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Abstract The two-dimensional steady flow of an incompressible second-order viscoelastic fluid between two parallel plates was studied 
in terms of vorficity, the stream function and temperature equations. The governing equations were expanded with respect to a small pa- 
rameter to get the zeroth- and first-order approximate equations. By using the differenlial quadrature method with only a few grid 
points, the high-accurate numerical results were obtained. 
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1 Introduction 

Although the computation of the fluid mechanics has 

great development during the last decades,  due to the 

model in nonlinear fluid mechanics is very complicat-  

ed,  the more efficient techniques for solving this prob-  

lem still at tract  the interest of  many researchers .  The 

differential quadrature method (DQM) inh~ iuced  by 

Bellman, et O~, [1'2] is a~ efficient numerical method 

for solvivg partial differential equations. In recent  

years ,  the DQM has been widely used for solving the 

problems of  engineering and physical sciences ~:J . The 

advantage of  the DQM lies in that  the information on 

all grid points is used to approximate the derivatives of  

unknown functions, so that  accurate results can be 

obtained by using this method with a few grid points.  

In recent  years ,  there appeared many models in 

non-Newtonian fluids. Some models  only consist  of  

the momentum equation ts'~ , and other models not 

only consist  of  momentum equation but also involve 

energy equation. The unsteady convection-diffusion 

equation in a viscoelastic fluid flowing through a tube 

was computed by using the implicit finite difference 

scheme t~°l . The momentum equation and energy 
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equation of  a non-isothermal viscoelastic fluid were  

solved by using Gale rk in ' s  approach and B-splines Em. 

The laminar convection heat  transfer in a second-order  

viseoelamic fluid moving past  a porous regime was  

solved by using a Keller-box implicit finite difference 

scheme t''] . A three-dimensional flow of non-Newto- 

nian fluid was  simulated by using a shooting method 

and fourth-order Rtmge-Kul~ procedure,  and the ef- 

fect  of  the elasticity of  fluid on velocity and tempera-  

ture distributions was  examined qualitatively in Ref. 

[13]. 
In this paper  a fully developed problem of  second- 

order viscoelastic fluid coupled with heat  ~ m s f e r  is 

considered.  H_~dy by using the perturbation procedure 

we get the zeroth- and first-order approximate 

equations. Then,  by using the DQM these equations 

are solved numerically. The numerical results obta/ned 

are in agreement  with existing results qualitatively. 

The present  paper  is organized as follows. In Section 

2, we describe the mathematical  model of  fluids. The 

standard perturbation procedure is applied to yield the 

zeroth- and first-order approximate equations in Sec- 

tion 3. The numerical formulations obtained by the 

DQM are given in Section 4.  In Section 5,  there will be  

a discussion of  the numerical results.  In the last  sec-  

t ion, we give our conclusions and remarks .  

2 Mathematical Model 
Let us consider the two-dimensional steady flow of  
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an incompressible second-order viscoelastic fluid be- 

tween parallel plates, as shown in Fig. 1, in which the 

x-axis is horizontal and the y-axis is vertical upward. 

The governing equations of our problem are given as 

ConOnuity equation V" v = 0, (1) 

Momentum equation pV- VV = V ' a  + pg, ( 2 )  

Energy equation C~oV. VT= K V2T, (3) 

where V denotes the velodty field, T is the tempera- 

ture, g is the gravitational acceleration, p is the den- 

sity, K is the coefficient of thermal conduction, Cp is 

the specific heat at constant pressure, V and ~7 2 are 

the gradient and Laplacian operators respectively, and 

a is the Cauchy stress tensor defined as 

a = - P I  + r ,  (4a) 

r = p.A,(V) + a,A~(V) + a,A,(V), (4b) 

where P is the hydrostatic pressure, / is the unit ten- 

sor, v is the deviatoric stress tensor , p is the coeffi- 

cient of viscosity, a~ ( i = I, 2) are material constants 

characterizing the elasl~city of fluid, and A~( i = 1,2) 

are the first and second Rivlin-Eriken tensor written as 

A, = (grad v )  + (grad v Y ,  l 

dA, l (5) A 2 = ~ 4 = Al(grad V) 4- (glad V)TA,, 

in which d/dt is the material i~e differentiation. 

HI u=O, Tr=O, vffiO 
~ ux=O 

" . . . . . . . . . . . . . . . . . . . . . . .  ; 
uy=O, TyffiO, vffiO L x 

Fig.1 Geometry of flow model 

The equation of state may be written as 

p= p 0 [ 1 - f l ( T -  To)], (6) 

where fl is the volume expansion coefficient, and To is 

the tempemttme at which the fluid density is P0. 

We define dimensionless variables as 

X . ~  U V ¢, ' ' D - '  =U' 

U P H ^ H T - T o  
P =  , r = - ~ - o r ,  a = - ~ a ,  T -  A T  ' 

where H is the reference length of the entrance, U is 

the reference velocity, and z~T = T~ - To is the tem- 

perature difference. For simplicity, we omit the sign ^ 

in the following. 
By using the Bonssinesq appro~dmafion, the govern- 

ing equations (1) - (3) can be reduced to 

a u  3 v  
a---x + Tyy = 0, (7a) 

a u  a u  1 a p  ar= a r ~ )  
u ~--xx + V a y _ ~ ( - ~-x + -~-x + -~-y , (7b) 

a v  a v  1 a p  a r ~  + a r ~ ) _  

Ra ~,-~(T), (7c) 

aT  aT  1 ~7'T, (7d) 
U ~-x+ V a y - ~ - -  ~ 

where Re = pUH//~ is the Reynolds number, Ra = 

C~og A TI~  / K~ is the Rayleigh number, Pr = pC~o/ K is 

the Prandtle number, and ~ ( T )  = (1 - f l T A T ) /  

(fiAT), Y =/~/p is the kinem~ics viscosity, and r is 

the dimensionless deviatoric stress tensor that can be 

written as 

r= = 2 u .  + f l , [ ( 2 u . )  2 + (uy + v . )  2] + f l2[2uu= + 

2vu~ + (2u . )  2 + 2 v . ( u .  + v . ) ] ,  (8a) 

r ~ = 2 v y  + f l l [ (2v~) 2 + ( u  U + v#) 2] + f l 2 [2 u v~  + 

2 w ~  + ( 2 v , )  2 +2u~(u~ + v . ) ] ,  (8b) 

+ 2u~uy + 2v~v~ ],  (8c) 

w h e r e ,  

( ) .  I:/a ayl, " , .  (().)=,:/aya., 
The velocity components u and v may be written in 

the term of the stream function W as 

u = % ,  v = - ~ ,  ( 9 )  

and Vol~ddty (designated by ~ ) is defined by 

oJ = v ~  - u U . ( 1 0 )  

By subslimiing (8) into (Tb) and (7c) ,  elimina~ng 

pressure P ,  and using Eqs. (10) and (7a) the govern- 

ing equations in terms of smeam fundion, vorticity, 

and temperature are given by 

a~, a_~_l V, a a ~V'~ U ~ x + V a y - R e  aJ + ~ 2 [ u  ~xx + v a-y j + 
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Ra  a T  
PrRe' a x '  ( l l a )  

V ' W +  ~ =0,  ( l lb )  

a T  a T  1 V2T. ( l l c )  uy~x+ V a y -  ~ 

3 Perturbation Method 

When the elasticity of the fluid is slight, fl~ and fl~ 

can he considered as small parameters. According to 

Ref.[14],  we have fl, > 0, ~ < 0 and fl~ = - c~2, 

where c ~ 1.6, so we can introduce only one parame- 

ter ~ = - ~2. Obviously ¢ characterizes the elasticity of 

fluid. For clarity of the effect of the elasticity upon the 

flow we expand the governing equations with the re- 

spect to ¢. Based on perturbation method, the vari- 

ables o~, q~, T, u ,  v,  and r are written in the fol- 

lowing forms: 

¢'U ' "U0 ~ ~Ul 

V V0 ] Vi 

= + ¢ + O ( ¢ ~ ) .  ( 1 2 )  O) O) 0 001 I 
T To TI 

ki" , ,%. 0 ,.~1 

By substituting ( 12 ) into (8) - ( 11 ) ,  and neglecting 

O ( C ) ,  we get the following systems: 

(1) The zeroth-order approximate equations 

aoJo 3~o 1 V= Ra aTo (13a) 
U o ~ + V 0  a y  - R e  ~0+prRe ~ a x ,  

V~Wo + to0 =0,  (13b) 

aTo aTo 1 2 
uo ~ + Vo -a ~ - P~Re V To, 

where 

u0 = ( ~ ' o ) , ,  v0 ri - ( ~ ' o ) : ,  
o o rffi=2(Uo):, r, ,=2(Vo),,  
0 0 

~., = ~,,, = ( u o ) ,  + ( V o ) : .  

(13c) 

(13d) 

(14) 

Eq.(14) is the constitutive relation of the viscous flu- 

id. So, the zeroth-order approximation is an incom- 

pressible Newtonian fluid. 

(2) The frmt-order approximate eqn~ons  

Ocoi ~o~1 3~0 ao~0 1 2 
u o - W ~ + v o T y + U . ~ - W + v l  ~-~-- ~ [ V  ~ -  

a a p~  a,T~ (15a) 
(Uo ~-~ + Vo ~-~) V '~o]  + VrRe' a z  ' 

V 2 WI + ~1 = 0, (15b) 

a Tl a Tl a To a To 1 V~ TI 
u° -~x + v° -g-~y + u'  -w~ + v'  ay  - PrRe 

(15c) 
where 
u,=(qt , ) . ,  v,= - (q t , ) . ,  (15d) 
1 r=  = 2 ( u i ) ,  + c [ ( 2 ( u o ) = )  ~- + ( ( u o ) ,  + (vo) : )  z] - 

[2u0(uo)ffi +2v0(Uo)~ + ( 2 ( u 0 ) : )  2 + 

2(vo):((uo)w + (v0)=)] ,  ( lea)  

' + ((u0), + ( v o ) , ) ' ]  r ~  = 2 ( v , ) ,  + c[(2(v0)~) '  

[2uo(v0)~ +2vo(v0)~ + (2(vo) , )  = + 

2u,((uo),  + (v0).)] ,  (16b) 
1 ri r , ,  ( u , ) ,  + ( v , ) :  - [ u o ( ( u o ) ,  + ( V o ) : ) :  + 

v0((Uo), + (vo):), +2(uo):(u0), + 
2(vo),(Vo)~,]. (16c) 

Eqs. (16a),(16b),(16c) are the constitutive relations 

chamd~rizing the elasticity of fluid. So the solution of 

the first-order approximate equations represents the ef- 

fect of elasticity upon the solution of Eq. (11). 
In our problem, assume that the velocity compo- 

nents u = 1/2 and v = 0 at the enU~nce, u = v ri 0 on 

the plate, the flow is in full development at the exit. 

Based on the symmetry, the boundary conditions are 

g i v e n  8 s  

1 
W, = 3~o ( y / 2 ) ,  oJ, - ( v, ) :  = O, u,  = -~ 8~o , 

v~ =O,T, r i l ,  for x=O,  O ~ y ~ 2 ,  

( q ' , ) :  r i 0 , ( ~ , ) :  r i 0 , ( u , ) :  riO, 

v, = O , ( T , ) ,  =0,  for x = 4 ,  0< y < 2 ,  (17) 

~ ,  = 0 ,  o,, = 0 ,  ( u ,  ),, = 0 ,  

v, =0 , (T , )~  =0,  for y = 0 ,  0< x <4,  

q t  = a ~ , ~ +  ( u , ) ,  r i0 ,u ,  =0,  

v, = 0 , ( T , ) ,  =0,  for y = 2 ,  0 ~ x ~ 4 ,  

where i = 0 ,  1, a00 = 1, $1o =0.  

4 Numerical  Formaluations 

In the DQM the partial derivatives of a function ate 

approximated by weighted linear sum of ftmcfion val- 

ues at discrete points in the computational domain. 

According to the DQM, for any function ( ) ,  one has 

( 1 8 a )  
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: (  ) I < ) .  
: ( £ ) 1  = ,-,,.1 , , ,  
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fy(l)  ~ t t  
E~_I [ Uo ( i , j )  ~ .  _ lSr----Re ] T~ ( k , j )  + 

¢q(2) 

, ( 1 8 b )  ~ ., ~,(I)  ~ Z t f l E v o ( i , 3 )  ~ ~ - - - ~ ] T l ( i , l )  

= F2( i , j ) ,  
~ ( t ) ~  

v~ ( i , j )  ~ , u  (1) . = - Ca q f l ( k , 3 ) ,  

where 

where C u) (2) ~(1)  a l l d ~ ( 2 )  - 4  , Ca  , - ~  , _~ are the weightivg co- 

efficient malrices corresponding to first- and second- 

order derivatives respectively, N and M are the num- 

ber of  grid points alon4g the x and y axes respectively. 

From above approximations, one can realize that the 

key issue in the DQM is how to determine its weighlZng 

coefficients and choose the grid points. The formula 

for calculating weighting coefficients has been given in 

Refs. [ 15 ] and [ 16],  and grid distribution used in this 

paper is the same as in Ref. [ 16].  

Substituting (18) into (13) and (14) in Part ( 1 ) ,  

yields 

(?(2) 

~(1) ~ a  ]o~0(k , j  ) + E,~I [ U o ( i , j )  ~ a  - 

" v "i "'~(~) ~ ] ~ 0 ( i , / )  ~,=~[ o~ ,3)  ~ - Re 

Ra  ~ c ( l ) T o ( k , j ) ,  (19a) 
- PrRe 2 ~ = I ~ a  

F,~., ~<2)q" ( k , j )  + v ~  ~ ~2~'u "~a --o --~,o i - ~  --o. i ,  l)  + "o( i , j )  = O, 

(19b) 
/5,(~-) 

~ ,  [ Uo ( i , j )  ~(') ~ "  ~ a  ~---~] T o ( k , j )  + 

~ , ~ , [ v o ( i , j ) C ( ~  1) ~--~]~ T o ( i , l )  = 0 ,  (19c) 

~(1)~ t i , l  ) u o ( i , j )  = Z1~.1.~, _ o ,  , 
(1) 

v0 ( i , j )  = - ~ C a ~0 ( k , j ) ,  (19d) 

where i = 2 , - . . , N - 1 ,  j = 2 , . . . , M - 1 .  

Eq. (14) and the boundary conditions (17) are ap- 

proximated by the DQM for all. 

Similarly, substituting (18) into (15) and (16) in 

Part (2) ,  gnes 

(7.(2) 
N . . (I) v a  

~"~'1 [ u o ( z ' J ) C a  Re ] ~ l ( k , j )  + 
~.(2) 

i .,~(1) ~ ] o j l ( i , l  ) 

R a  N (1) 
= F l ( i , j )  + ~ - - ~ Z ~ . ~  C a T l ( k , 3 ) ,  (20a) 

Ca  W l ( k , 3 )  + E , = ~ . ~  - - l ( i , l )  + o J l ( i , j )  = 0 ,  

(20b) 

3 0 i  

(20c) 

(20d) 

F 2 ( i , j ) )  

u , ( ~ 0 ) .  + v , ( ~ 0 ) .  _1.Re ] 

[ u 0 ( V ' ~ 0 ) = + v 0 ( V ' ~ 0 ) , l  I ' 
u, (  To)x + v , (To) ,  , j  

(21) 

for i = 2 , . . . , N - 1 ,  j = 2 , . . . , M -  1. 

We also employ the DQM to approximate Eq. (16 ) ,  

Fa and F 2 ,  and the boundary conditions (17) for the 

first-order approximation. For the above two nonlinear 

systems (19) and (20) with discrete boundary ccmdi- 

tions, we adopt an iterative method to solve them and 

the numerical results obtained are discussed in the 

next  section. 

5 R e s u l t s  a n d  D i s c u s s i o n  

An iteratlve method for solving nonlinear ~sy~_~_ems 

(19) and (20)  with discrete boundary conditions is 

presented as follows. 
~9.(~) T((~) (n) _ (n) If the n - th  iterations o~ ") , x~  , , u~ , "o~ 

are known, the ( n + 1)-th iteration can be obtained in 

terms of the followivg steps: 

(1 )  Solve the energy Eq. (19c)  or Eq, (20c)  and 
(n) (n) (21) with u~ = u ,  , v, = v,  under the corm~xmd-  

ivg boundary conditions of  T, ; 

(2)  Solve the vorticity Eq. (19a)  or  Eq. (20a)  and 

(") (") ~"÷~) under the (21) w i t h u ~ =  u,  , v ~ = v ~  , T~= , i  

corresponding boundary conditions of  w~ ; 

( 3 )  Solve the stream function Eq. ( i 9 b )  or Eq. 

(20b) with ~ = o~ ÷~ under the corresponding bound- 

ary conditions of q t  ; 

( 4 )  Compute the velocity components from Eq. 

(19d) or Eq. (20d) . 

If the condition max I ~" ~ ~ - ~0" I ~< e is true,  the ite- 

ration stops and the ( n + 1 )- th iteration is the solut- 

ions expected,  where,  e = 10 -5 is the given iteration 

accuracy. The linear systems of  equations in Steps 1 - 

3 are solved by the SOR itemlive procedure.  
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In the followivg computation, we take N = 21 and 

M =  11, and Re lies in (0 ,12 ] .  By using the DQM and 

iterative procedure mentioned above the numerical ex- 

periment for our model was successfully conducted.  

0.2 0 .4  

4 0.35 0,21 

8 0.49 0.47 

12 0.54 0,56 

Jou~ml of S ~ g h a i  Unive~/ty 

The results of velocity are given in Table 1, and the 

maximum absolute errom for vorticity are given in Ta- 

ble 2. 

T a ~ l ( a )  ~ m ~ - o r d e r ~ l o c i t y ~ e c ~ t e r l i n e w i t h ~ = 0 . 7 1 ,  ~ = 0 . 0 1 ,  ~ = 1 ~  

0 .6  0.8 1.O 1.2 1.4 1.6 1.8 2 .0  2 .2  2.4 2 .6  2 .8  3 .0  3.2 3 .4  

~ 0  

0 . ~  0.81 O . ~  0 . ~  O . ~  0.91 0.__.~ 0 . ~  0 . ~  0 . ~  0 . ~  0.02 0 . ~  0 . ~  0.02 

0.71 0 . ~  0 . ~  0 . ~  0 . ~  0.91 0.91 0 . ~  0.02 0 . ~  0.02 0 . ~  0 . ~  0 . ~  0.02 

0 . ~  0 . ~  O . ~  0 . ~  0 . ~  0 . ~  0.91 0.91 0.92 0 . ~  0.02 0.02 0.02 0.02 0.02 

4 

8 

12 

T a b l e l ( b )  F i m t - o r d e r v e l o c i t y a t t h e c e _ u i e x i i n e w i t h P r = 0 . 7 1 ,  E r = 0 . 0 1 ,  R a = 1 0  4 

0.2 0 .4  0.6 0 .8  1.0 1.2 1.4 1.6 1.8 2 .0  2.2 2 .4  2 .6  2 .8  3 .0  3 .2  3 .4  

- U t 

0.25 0.56 0.38 0.22 0.16 0.12 0.08 0.06 0.08 0.02 0.01 0.01 __0 0 0 0 O 

0.10 0.26 0.20 0.15 0.12 O.lO 0.08 0.06 0.06 0.04 0.02 O . O 1  0.01 0.01 __0 0 0 

0.05 0.13 0.12 0.10 0.09 0.08 0.08 0.07 0.07 0.06 0.04 0.02 0.02 0.01 O . O 1  O.O1 __O 

Table 2 Maximum absolve error for ~0 and oJ](Pr=0.71,Re=8) 

Ra 101 102 103 104 105 

maxl s01 5.80 x 10 -e 5.26 x 10 -7 7.49 x I0-g9.44 x 10-tl 3.38 x 10- m 

r o a x l o J  t 3 . 5 3 x 1 0  - 5  4 . 3 3 x 1 0 - 6 1 . 1 5 x 1 0 - e l . 0 7 x 1 0  -e 1 .02x10  -6 

The streamlines for the zeroth- and first- order sys- 

tems are drawn in Fig. 2. From Fig. 2, the effect of 

the elastic of  the second-order viscoelastic fluids is 

weak far from the enO'ance. This qualitative property 

agrees with that in Ref. [8]. 

The zeroth- and first-order velocity profiles at the 

centerline are drawn in Figs.3(a) and 3(b) respective- 

ly. From Table I the entrance lengths of the zeroth- 

order approximation system for Re = 4, 8, 12 are 

about 1.8, 2.0, 2.2 respectively, and the entrance 

lengths of first order approximation system for Re = 4, 

8, 12 are about 2.6, 3.0, 3.4 respectively. This 

shows that the entry length increases as Re increases. 

The isotherm lines for different parameters are shown 

in F~gs. 4 and 5. It is shown that the isotherm lines for 

To and T1 are pushed towards the exit.  The tempera- 

rares are however augmented with the increase in Re 

o r P r .  
In Figs. 6 and 7, the graphs are plotted to show the 

0 
effect of the elasticity upon the deviatoric stress r = ,  

1 0 1 r =, r=, r ~, r ~,, r n , at the centerline and near the 

wall respectively, where c ~ 1.6 and e = - 82 = 0.1. 

We observe that the shear stress is small near the cen- 

terline and it is la~e near the wail. Thus the ~ of 

the second-order fluid is close to Newtonian fluid at 

the centerline, and evidently different from it near the 

wall. These qualitative properties obtained agree with 

those in Ref. [9] and [12] as Re is in the range(0,10].  

Fig .2  Streamlines f o ~ t h e z e r o t h - a n d f i l s t - o l x i e r s y s t e m s  for R e = 8 ,  P r = 0 . 7 1 ,  R a = 1 0 4  
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Fig.7 Stress components near the wall with Re = 8 , Pr=0 .71 ,  Ra=10  ~ 

6 C o n c l u s i o n s  

The two-dimensional steady flow of an incompress- 

ible second-order  viscoelastic fluid be tween  two paral- 

lel pla tes  has  been  i nves~ga t ed  in  t e r m s  o f  vor f ic i ty ,  

the  s t r e a m  func t ion  a n d  t e m p e r a t u r e  equa t ions  in th is  

p a p e r .  The govern ing  equat ions  have  been  e x p a n d e d  

wi th  r e s p e c t  to  a smal l  p a r a m e t e r  to  ge t  the  ze ro th -and  

f i r s t -o rde r  a p p r o x i m a t e  equa t ions .  By using the  differ-  

ent ia l  quadra tu re  m e t h o d  and  an  i te ra t ive  technique  the  

numer ica l  so lu t ion  has  b e e n  success fu l ly  o b t a i n e d .  

The  numer i ca l  resu l t s  s h o w  tha t  the  ef fec t  o f  e las t ic -  

i ty of  f luid u p o n  f low is  ev iden t  a t  the  en t r ance  nea r  

the  wa l l ,  bu t  w e a k  far  f rom the  e n t r a n c e .  The  resu l t s  

a l so  s h o w  tha t  the  DQM can  b e  u sed  to  ob ta in  t he  

h igh -accu racy  so lu t ions  wi th  a few gr id  po in t s .  
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