, known miRNAs that were abundant in MII oocytes (MIR184, MIR100 and MIR10A) or CCs (MIR29a,
MIR30d, MIR21, MIR93, MIR320a, MIR125a and the LET7 family) were identified. Predicted target genes of the oocyte miRNAs were associated
with the regulation of transcription and cell cycle, whereas genes targeted by CC miRNAs were involved in extracellular matrix and apoptosis.
Comparison of the predicted miRNA target genes and mRNA microarray data resulted in a list of 224 target genes that were differentially
expressed in MII oocytes and CCs, including PTGS2, CTGF and BMPR1B that are important for cumulus–oocyte communication. Functional
analysis using primary CC cultures revealed that BCL2 and CYP19A1 mRNA levels were decreased upon MIR23a overexpression.

limitations, reasons for caution: Only known miRNAs were investigated in the present studyon COCs. Moreover, the source
of the material is MII oocytes that failed to fertilize.

wider implications of the findings: The present findings suggest thatmiRNA could playa role in the regulationof the oocyte and
CC crosstalk.
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Introduction
The quality of oocytes obtained during IVF procedures varies considerably.
Whilst most mature oocytes are amenable to fertilization,only half of those
fertilized complete embryonic development and fewer implant. In the
ovarian follicle, the maturing oocyte is nurtured and supported by
cumulus cells (CCs), the surrounding somatic cells. CCs are highly specia-
lized cells with trans-zonal cytoplasmic projections that form gap junctions
at the oocyte surface (Albertini et al., 2001) as part of the cumulus–oocyte
complex (COC) (Cha and Chian, 1998; Goud et al., 1998; Barrett and
Albertini, 2010). Disruption or deregulation of the CC interactions with
the oocyte can affect oocyte quality and consequently embryo develop-
ment and pregnancy outcome. Much knowledge on human oocytes and
CCs has been generated over recent years mainly owing to technological
advances in gene expression analysis using microarray (Assou et al.,
2006; Gasca et al., 2007; Assou et al., 2009; Assou et al., 2011), CGH
array (Gutierrez-Mateo et al., 2004; Fragouli et al., 2010) and high-fidelity
RNA amplification (Wood et al., 2007). Such techniques have also
allowed entire profiling of the transcriptional activity in single human
oocytes (Grondahletal., 2010).We and othershave identifiedseveral tran-
scripts in human MII oocytes and the surrounding CCs that are crucial for
oogenesis and folliculogenesis (Assou et al., 2006; Kocabas et al., 2006).
However, the post-transcriptional regulation of oocyte and CC transcripts
needs to be elucidated. This is particularly important also because the sta-
bility and translation of the maternal mRNAs, that are accumulated during
oocyte maturation (Niakan et al., 2012) and that drive human
preimplantation development, are controlled by post-transcriptional regu-
latory mechanisms (Bettegowda and Smith, 2007).

Recently, it has been demonstrated that small (�19–25 nucleotides in
length) endogenous non-coding transcripts, called microRNAs
(miRNAs), execute key functions by silencing the expression of specific
target genes in plant, animal and human genomes (Reinhart et al., 2002;
Lewis et al., 2005; Nilsen, 2007; Krol et al., 2010). In addition, miRNAs
are involved in the regulation of many cellular processes, including cell
proliferation, differentiation and apoptosis (Bartel, 2004). The miRNA
repertoires are cell type specific and change markedly during develop-
ment (Carthew and Sontheimer, 2009). Changes in miRNA expression
profiles have been linked to pathologies, such as cancer (Ventura and
Jacks, 2009). Moreover, miRNAs have been associated with infertility
as shown in female mice in which Dicer, an essential factor in miRNA bio-
genesis, was genetically ablated (Murchison et al., 2007; Nagaraja et al.,
2008). Futhermore, analysis of messenger RNA (mRNA) expression
during mouse and bovine oogenesis shows that a large proportion of ma-
ternal genes are regulated by miRNAs (Tang et al., 2007; Lingenfelter
et al., 2011). Thus, miRNA profiling might help us to better understand
the regulation of transcripts involved in human reproduction.

The aim of the present study was (i) to identify and quantify small
RNAs, including miRNAs, in human CCs and MII oocytes and (ii) to char-
acterize the biological relationships between miRNAs and the mRNA
expression profiles of MII oocytes and CCs.

Materials and Methods

Sample collection and processing
Human MII oocytes that failed to fertilize and CCs were collected from
patients who underwent conventional IVF or ICSI. All patients signed

informed consent forms. Moreover, the material used in the present
study would have been discarded as all the MII oocytes used were IVF
by-products.

Oocytes and CCs
MII oocytes that failed to fertilize were collected 24 h post-insemination as
previously described (Assou et al., 2006; Monzo et al., 2012) and CCs
were mechanically removed from MII oocytes before ICSI. MII oocytes
were pooled for sequencing, microarray and validation by RT–qPCR. CCs
were pooled for sequencing and RT–qPCR validation, whereas 10 individual
CCs were used for microarray analysis (Supplementary data, Table SI). All
samples were immediately transferred in 0.5 ml Eppendorfw tubes contain-
ing RLT lysis buffer (ref: 74004; Qiagen) and frozen at 2808C.

RNA extraction
The RNeasy Micro Kit (ref: 74004; Qiagen) was used to isolate both total and
small RNAs from MII oocytes and CCs. Small RNA was extracted as
described in the manufacturer’s protocol for the RNeasy Micro Kit
(ref: 74004; Qiagen) with the following modifications: the lysate/RLT was
equilibrated at 378C for a few minutes prior to RNA purification, and after
addition of the carrier RNA and lysis (0.2 ng/ml), 1.5 volumes of 100%
ethanol were added to the lysates instead of one volume of 70% ethanol.
Total RNA (5 ng/ml for oocytes and 2 mg/ml for CCs) was quantified
using a NanoDropw ND-1000 spectrophotometer (NanoDrop ND-
Thermo Fisher Scientific, Wilmington, DE, USA) and its integrity assessed
by using an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA,
USA, http://www.agilent.com).

Preparation of the small RNA cDNA
libraries and sequencing
Small RNA cDNA libraries were prepared according to the Illumina’s V1.0
protocol. The 5′ RNA adaptor (5′-GUUCAGAGUUCUACAGUCCGA
CGAUC-3′) was ligated to the oocyte and CC small RNA pools (Supplemen-
tary data, Table SI) with 1 ml of T4 RNA ligase (10 U/ml) (ref: M0242L; NEB)
in the presence of RNase Out (ref: 10777-019; Invitrogen) overnight at258C.
The ligation reaction was stopped by addition of 2× formamide loading dye
and size fractionated on a 15% TBE urea polyacrylamide gel. The 40–60 base
pair fraction (RNA plus 5′ adaptor) was excised and the RNA was eluted by
incubating the gel slice at 48C overnight in 600 ml NaCl 0.3 M, precipitated
and suspended in DEPC-treated water. The 3′ RNA adapter (5′-pUC
GUAUGCCGUCUUCUGCUUGidT-3′; p, phosphate; idT, inverted deox-
ythymidine) was then ligated to the RNA at 258C overnight with T4 RNA
ligase (NEB) in the presence of RNase Out (Invitrogen). The RNA with the
5′ and 3′ adaptors was size fractionated on a 10% TBE urea polyacrylamide
and the 60–100 base pair RNA fraction was extracted as described above.
Superscript II reverse transcriptase (Invitrogen) was used to reverse tran-
scribe the RNA using the Illumina small RNA RT-Primer (5′-CAAGCA
GAAGACGGCATACGA-3′). The resulting cDNA was submitted to 15
amplification cycles using Hotstart Phusion DNA Polymerase (NEB) and
the Illumina small RNA primer set (5′-CAAGCAGAAGACGGCAT
ACGA-3′; 5′-AATGATACGGCGACCACCGA-3′). After purification on a
12% TBE urea polyacrylamide gel, the PCR products were eluted in buffer
(5:1, 7.5 M ammonium acetate) at 48C overnight. The resulting gel slurries
were submitted to Spin-X filters (Corning) to purify the PCR products
before ethanol precipitation and pellet suspension in water. The DNA was
quantified using an Agilent DNA 1000 chip and diluted to 10 nM for sequen-
cing using an Illumina 1G sequencer.
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Complementary RNA preparation
and microarray processing
Total RNA samples from 10 pools of MII oocytes (2.7+1.4 ng/ml per pool)
(Supplementary data, Table SI) were subjected to two rounds of linear amp-
lification according to the manufacturer’s ‘double amplification’ protocol
(two-Cycle cDNA Synthesis Kit; Invitrogen). Labeled fragmented cRNA
was hybridized to HG-U133 plus 2.0 GeneChip arrays (Affymetrix, Santa
Clara, CA, USA) as described in Assou et al. (2006, 2009; Monzo et al.
2012). Total RNA (50 ng) from 10 individual CCs was used to prepare
cRNA using the Affymetrix 3′ IVT express protocol (ref.901229) as
described in (Ouandaogo et al., 2011). After fragmentation, the labeled
anti-sense aRNA (15 mg) was hybridized to HG-U133 plus 2.0 GeneChip
arrays (Affymetrix

TM

). Each CC sample was processed individually on a
microarray chip.

Data processing and gene expression
profile analysis
After image processing using the Affymetrix Microarray Suite 5.0, the .CEL
files were analyzed using the Affymetrix Expression Console

TM

software
and normalized with the MAS5.0 algorithm by scaling each array to a target
value of 100 using the global scaling method to obtain an intensity value
signal for each probe set. Gene annotation was performed using NetAffx
(http://www.affymetrix.com; March 2009). Genes with significant differen-
tial expression profiles between MII oocytes and CC samples were identified
using the significance analysis of microarray (SAM) algorithm (http://
www-stat.stanford.edu/~tibs/SAM/), which utilizes a Wilcoxon test statis-
tic and sample-lable permutation to evaluate statistical significance between
sample groups. SAM provides mean fold change values (FC . 2) and a false
discovery rate (FDR , 5%) confidence percentage based on data permuta-
tion (n ¼ 300). Hierarchical clustering was carried out with CLUSTER and
TREEVIEW software (Eisen et al., 1998).

Small RNA annotation and deep-sequencing
data analysis pipeline
First, short sequences of 19–22 nucleotides (nt) in length were independent-
ly analyzed as described in Philippe et al. (2009). Briefly, reads were mapped
with the CRAC software and reads with a single location were annotated with
a double-step process according to the ENSEMBL Genome Browser
(Ensembl API version 66, http://www.ensembl.org/index.html): the distri-
bution of reads relative to protein coding genes (exonic, intronic or intergenic
part) and the distribution in non-coding regions (Fig. 1A). Then, all the anno-
tated non-coding transcripts were compiled to specify their frequency and
distribution. Finally, the GeneGo MetaCore pathway analysis software
(St. Joseph, MI), which provides predicted validated targets for known
miRNAs, was used for miRNA target prediction.

Taqman miRNA assays
Complementary DNA was synthesized from total RNA from pooled MII
oocytes or CCs (Supplementary data, Table SI) using the TaqMan
miRNA-specific primers, LET7b, MIR21, MIR30d, MIR184 and MIR10A
(ref: #4427975, Life Technologies), according to the TaqMan MicroRNA
RT protocol (Applied Biosystems). For reverse transcription, 5 ml (10 ng)
of RNA sample, 0.15 ml (100 mM) dNTPs, 1 ml of 50 U ml21 MultiScribe
reverse transcriptase, 1.5 ml 10× RT buffer, 0.19 ml of 20 U ml21 RNase in-
hibitor and 3 mL of 50 nM stem-loop RT primer (all from the TaqMan Micro-
RNA Reverse Transcription Kit; Applied Biosystems) were used. Reaction
mixtures (15 ml) were incubated first at 168C for 30 min and then at 428C
for 30 min, inactivated at 858C for 5 min and then stored at 48C. Quantitative
PCR was performed using a Roche LightCycler 480 apparatus. The 10 ml

PCR reaction mixtures included 4 ml of RT product, 4.5 ml 2× TaqMan
(AmpErase UNG) Universal PCR Master Mix and 0.5 ml of primer and
probe mix from the TaqMan MicroRNA Assaykit (ref: 4324018; Applied Bio-
systems). Reaction mixtures were incubated in a 384-well plate at 958C for
10 min, followed by 40 cycles at 958C for 15 s and at 608C for 60 s. RN
U6-1 was used as reference gene for normalization of the miRNA expression
levels. This endogenous gene control showed a stable expression pattern
between CCs and oocyte samples. The relative expression levels of target
miRNAs were determined by using the equation 22DCT, in which DCT

were calculated as follows:

DCT = CT miRNA of interest − CT RN U6−1

CC culture and miRNA transfection
The fresh CCs were mechanically separated from the oocyte by using two
needles. One needle was placed on the CC layer to keep the oocyte in
place. The other needle was used to quickly cut off as much as possible of
the cell layer, without damaging the oocyte. The CC clumps were transferred
into a dish coated with 10 mg/cm2 type I– III human collagen (in alpha-MEM
medium) and cultured in serum-free medium (SPE-IV/EBM). At confluence,
cells were washed by PBS and detached with TrypLE

TM

Select (3436D; Life
Technologies) treatment for 5 min at 378C. They were then seeded onto
new culture dishes treated by human collagen I– III for expansion. The follow-
ing experiments were performed on a primary culture of CCs obtained from
one patient at passage 3 (P3). These cells were cultured in 100 mm culture
dishes with an estimated plating density of 2.5 × 105 cells/well. When
cells reach 50–60% confluence after 2 days in culture, they were transfected
with 5 mg of wild-type MIR23a locus or MIRD23 (mutated MIR23a locus that
expresses only MIR24 and MIR27a) cloned into the MIE retroviral vector
using jetPEIw (www.polyplus-transfection.com) (Rathore et al., 2012). The
miR-23 constructs were tagged with GFP in order to assess the transfection
efficiency, which ranges between 70 and 80%. Total RNA was extracted 48 h
after transfection to perform quantitative RT–PCR analysis. The transfection
experiments were repeated three times on P3 CC cultures and the qRT–
PCR experiments were performed in triplicate. We verified that the P3
cells used in the above experiment retained the properties of CCs at the
first passage (P1) by RT–qPCR analysis of three genes known to be linked
to CC function, namely AREG, STAR and PTX3. It was reported in granulosa
cell (GC) primary cultures that the cells retained their properties up to four
passages (Brůcková et al., 2008).

Quantitative PCR for mRNA
Total RNA derived fromthe primary CC cultures was reverse transcribed in a
final volume of 20 ml with the SuperScriptw First-Strand Synthesis System
(Invitrogen) according to the manufacturer’s instructions. Quantitative
PCR was performed in 384-well plates (Sorenson BioScience, Inc.) on a Light-
cyclerw 480 Real-Time PCR System (Roche Diagnostics) using a reaction mix
(final volume of 10 ml) that contained 2 ml cDNA, 5 ml SybrGreen (Roche
Diagnostics) and 0.5 mM forward and reverse primers (BAX, forward
primer 5′-CCAGCTGCCTTGGACTGT-3′ and reverse primer 5′-ACCC
CCTCAAGACCACTCTT-3′; BCL2, forward primer 5′-GGCTGATATT
CTGCAACACTG-3′ and reverse primer 5′-GGCAATGTGACTTTTT
CCAA-3′; CYP19A1, forward primer 5′-TGCAAAGCACCCTAATGTTG-
3′ and reverse primer 5′-TTTGTCCCCTTTTTCACTGG-3′) and the fol-
lowing conditions: incubation at 958C for 10 min, then 40 cycles of 10 s at
958C, 20 s at 638C and 25 s at 728C. At the end, a melting curve from 95
to 638C was performed to control primer specificity. The geometric mean
of the GAPDH showed stable expression pattern across the treatment
groups that were compared. Therefore, GAPDH was used as endogenous
control.
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Figure 1 Computational pipeline for the analysis of the deep-sequencing data. (A) Small RNA cDNA libraries from human MII oocytes, and CCs were
subjected to deep sequencing. Raw sequence reads were filtered, mapped to the reference human genome using the CRAC software and annotated
according to the ENSEMBL Genome Browser (Ensembl API version 66). The location (intergenic, intronic or exonic) of reads that perfectly mapped to
a single location in the human genome was determined. The distribution of the non-coding RNA classes, including small RNA, large intergenic non-coding
RNAs (lincRNAs), other large non-coding RNAs (lncRNAs) and other small RNAs in the MII oocyte or CC genomes is given as a percentage of all mapped
tags. The small RNA category (blue) contains known miRNAs. (B) Size distribution of the sequence reads. The two histograms show the length distribution
of small RNAs in the MII oocyte and CC libraries.
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Statistical analysis
The quantitative PCR results were expressed as the mean+ standard error
of mean. One-way ANOVA was used for multiple comparisons, using SPSS
for Windows (SPSS 16.0, SPSS Inc., Chicago, USA) and t-test was used for
comparison between two groups; P , 0.05 was considered as significant.

Results

Deep sequencing of the small RNAome
of human MII oocytes and CCs
Deep sequencing of the two small RNA cDNA libraries from human MII
oocytes and CCs produced over 1 million separated reads. The pipeline
approach used to analyze the sequences and identify known miRNAs is
summarized in Fig. 1A. Most reads had an intronic (75% of CC and 31% of
MII oocyte reads) or intergenic (56% of MII oocyte reads) location
(Fig. 1A). In both libraries, reads showed a size distribution peak at 19
nt (Fig. 1B) that corresponded to miRNAs and represented 22% of the
reads in the CC library. Reads of the MII oocyte library had also a
second size distribution peak at around 25–27 nt that should correspond
to Piwi-interacting RNA (pi-RNA)-like sequences (26–31 nt in size)
(Fig. 1B).

miRNAs expression in human MII
oocytes and CCs
Only three known miRNAs were identified in the MII oocyte library,
whereas the number of known miRNAs increased to 32 in the CC
library (Table I). The most abundant miRNAs in CCs were LET7b (51
reads), LET7c (31 reads) and MIR21 (28 reads). In MII oocytes, the
most abundant miRNAs were MIR184 (1988 reads) and MIR10A (555
reads). To validate the sequencing data, the relative expression levels
of five randomly selected miRNAs was assessed in independent pools
of mature MII oocytes and CCs (Supplementary data, Table SI) by
RT-quantitative PCR. The results were in accordance with the sequen-
cing data (Fig. 2).

Identification of miRNA targets and their
function
Using the GenGo Metacore software, we found that 30 mRNAs, pre-
dicted and experimentally validated by other laboratories to have roles
in transcription regulation and cell cycle, were targeted by the three
miRNAs identified in the MII oocyte library (MIR184, MIR100 and
MIR10A) (Supplementary data, Table SII). For instance, SMARCA5
(SWI/SNF-related matrix associated actin-dependent regulator of chro-
matin, subfamily a member 5) was shown to be a target of MIR100
(Bhushan and Kandpal, 2011); interestingly SMARCA5 may be implicated
in oocyte reprogramming (Assou et al., 2009). NCOR2 (nuclear receptor
co-repressor 2), which mediates the transcriptional repression activity of
nuclear receptors, was a target of MIR184 (Wu et al., 2011). Finally
HOXA1, a homeobox gene whose mRNA is abundant in oocytes was tar-
geted by MIR10A (Lund, 2010); it is noteworthy that HOXA1 is essential
for the regulation of oocyte-specific gene expression in the mouse (Hun-
triss et al., 2006). The 32 miRNAs enriched in CCs (Supplementary data,
Table SIII) targeted 538 mRNAs experimentally validated mRNAs by
other laboratories to be involved in several biological functions, including
cell assembly and organization, development, cell death and survival.

The CC miRNAs with the highest number of predicted mRNA targets
were MIR21 (n ¼ 115), MIR29a (n ¼ 54) and MIR23 (n ¼ 30). More-
over, more than 12% of the predicted mRNA targets were regulated
by more than one miRNA. For instance, HMGA2 (high mobility group
AT-hook 2) was targeted by six CC miRNAs (LET7b/7d/7e/7g/7i and
MIR30a), PTEN (phosphatase and tensin homolog) by five (MIR93,
MIR29a, MIR23, MIR21 and MIR132), LIN28 by five (MIR30a, MIR30d,
MIR30e, MIR125a and LET7b), TGFBR3 (TGF-beta receptor type III) by
four (MIR21, MIR93, MIR23 and LET7c) and ESR1 (estrogen receptor 1)
also by four (MIR93, MIR146b, LET7i and LET7b) (Supplementary data,
Table SIII). As a preliminary experiment to assess the effect of MIR23a
on a predicted target, we analyzed the impact of its forced expression
on BCL2 mRNA level in primary cultures of human CCs isolated from
mature COCs. BCL2 mRNA level decreased upon MIR23a overepres-
sion as did the CYP19A1 mRNA. In contrast, BAX mRNA that is not pre-
dicted as a target did not display a decrease but rather a significant
increase (Fig. 3). It is worth mentioning that BAX is a pro-apoptotic
gene, whereas BCL2 is anti-apoptotic. Further experiments are required
to propose a mechanism to account for these results.

Genes that are differentially expressed
in oocyte and CCs are predicted targets
of oocyte and CC miRNAs
To explore the biological relationships between miRNAs and the mRNA
expression profiles of MII oocytes and CCs, microarray analyses were
performed using 10 pools of MII oocytes or 10 individual CCs (Supple-
mentary data, Table SI). Using SAM (with a fold change ≥2 and
FDR , 1%), we identified a total of 10 169 genes that were differentially
expressed in the two groups. Overall, 4207 genes were specifically
up-regulated in MII oocytes and 5962 genes were up-regulated in individ-
ual CCs (Supplementary data, Tables SIV and SV). Comparison of these
differentially expressed mRNAs with the predicted miRNA target genes
resulted in a list of 224 genes (Supplementary data, Table SVI) that
included genes that were up-regulated in MII oocytes and significantly
down-regulated in CCs, such as CDC25A (cell division cycle 25
homolog A), a key regulator of oocyte meiosis (fold: 53; FDR ¼ 0;
target of MIR21, MIR424 and LET7b), and genes associated with chroma-
tin remodeling, such as DNA methyltransferase DNMT3B (fold: 58;
FDR ¼ 0; a target of miR-29a), DNMT1 (fold: 36; FDR ¼ 0; a target of
MIR21), DNMT3A (fold: 6; FDR ¼ 0; a target of MIR29a) and
SMARCA5 (fold: 5; FDR ¼ 0; a target of MIR100). The expression of
some CC-specific genes known to be regulated by the oocyte-secreted
paracrine factor GDF9 (Growth differentiation factor 9), such as
prostaglandin-endoperoxide synthase 2 PTGS2 (fold: 93; FDR ¼ 0)
and the connective tissue growth factor CTGF (fold: 38; FDR ¼ 0),
were predicted targets of MIR542 and MIR21, respectively, and bone
morphogenetic protein receptor BMPR1B (fold: 18; FDR ¼ 0) was a pre-
dicted target of MIR21 (Fig. 4A). Additionally, MIR21 was predicted to
target many transcription factors up-regulated in CCs, such as nuclear
factor NFIB (fold: 49; FDR ¼ 0), myocyte enhancer factor MEF2C
(fold: 33; FDR ¼ 0) and retinoid X receptor alpha RXRA (fold: 4;
FDR ¼ 0) and MIR29a was predicted to target several extracellular
matrix (ECM) genes up-regulated in CCs, such as collagen COL4A1
(fold: 52; FDR ¼ 0), COL3A1 (fold: 6; FDR ¼ 0), COL1A1 (fold: 24;
FDR ¼ 0) and COL1A2 (fold: 9; FDR ¼ 0). Moreover, many
pro-apoptotic genes that were up-regulated in CCs, including
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BCL2-associated X protein BAX (fold: 14; FDR ¼ 0), caspase CASP7
(fold: 6; FDR ¼ 0) and CASP3 (fold: 2; FDR ¼ 0), were predicted
targets of the LET7 family (LET7b/7d/7g/7e), MIR30d and MIR29a. Anti-
apoptotic genes that were up-regulated in CCs, such as myeloid cell leu-
kemia sequence MCL1 (fold: 23; FDR ¼ 0) and BCL2 (fold: 4; FDR ¼ 0),
were predicted to be targeted by MIR29a, MIR125a, MIR21 and MIR30e,
whereasBIRC5/Survivin (fold: 7; FDR ¼ 0), which wasup-regulated in MII
oocytes, was targeted by both MIR542 and MIR320a. To visually assess
the differentially expressed predicted miRNA target genes in CC and

oocyte samples, we performed a supervised hierarchical clustering ana-
lysis (Fig. 4B).

Discussion
In this work we investigated the miRNA content of human MII oocytes
and CCs. Analysis of the sequencing data from the two small RNA
cDNA libraries indicates that overall the miRNA composition of the
two cell types is different. Notably, the number of sequences

.............................................................................................................................................................................................

Table I Putative miRNAs identified in human CCs and MII oocytes

Micro RNAs Ensembl ID Occ. Sequence Chr. Location

CCs

hsa-LET7b ENSG00000207875 51 TGAGGTAGTAGGTTGTGTG 22 46 509 570

hsa-LET7c ENSG00000199030 31 TGAGGTAGTAGGTTGTATG 21 17 912 157

hsa-MIR21 ENSG00000199004 28 TAGCTTATCAGACTGATGT 17 57 918 633

hsa-MIR182 ENSG00000207990 7 CAATGGTAGAACTCACACT 7 129 410 286

hsa-MIR30d ENSG00000199153 5 TGTAAACATCCCCGACTGG 8 135 817 164

hsa-MIR99b ENSG00000207550 4 CACCCGTAGAACCGACCTT 19 52 195 870

hsa-MIR320a ENSG00000208037 4 GCTGGGTTGAGAGGGCGAA 8 22 102 486

hsa-MIR132 ENSG00000207724 4 TAACAGTCTACAGCCATGG 17 1 953 225

hsa-MIR191 ENSG00000207605 3 CAACGGAATCCCAAAAGCA 3 49 058 108

hsa-MIR146b ENSG00000202569 3 TGAGAACTGAATTCCATAG 10 104 196 276

hsa-MIR93 ENSG00000207757 2 CAAAGTGCTGTTCGTGCAG 7 99 691 441

hsa-MIR744 ENSG00000211589 2 TGCGGGGCTAGGGCTAACA 17 11 985 225

hsa-MIR508 ENSG00000207589 2 TGATTGTAGCCTTTTGGAG X 146 318 466

hsa-MIR30a ENSG00000207827 2 TGTAAACATCCTCGACTGG 6 72 113 300

hsa-MIR23 ENSG00000207563 2 ATCACATTGCCAGGGATTA 9 97 847 546

hsa-MIR140 ENSG00000208017 2 ACCACAGGGTAGAACCACG 16 69 967 045

hsa-LET7i ENSG00000199179 2 TGAGGTAGTAGTTTGTGCT 12 62 997 470

hsa-LET7g ENSG00000199150 1 TGAGGTAGTAGTTTGTACA 3 52 302 354

hsa-LET7e ENSG00000198972 1 TGAGGTAGGAGGTTGTATA 19 52 196 045

hsa-LET7d ENSG00000199133 1 AGAGGTAGTAGGTTGCATA 9 96 941 122

hsa-MIR542 ENSG00000207784 1 TGTGACAGATTGATAACTG X 133 675 396

hsa-MIR425 ENSG00000199032 1 TGACACGATCACTCCCGTT 3 49 057 633

hsa-MIR424 ENSG00000199097 1 CAGCAGCAATTCATGTTTT X 133 680 712

hsa-MIR379 ENSG00000199088 1 TGGTAGACTATGGAACGTA 14 101 488 407

hsa-MIR30e ENSG00000198974 1 TGTAAACATCCTTGACTGG 1 41 220 042

hsa-MIR29a ENSG00000198981 1 TAGCACCATCTGAAATCGG 7 130 561 509

hsa-MIR25 ENSG00000207547 1 CATTGCACTTGTCTCGGTC 7 99 691 196

hsa-MIR210 ENSG00000199038 1 CTGTGCGTGTGACAGCGGC 11 568 114

hsa-MIR202 ENSG00000199089 1 GAGGTATAGGGCATGGGAA 10 135 061 041

hsa-MIR197 ENSG00000207709 1 CACCACCTTCTCCACCCAG 1 110 141 563

hsa-MIR183 ENSG00000207691 1 TATGGCACTGGTAGAATTC 7 129 414 809

hsa-MIR125a ENSG00000208008 1 TCCCTGAGACCCTTTAACC 19 52 196 520

MII oocytes

hsa-MIR184 ENSG00000207695 1988 TGGACGGAGAACTGATAAG 15 79 502 181

hsa-MIR10A ENSG00000207777 555 TACCCTGTAGATCCGAATTTGT 17 46 657 266

hsa-MIR100 ENSG00000207994 38 AACCCGTAGATCCGAACTT 11 122 022 985

Occ, occurrence; Chr, chromosome.
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corresponding to known miRNAs was higher in the CC library than in the
mature MII oocyte library. This is consistent with the hypothesis that in
germ cells, the number of expressed miRNAs is stage specific and
decreases during development while the number of piRNAs increases
(Malone et al., 2009; Faunes et al., 2012). Accordingly, the two size dis-
tribution peaks for the small RNA sequences of the MII oocyte library
suggest that the transition of a major small RNA class from miRNA to
piRNA might play a crucial role in the human oocyte–cumulus crosstalk,
in line with previous findings (Girard et al., 2006; Ohnishi et al., 2010; Suh
et al., 2010; Tam et al., 2008; Yang et al., 2012a). Moreover, comparison
of the miRNA expression profiling data and the list of target mRNAs that
were differentially expressed in MII oocytes and CCs indicated that many
genes that are up-regulated in MII oocytes are potential targets of CC
miRNAs, thus suggesting that the oocyte–CC crosstalk might be
mediated also via miRNAs. In addition, miRNAs have been reported
to show a dynamic change during oocyte maturation in the mouse

(Tang et al., 2007), bovine (Tesfaye et al., 2009; Mondou et al., 2012)
and human (Xu et al., 2011).

Expression profiling of miRNA by deep sequencing indicated that
MIR100, MIR184 and MIR10A are specifically expressed in human MII
oocytes. These miRNAs appear to be involved in the regulation of
gene transcription, cell cycle and oocyte reprogramming. Interestingly,
the comparison of our data on human oocytes with those reported for
miRNA profiles in oocytes from other species (mouse, bovine and
human) indicates that MIR10 and MIR100 are restricted to human and
bovine oocytes (Tang et al., 2007; Abdel El Naby et al., 2013). It is
worth noting that these miRNAs of interest are not affected by using
MII oocytes that have failed to fertilize as source of material.

In human CCs, the LET7 miRNA family is the most abundant miRNA
cluster and let-7b is the most abundant individual miRNA. This supports
previous miRNA expression profile studies that identified the LET7
miRNA family as abundantly expressed in mouse and bovine ovaries

Figure 2 Relative expression levels of MIR21, MIR30d, LET7b, MIR184 and MIR10A in MII oocytes and cumulus cells (CCs) by qRT–PCR. The transcript
levels were calculated relative to the expression of RN U6-1. The mean+ SEM for each sample is presented in the bar graphs. Asterisk ¼ P , 0.01.
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(Reid et al., 2008; Wyman et al., 2009; Miles et al., 2012) and in develop-
ing human ovary (Childs et al., 2012). Additionaly, the comparison
between our study on human CCs and previously published study on
bovine CCs (Abdel El Naby et al., 2013) reveals that LET7b, LET7c
LET7g MIR210 and MIR125a are expressed in both.

Globally, miRNAs that are abundant in CCs appear to be associated
with the regulation of ECM and apoptosis. ECM formation through the
production of ECM components by CCs is an important process that
determines oocyte maturation and fertilization (Russell and Salustri,
2006; Dunning et al., 2012). Analysis of the microarray data from individ-
ual CCs revealed that collagen genes (COL4A1, COL4A5, COL3A1,
COLA2, COL1A1) are up-regulated in CCs compared with MII oocytes
and are predicted to be MIR29a targets. Among the various biological
functions of this miRNA, there is also the regulation of the expression
of ECM components in different organs, including heart, lung, kidney
and liver (van Rooij et al., 2008; Jiang et al., 2010; Cushing et al., 2011).
It is clear that the biological functions of MIR29a are complex, but the

direct participation of this miRNA in regulating the expression of ECM
components in human CCs needs further investigation.

CC apoptosis may compromise the oocyte developmental compe-
tence (Lee et al., 2001) and elevated CC apoptosis has been associated
with oocyte maturation delay and poor pregnancy outcome (Lee et al.,
2001; Host et al., 2002). Here we show that the anti-apoptotic BCL2,
MCL1 and the pro-apoptotic BAX, CASP3 and CASP7 are up-regulated
in CCs and are predicted targets of several CC miRNAs, suggesting a
role for miRNAs in the regulation of apoptosis in COCs. Our findings
also indicate that some miRNAs can target genes with opposite func-
tions. For instance, MIR29a appeared to target both anti-apoptotic
(BCL2 and MCL1) and pro-apoptotic (CASP7) genes, suggesting that it
may play roles in pathological conditions that might lead to ovarian
failure. A recent study showed that MIR23a induces apoptosis in
human GC (Yang et al., 2012b). Similarly, we observed that after transi-
ent transfection of the whole MIR23a locus in primary cultures of CCs
isolated from mature COCs, the mRNA expression of the anti-apoptotic

Figure 3 Biological effects of MIR23a in cultured CCs. (A) Phase contrast micrographs of primary CC cultures used as a model to test the functionality of
miR-23a. (B) Primary CCs (P3) were transfected with the wild-type MIR23a locus, MIRD23 (locus without MIR23a) or the MIE retroviral vector alone. 48 h
after transfection, the expression of BAX, BCL2 and CYP19A1 was checked by qRT–PCR. Asterisk, P ≤ 0.05. The transfection experiments were repeated
three times and the qRT–PCR experiments were performed in triplicate.
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Figure 4 (A) Schematic representation of the components of the GDF9 signaling pathway and targeting CC miRNAs. Some CC-specific genes known to
be regulated by the oocyte-secreted paracrine factor (GDF9) (Elvin et al., 1999), such as prostaglandin endoperoxide synthase 2 [PTGS2 or
cyclooxygenase-2 (COX-2)] and connective tissue growth factor (CTGF), are predicted targets of miRNAs that were identified in the CC small RNA
cDNA library (MIR542 and MIR21, respectively) (Adam et al., 2012; Moore et al., 2012). (B) Heat map representation of the 224 genes that are differentially
expressed in MII oocytes and CCs and that are potential targets of the miRNAs identified by deep sequencing. (a) Cluster of targeted genes that are
up-regulated in CCs but not MII oocytes. (b) Cluster of targeted genes that are highly expressed in MII oocytes but not CCs. Over-expression (red)
and under-expression (green). Rows, genes; columns, profiled samples. The detailed list of the target genes and miRNAs is in Supplementary data, Table VI.
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BCL2 was reduced and that of the pro-apoptotic BAX was increased in
comparison with CC cultures transfected with the MIRD23 construct
or with control vector (MIE). Additionally, MIR21, which was one of
the most abundant miRNAs in the CC library, has a critical role in main-
taining the survival of GC in periovulatory follicles in response to lutein-
izing hormones and acts as an anti-apoptotic factor in cultured murine
GC (Fiedler et al., 2008; Carletti et al., 2010; Hennebold, 2010). All
these results suggest that both MIR21 and MIR23 play an important
role in controlling transcripts that are involved in the ovulatory follicle
apoptosis. Understanding the mechanisms through which the MIR21,
MIR23 and MIR29a affect CC apoptosis may help to explain their poten-
tial role in the pathogenesis of ovarian failure (Yang et al., 2012b).

Finally, our study shows that several DNA methyltransferases
(DNMTs) are up-regulated in MII oocytes are targeted by MIR29a and
MIR21 (Fabbri et al., 2007; Zhang et al., 2011), two miRNAs which
were identified in the CC miRNA library. This suggests a CCs–oocyte
miRNA trafficking possibly via gap junctions and points to novel functions
for miRNAs in the COC crosstalk. Moreover, alteration of the MIR21 or
MIR29a-dependent regulation of DNMT expression could be one of the
key molecular events leading to abnormal DNA methylation in oocytes
and could be associated with a decrease in reproductive potential (Yue
et al., 2012).

Conclusion
This study provides the first characterization of the miRNA profile in
human CCs and MII oocytes using a deep-sequencing approach com-
bined with genome-wide gene expression arrays. The present findings
suggest that miRNAs could play a role in the regulation of oocyte and
CC cross-talk.

Supplementary data
Supplementary data areavailable athttp://humrep.oxfordjournals.org/.
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