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Differential Quadrature Method for Steady Flow of an Incompressible
Second-Order Viscoelastic Fluid and Heat Transfer Model
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Abstract The two-dimensional steady flow of an incompressible second-order viscoelastic fluid between two parallel plates was studied
in terms of vorticity, the stream function and temperature equations. The governing equations were expanded with respect to a small pa-
rameter to get the zeroth- and first-order approximate equations. By using the differential quadrature method with only a few grid

points, the high-accurate numerical results were obtained.
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1 Introduction

Although the computation of the fluid mechanics has
great development during the last decades, due to the
model in nonlinear fluid mechanics is very complicat-
ed, the more efficient techniques for solving this prob-
lem still attract the interest of many researchers. The
differential quadrature method (DQM) introduced by
Bellman, et al.""? is an efficient numerical method
for solving partial differential equations. In recent
years, the DQM has been widely used for solving the
problems of engineering and physical sciences®” . The
advantage of the DQM lies in that the information on
all grid points is used to approximate the derivatives of
unknown functions, so that accurate results can be
obtained by using this method with a few grid points.

In recent years, there appeared many models in
non-Newtonian fluids. Some models only consist of
the momentum equation’®®’, and other models not
only consist of momentum equation but also involve
energy equation. The unsteady convection-diffusion
equation in a viscoelastic fluid flowing through a tube
was computed by using the implicit finite difference
scheme . The momentum equation and energy
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equation of a non-isothermal viscoelastic fluid were
solved by using Galerkin’s approach and B-splines™"’ .
The laminar convection heat transfer in a second-order
viscoelastic fluid moving past a porous regime was
solved by using a Keller-box implicit finite difference
scheme'™ . A three-dimensional flow of non-Newto-
nian fluid was simulated by using a shooting method
and fourth-order Runge-Kutta procedure, and the ef-
fect of the elasticity of fluid on velocity and tempera-
ture distributions was examined qualitatively in Ref.
[13].

In this paper a fully developed problem of second-
order viscoelastic fluid coupled with heat transfer is
considered. Firstly by using the perturbation procedure
we get the zeroth- and first-order approximate
equations. Then, by using the DQM these equations
are solved numerically. The numerical results obtained
are in agreement with existing results qualitatively.
The present paper is organized as follows. In Section
2, we describe the mathematical model of fluids. The
standard perturbation procedure is applied to yield the
zeroth- and first-order approximate equations in Sec-
tion 3. The numerical formulations obtained by the
DQM are given in Section 4. In Section 5, there will be
a discussion of the numerical results. In the last sec-
tion, we give our conclusions and remarks.

2 Mathematical Model
Let us consider the two-dimensional steady flow of
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an incompressible second-order viscoelastic fluid be-
tween parallel plates, as shown in Fig.1, in which the
x-axis is horizontal and the y-axis is vertical upward.
The governing equations of our problem are given as

Continuity equation V:v=0, (1)
Momentum equation  pV*:VV=V -0+ pg, (2)
Energy equation ~ C,oV-VT=K V*T, (3)

where V denotes the velocity field, T is the tempera-
ture, g is the gravitational acceleration, p is the den-
sity, K is the coefficient of thermal conduction, C, is
the specific heat at constant pressure, V and V? are
the gradient and Laplacian operators respectively, and
o is the Cauchy stress tensor defined as

6=-Pl+r, (4a)
7= pA, (V) + a, AH(V) + 2, A,(V), (4b)

where P is the hydrostatic pressure, I is the unit ten-
sor, t is the deviatoric stress tensor , u is the coeffi-
cient of viscosity, a; (% =1,2) are material constants
characterizing the elasticity of fluid, and A; (i =1,2)
are the first and second Rivlin-Eriken tensor written as

dA

A, =d—t'+A1(grad V) + (grad V)"A,,

A, =(grad V) + (grad V)",
e

in which d/dt is the material time differentiation.

ya

u=U

T=1

v=0

Fig.1 Geometry of flow model

The equation of state may be written as
p=pl1-B(T-Ty)], (6)

where S is the volume expansion coefficient, and T, is
the temperature at which the fluid density is p, .
We define dimensionless variables as

R A S )
_H, y—H’ _U, _U’
-~ H ~ H - H s T-T,
P-—#— ’ T—lmt, a—#—Ua, T= AT °

the reference velocity, and AT = T, - T, is the tem-
perature difference. For simplicity, we omit the sign ~
in the following.

By using the Boussinesq approximation, the govern-
ing equations (1) - (3) can be reduced to

%+%=0’ (7a)
RIS
R e

Ba (1), (7¢)
ar AT _Vz (7d)

“ax* ¥y " PrRe

where Re = pUH/u is the Reynolds number, Ra =
C,ogA TH®/ Ky is the Rayleigh number, Pr= VC,p/K is
the Prandtle number, and 2 (T) = (1 - BTAT)/
(BAT), V = u/p is the kinematics viscosity, and 7 is
the dimensionless deviatoric stress tensor that can be
written as

To=2u, + B [(2u,)" + (u, + v,)°] + B [2uu,, +
2vu,, + (2u,)" +2v,(u, + v,)], (8a)
t, =20, + B [(20,)° + (u, + ©,)°] + B, [2uv, +
2w, + (2v,)% +2u, (u, + v,)], (8b)
= Ty = Uy + 0, + Bl u(u, +v,), +v(u, +2.),
+2u,u, +20,9, ], (8c)

T

where,
¢ ii)=(3ﬁ§§)’ ([ 3z)-Goan):
([ 2)=Gorogon) () =inl2)

The velocity components % and v may be written in
the term of the stream function ¥ as

?rayaxl’ \p,) " pH

u=V,,v=-Y,, (9)
and vorticity (designated by ) is defined by
W=V, - U,. (10)

By substituting (8) into (7b) and (7c), eliminating
pressure P, and using Egs.(10) and (7a) the govern-
ing equations in terms of stream function, vorticity,
and temperature are given by

a d
Uz 4w —w-—V2w+.32[u

d 1oz
3z ay +'Uay]v w +
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Ra 3T arT, T, aT, aT, 1
PRSIz’ (11a) u, ax‘+vo ay’ + U, ax"+'vl ay° PrReva"
Vi +w=0, (11b) (16¢)
aT aT 2 where
U 5= 5o VT (11¢)
ax ay PrRe u,=(¥,),, 9= - (¥, (16d)

3 Perturbation Method

When the elasticity of the fluid is slight, 3, and S,
can be considered as small parameters. According to
Ref.[14], we have B, >0, B, <0 and 8, = - ¢B,,
where ¢~1.6, so we can introduce only one parame-
ter ¢ = - f8,. Obviously ¢ characterizes the elasticity of
fluid. For clarity of the effect of the elasticity upon the
flow we expand the governing equations with the re-
spect to . Based on perturbation method, the vari-
ables w, ¥, T, u, v, and 7 are written in the fol-
lowing forms:

U Uy U,
v Vo v,
j = Z,o +e€ Zl + 0(e?). (12)
T T, T,
\ 7 2 J 7

By substituting (12) into (8) - (11), and neglecting
O(&®), we get the following systems:
(1) The zeroth-order approximate equations

dw, awo 2 Ra aTO
uoﬁ+vo ay Rev wo+PrRez'§‘z., (133)
VW) + w, =0, (13b)
aT aT,
uo a_xo +? 0 a; Pl'ReV2 To ’ (13c)
where
uo=(1p.o)', vo= _(Wo)gy (13d)
To =2(%),, Ty =2(2,),,
e, = 2% = (), + (0,),. (14)

Eq.(14) is the constitutive relation of the viscous flu-
id. So, the zeroth-order approximation is an incom-
pressible Newtonian fluid.

{2) The first-order approximate equations

3(0, 3‘0)1 aWO aﬁ)o 2
Us Gp t Vo gy t U g t i gy T Re[v w, -
d a 2 m BTI
(u, ﬁ“'”o @)V wo]-i-mﬁ, (16a)
VZ‘I’I +w1 =0, (15b)

t::z =2(u1), + c[(Z(uo),)z + ((’uo), + ('Uo)z)z] -
(200 (o) o + 200 (Ug) 5 + (2(2,),.)" +
2(vo)z((uo),+(vo);)]; (16a)

hy =2(v), + c[(2(9y),)* + ((uy), + (05), )] -
(200 (Vg) o +200(g)y, + (2(0,),)" +

2u, ((uy), +(v,).) ], (16b)
thy = (uy), + (0y), = [ug((ug), + (9,).), +

’Uo((uo), + (”o)z)y +2(uo)z(uo), +

2(vy),(v,), 1. (16¢c)

Egs. (16a),(16b),(16c) are the constitutive relations
characterizing the elasticity of fluid. So the solution of
the first-order approximate equations represents the ef-
fect of elasticity upon the solution of Eq.(11).

In our problem, assume that the velocity compo-
nents # =1/2 and v =0 at the entrance, u = v =0 on
the plate, the flow is in full development at the exit.
Based on the symmetry, the boundary conditions are
given as

1
=8w(y/2),w‘ —('0‘)‘=0’u‘ =§8¢0)

v,=0,T, =1, for x=0, O0< y=<2,
(‘Fg)z =0,(w;). =0,(u), =0,
v,=0,(T,), =0, forx=4,0<y<2,¢{ an
¥, =0,w;,=0,(u;), =9,
v,=0,(T,), =0, for y=0, 0< x <4,
=8w,w¢+(u‘),=0,u‘ =0,
v,=0,(T;), =0, for y=2, O<xr<4,’

Where i=0, 1, 8(”:1, 810 =0.

4 Numerical Formaluations

In the DQM the partial derivatives of a function are
approximated by weighted linear sum of function val-
ues at discrete points in the computational domain.
According to the DQM, for any function ( ), one has

3C )Y (=X ,C0( g
e =[ 1l ]
E,:,E';”( Da

a ) (18a)
dy
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() SECP(C )y

dz’

() A

a7 | =1Z0 T e ., (18p)
az( ) EN M (1) ~(1)

dxdy /y k=12¢=10u05( u

where C), C’, C), and C\? are the weighting co-
efficient matrices corresponding to first- and second-
order derivatives respectively, N and M are the num-
ber of grid points along the x and y axes respectively.
From above approximations, one can realize that the
key issue in the DQM is how to determine its weighting
coefficients and choose the grid points. The formula
for calculating weighting coefficients has been given in
Refs.[16] and [16], and grid distribution used in this
paper is the same as in Ref.[16].

Substituting (18) into (13) and (14) in Part (1),
yields

c®
=) Lue(i,5)CY - Re Jwo(k,3) +
_ a(z)

2 [0e(i,5)CF - g (i)

Ra ,
=§R?2f'=102)7’o(k’1), (19a)
zfnlcii)wo(k’j) + E:léf:)wo(i,l) + wo(i,j) =0’

(19pb)
N . . (1) C(:‘)
2k=1[u0(’l”])cik —PrRe]To(k’j)+
a(z)
o . A

21:1[”0(7’,])02) —PrfRe]To(ivl);'o’ (19¢)

ue(4,5) = T, CR o (4,1),
v (i,5) = - Z,., Co W, (k,5), (19d)

where 4 =2,--,N-1, j=2,,M-1.
Eq. (14) and the boundary conditions (17) are ap-
proximated by the DQM for all.
Similarly, substituting (18) into (15) and (16) in
Part (2), gives
C(z)
B Lug(6,0) € - g loy(k,g) +
_ 6,(2)
B[00, T3 - g5 lw(4,0)
=F,(i,j)+7P%E:',IC§:’T,(I¢,J'), (20a)

E::lC(i:)‘-Fl(k!j) + 2:162)‘?1(1’/,” +,(1,5)=0,
(20b)

C(z)

Salu(i,0)Co - g I T (k) +
P
Zialv(4,)C5 - gpa 1 Ti(d, 1)

= F,(1,5), (20c)
u,(4,§) =1, CP®,(4,1),
v,(i,5) = - S, COW, (k,5), (20d)
where
R [, +viwn), -t
[uo( Vi), + 2(Viwo), 1{ °’
F,(i,5) u (To) . + 0,(To),y '
(21)

for i=2,-,N-1, j=2,-,M-1.

We also employ the DQM to approximate Eq. (16),
F, and F,, and the boundary conditions (17) for the
first-order approximation. For the above two nonlinear
systems (19) and (20) with discrete boundary condi-
tions, we adopt an iterative method to solve them and
the numerical results obtained are discussed in the
next section.

5 Results and Discussion

An iterative method for solving nonlinear systems
(19) and (20) with discrete boundary conditions is
presented as follows.

If the n-th iterations '™, ¥, T, u{™, »{¥
are known, the (7 + 1)-th iteration can be abtained in
terms of the following steps:

(1) Solve the energy Eq. (19¢) or Eq. (20c) end
(21) with u, = u!”, v, = v\™ under the correspond-
ing boundary conditions of T;;

(2) Solve the vorticity Eq. (19a) or Eq. (20a) and
(21) with u, = ui™, v, = v\”, T: = T{*"" under the
corresponding boundary conditions of w, ;

(3) Solve the stream function Eq. (19b) or Eq.
(20b) with w, = w?}*' under the corresponding bound-
ary conditions of ¥ ;

(4) Compute the velocity components from Eq.
(19d) or Eq.(204d) .

If the condition max|«**' - @" | < e is true, the ite-
ration stops and the ( n + 1)-th iteration is the solut-
jons expected, where, e = 10°° is the given iteration
accuracy. The linear systems of equations in Steps 1 -
3 are solved by the SOR iterative procedure.
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In the following computation, we take N =21 and
M =11, and Re lies in (0,12]. By using the DQM and
iterative procedure mentioned above the numerical ex-
periment for our model was successfully conducted.

The results of velocity are given in Table 1, and the
maximum absolute errors for vorticity are given in Ta-
ble 2.

Table 1(a) Zeroth-order velocity at the centerline with Pr=0.71, Er=0.01, Ra =10*

X 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4

Re Uo
4 0.3 0.21 0.60 0.8 0.8 0.87 0.90 091 0.92 092 0.92 092 092 092 092 092 090
8 0.49 047 0.71 0.83 0.8 0.8 0.90 0.9 091 0.92 09 0.9 092 092 0982 0.9 0.92
12 0.54 056 0756 0.8 0.8 0.8 0.9 0.9 091 091 092 09 092 092 092 092 092

Table 1(b) First-order velocity at the centerline with Pr=0.71, Er=0.01, Ra =10'

X 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 34

Re - U,
4 0.25 0.56 038 0.2 0.16 0.12 0.08 6.06 0.03 0.02 001 0061 @& i ] 0 ]
8 0.10 0.25 0.20 0.15 0.12 0.10 0.08 0.06 0.06 0.04 002 0.01 001 001 0 0 0
12 {005 013 012 0.10 009 0.08 008 007 007 005 004 002 002 001 001 001 0
shows that the entry length increases as Re increases.
Table 2 Maximum absolute error for w, and «, (Pr=0.71,Re =8)

Ra 10 10 10° 10* 10°
Tax|wel{5.80%x 107° 5.26x10-77.49x 107%9.44x 10~ 3.38x 101

max|w |[3.683x107° 4.33x10°%1.16x107°1.07x 10"% 1.02x 10

The streamlines for the zeroth- and first- order sys-
tems are drawn in Fig. 2. From Fig. 2, the effect of
the elastic of the second-order viscoelastic fluids is
weak far from the entrance. This qualitative property
agrees with that in Ref.[8].

The zeroth- and first-order velocity profiles at the
centerline are drawn in Figs.3(a) and 3(b) respective-
ly. From Table 1 the entrance lengths of the zeroth-
order approximation system for Re = 4, 8, 12 are
about 1.8, 2.0, 2.2 respectively, and the entrance
lengths of first order approximation system for Re = 4,
8, 12 are about 2.6, 3.0, 3.4 respectively. This

The isotherm lines for different parameters are shown
in Figs.4 and 5. It is shown that the isotherm lines for
T, and T, are pushed towards the exit. The tempera-
tures are however augmented with the increase in Re
or Pr.

In Figs. 6 and 7, the graphs are plotted to show the
effect of the elasticity upon the deviatoric stress o,
ThesTums Toys Tyo Ty &t the centerline and near the
wall respectively, where c~1.6 and e = - 3, =0.1.
We observe that the shear stress is small near the cen-
terline and it is large near the wall. Thus the stress of
the second-order fluid is close to Newtonian fluid at
the centerline, and evidently different from it near the
wall. These qualitative properties obtained agree with
those in Ref.[9] and [12] as Re is in the range(0,10].

%%

—]

Fig.2 Streamlines for the zeroth- and first-order systems for Re =8, Pr=0.71, Ra =10
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Fig.3(a) Zeroth-order velocity profiles at the Fig.3(b) First-order velocity profiles at the

centerline

Fig.5 Isotherm lines with Pr=0.71 and different values of Re =4, 12
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also show that the DQM can be used to obtain the
high-accuracy solutions with a few grid points.

0 1 2 3 4 0 1 2 3 4
X X

L ET

0.8
\—/ b
0 - :

~ IS
"
L
e
:-)/

0442\ \ =]
Ty \
s 70 , 0.0 :
-4 ; /\\ es),
-6 -04 , ”
0 ] 2 3 4 0 1 2 3 4
X X

Fig.7 Stress components near the wall with Re=8, Pr=0.71, Ra = 10*

. 238.

6 Conclusions [2] Bellman R, Kashe G F, Casti J. Differential quadrature:
The two-dimensional steady flow of an incompress- A technique fo.r the rapid solution of nonlinear partial dif

ible second-order viscoelastic fluid between two paral- f(l) 0 52‘ ons (3] J. Comput. Phys., 1972, 10

lel plates has be.en investigated in terms o.f vor.uc1ty., (3] BertC W, ik M. The differential jrature method
the stream flmcuon' and tem.perature equations in this for irregular domains and application to plate vibration
paper. The governing equations have been expanded (J]. Int. J. Mech. Sci., 1996, 38(6): 589 — 606.

with respect to a small parameter to get the zeroth-and [4] ChenW, Striz A G, Bert C W. A new approach to the

first-order approximate equations. By using the differ- differential quadrature method for fourth-order equation
ential quadrature method and an iterative technique the [J1. Int. J. Numr. Method in Eng., 1997,40(11):
numerical solution has been successfully obtained. 1941 - 1956 .

The numerical results show that the effect of elastic- [6] ShuC. Application of differential quadrature method to
ity of fluid upon flow is evident at the entrance near simulate natural convection in a concentric anmulus{J].
the wall, but weak far from the entrance. The results ;g J. Numr. Method in Fuids. 1999, 30(8).977 -

{6] ShuC, XueH, Zhu Y D. Numerical study of natural con-
vection in an ecceniric annulus between a square outer
cylinder and a circular inner cylinder using DQ method
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