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Abstract The traditional differential quadrature method was improved by using the upwind difference scheme for the convective 
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1 Introduction 
Various numerical techniques, such as the finite 

difference method and finite elements method, have 

been used in the past to solve the incompressible flow 

problem numerically. Usually, these methods require 

a large number of discretized points in the computa- 

tional domain for accurate results. Because the infor- 

mation on all grid points is used to fit derivatives at 

grid points in the differential quadrature ( D Q )  

method, it is enough to use only few grid points to ob- 

tain high-accuracy numerical solutions. Therefore,  

the number of grid points can be greatly reduced while 

still obtaining accurate results by using the DQ 

method. The DQ method was introduced by Bellman 

and his associates [~'21 , and it has been successfully 

employed to obtain numerical solutions in engineering 

and physical sciences [a] . There are many papers dis- 

cussing the two-dimensional ( 2D ) incompressible 

Navier-stokes equations without heat equation by the 

DQ method ( for examples see [ 4 - 6 ] ). But, maybe 

there are only a few (if there are) papers dealing with 
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the coupled incompressible Navier-Stokes equations 

and heat equation by means of the DQ method. Some 

investigators have been studied this kind of problems 

in different cases [7l°J , especially with our problems. 

In our previous pape rEn] the incompressible plane 

flow field subjected to a force field that is dependent 

upon the temperature T and has not potential was dis- 

cussed. Also, in that paper the numerical computation 

by using the DQ method with a few grid points was 

satisfactory with good accuracy. But, for some (high- 

er and lower) values of Re  and a ,  the parameter in- 

cluding in the force field term, and some number and 

positions of the sampling points, the numerical results 

had some disadvantages (oscillating or divergent) .  

The purpose of this paper is to introduce a method to 

overcone the disadvantages in the previous paper. 

With this aim, a mixed DQ method is presented by us- 

ing the traditional upwind difference method (UDM) 

for the convective term and the traditional DQ method 

for the other terms. Using the mixed DQ method for 

solving the coupled incompressible ( 2 D )  Navier- 

stokes equations and heat equation the excellent nu- 

merical results are obtained. It is shown that the mix- 

ture DQ method is wider in use and more accurate 

than the traditional DQ method. 
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2 M a t h e m a t i c a l  F o r m u l a t i o n s  

Let us consider the incompressible flow problem in 

a rectangular region gJ in Fig. 1. The non-dimension- 

al governing equations for vorticity, stream function 
and temperature are 

a oj a ~ 1 [ a2 co a2 o~ ~ a_~ + u + - - -  
a t  ~ V 3 y Re~-a-~x 2+-3 ?/2 ] 

= F ( W , ~ , T , x , y )  (1) 

a2--~ + a2----~ + co = 0 (2) 
a X 2 a ?/2 

a w  a w  
u -  a y and v -  3 x ( 3 )  

a T aT  [a 2 r a 2 T )  
a T +  u + - + - -  =0 (4) 

where, ~ the stream function, u and v the velocity 

components, ~ = v~ - uy the vort ic i ty,  T the temper- 

ature, F is a term caused by the force field that dose 

not have potential and is dependent upon tempera- 
ture, Re the Reynolds number. 

The boundary conditions (B. Cs) considered in this 

paper are 

3 v  
u = O , v = O , T = O , o ~ = - ~ - ~  at x = 0 , x = l  

3 u  
u = O ' v = 0 ' T = l ' ~ ° -  a ?/ at ?/=0 

3 u  
u = l ' v = O ' T = O ' ° ° -  a ?/ at 71=1 

Y 

b 

u=0  

v=O 

T=0 

D 

u = l , v = O , T = O  

u=O 

v=O 

T=O 

P 
u=O,v=O,T=l a x 

Fig. 1 Geometry of the problem 

In this paper the mixed DQ method with the Cheby- 

shev-Gauss-Lobatto spacing points is used to obtain 

high-accuracy steady-state solutions of the incompressible 

flow Navier-Stokes equations and heat equation. 

3 D i f f e r e n t i a l  Q u a d r a t u r e  F o r m u l a t i o n s  

The essence of the DQ method is that the partial 

derivatives of a function with respect to a variable in 

governing equations are approximated by a weighted 

linear sum of function values at all discrete points in 

that direction. We consider a function f = f (  x ,  ?/) de- 

fined in a rectangular domain 0 ~ x ~ a ,  0 ~ ? / ~  b, 

with a and b fixed. Suppose that, the grid is obtained 

by taking N and M points in the x and ?/ directions, 

respectively. Then, an rth-order x-partial derivative 

of the function f ( x ,  ?/) at a point x = xi along any 

line y = yj parallel to the z-axis, and an s th-order ?/- 

partial derivative of the function f (  x ,  ?/) at a point ?/ 

= ?/j along any line x = xi parallel to the ?/-axis, re- 

spectively may be approximately written as 

a ~ f ( x i , Y )  ~ (r) 
-- A i k  f ( X k ' ? / ) '  3 X r k=l 

a~ f ( x , Y j )  ~ (s) 
a y~ = ~ A j l  f ( x , y t )  (5) 

where r = l ,  2, " - ,  N - l ,  s = l , 2 ,  "--, M - l ,  i = 

1 2, -." N,  j =1 2, --- M,  a(~) and a ( ' )  • , , ' " ' i k  " " j l  are the 

respective weighting coefficients. The determinant of 

the weighting coefficients and the choice of sampling 

points are very important factors for the accuracy of 

the DQ solution. In fact, the weighting coefficients 

obtained by directly solving the Vandermonde equa- 

tions becomes increasingly inaccurate as an increasing 

number of sampling points. The weighting coeffi- 

cients for the derivatives may be obtained directly, 

and most accurately, irrespective of the number and 

positions of the sampling points [s'12] . From [5] and 

[ 12 ], the weighting coefficient of DQ are determined 

as follows. 
The weighting coefficients for the first-order 

derivative are given as 

A(1) = C(1)(zi) 
ik (xi_Xk).C(1)(Xk) for i ,  k = 1, 2, --- N 

but k :/: i ,  (6) 

where 

N N 
C(1)(xi)= 1I (xi-  x~),C(1)(Xk) = rI (Xk- X,) , 

p f l , p ~ i  p = l . p ~ k  

The weighting coefficients for he second-order and 

high-order derivatives are given as 

A ( r -  1) l 
A ( r )  [ A(r-1)A(1) "~ik for i , k  = l ,  2, ... N 
~ l i k  = r L ~ i i  " ~ i k  x i -  X k  

but k : / : i ,  2 ~ r ~ ( N - 1 ) ,  (7) 

where 
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A(r) ~, A¢;) ii = - -- i for i = 1, 2, " ' N  l ~ r  
p=l ,p~=i  ,~ 

( N - l )  (8) 

The weighting coefficients of derivatives with respect 

to y can be also obtained in similar forms of Eqs. (6) ,  

(7) and (8). Two kind of sampling points of the type 

(I) equally spaced nodes and the type(II) the Cheby- 

shev-Gauss-Lobatto points are used in this paper. 

3 .1  Traditional differential quadrature method 
(TDQM)  

The TDQM can be obtained by applying (5) to Eqs. 

(1) - (4),  in the form 

a a) N 
-t l ij + k=~l ( - - ( 1 )  (2) u iF i~k  - A i k  / R e  )~,k j  + 

M 
~ ] (  A ( 1 )  a ( 2 ) / R e ) c o i l  = Fi j  (9) , : ,  v i g i l  - " ' j z  

N ( 2 )  

k~__iAik lIfkj + ~ A (2),re = , ~ ,  ~i, = - a, ij (10) 
M N 

-- ~ A ( 1 ) I T t  = " ~ A ( 1 ) ' I T t  
u i j -  ~ - - i l  and v 0 - .~--lz"Xik ~:kj (11) 

I = l  J k = l  

a T [ ~J + ~ (  a ( 1 )  _ A(2) h fir + 
3 t .. UiJZ-~ik z-"-ik ! l k j  

M 
- A j l  ) T a = 0  (12) 

where ( i ,  j ) ' s  should be all internal grid points ( 2 ~  i 

~ ( N  - 1) , 2 ~ j ~ ( M  - 1)).  The linear system of al- 

gebraic equations in (9) ,  (10),  (12) may be solved 

by the iterative method, and at every iterative step 

the boundary conditions of aJ can be computed by the 

DQM as follows: 

N I" N 1 ( )  _ ( )  
¢°lJ :- k~__,Alk Vkj ° ' ' ' * '*  ¢'ONJ - -  k~=lANkVkj I 

[ 
(13) 

00il -- -- 2..~1-111 Ui l""  ~ "*'¢oiM -- -- 2_.jtiMl Uil J 
I = i  l = l  

where u and v are computed from Eq. (11). 

The TDQM is applied to solve this problem previ- 

ously [1] with the sampling points of type (I).  Here we 

add other sampling points of type ( I I )  with this 

method to solve the above equations, and compare 

these two kind of sampling points in iteration required 

for the steady-state solution(see Table 1). The type 

(II) leads to good results for different values of R e  

and more accurate than the type (I) ; but, also there 

are some disadvantage for some higher and lower val- 

ues of R e  and for large values of a which included in 

the term of force field. Therefore, in the next section 

we will suggest a new procedure to treat these diffi- 

culties, which is able to give reasonable treatment for 

this problem. 

3 .2  Mixed differential quadrature method 

( M D Q M )  

Here a MDQM will be suggested to solve the cou- 

pled two-dimensional incompressible Navier-Stokes 

equations and heat equation. This method includes 

two points. First, the upwind difference scheme is 

used to approximate the convective terms subject to 

mechanism of flow directions, and the DQ for other 

terms in space. The second is to adopt two dependent 

stages for calculation of results at every step, similar 

to the time splitting technique [la] • In order to demon- 

strate these ideas: we replace a convective terms by 

the upwind difference scheme, after the average axial 

has been evaluated at half a grid forward and back- 

ward from ( x ,  y)  in the x- and y-direction, respec- 

tively. It can easily be verified that the upwind differ- 

ence form is automatically preserved when the follow- 

ing numerical formulas are used. 

T a b l e  1 

Type of sampling 

points 0.1 1 10 

I - 95 44 
7x7 

H - - 47 

I - - - 

9 x 9  
H - - - 

I - - - 

11 × 11 
I I  - - - 

I terat ion required for the steady state-solution wi th  At = 0. 025 and a = 400 

Re Regions of no 

convergent or 
50 100 400 800 convergent slowly 

39 38 37 35 Re< 1 

42 39 38 36 R e <  4 

144 136 131 130 Re< 13 

155 137 124 123 Re< 33 

- Divergent 
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U ~ ij = U b ( a ~ -  a n - l . j )  -F U y ( a i + l .  j a i j )  

3 0 1  . . + n . 
V -~y ij = Vb(aij - hi.j-l) Vy(ni,i+] - n O) J 

(14) 

where O = (oJ T)T,  

_ -  u~+ lul l  ~ 
Ub 2 ( ~i -- Xi - 1 ) '  Uf  = ui~ - I ui~ I 

2 ( X i +  1 - Xi ) ' 
n v~+  Iv~l  % - I v q l  

Vb = 2 ( y  i -  Y i -  a ) ' V f  = 2 ( y i + x -  Yi) 

The remained terms are approximated by the DQ 

method in space and the forward difference method in 

time. The formula for the first computed stage at ev- 

ery step is resulted from applying (5) and (14) to the 

system ( 1 ) -  (4) as 

n 

a n  I . a n l . _  n ~  - ni~ + u i~ + v -5--yy ij 

N (2) * , x~M~(2)f~* 
l'(~=,~,Aik O kj .1- t_~_~jl a" it ) = ~ i j  ( 1 5 )  

~ A(2)1]~ * M 4- ~ A (2)1D "* * 
~ "  ~ k~ - ~ = ~'~ ~. - - i t  = - ~° ij (16) 

N 
" ~a(~)g '* and ~ ' ' i k  X k j  (17) = * = -- ~-~A(1) f f f*  

Uij l~l"'Jl il Vi i 

where F = ( 1 ~ R e  ,1) r and ¢ = ( F  ~ ,0) T 

Then,  the formula for the second computed stage at 

every step is resulted from applying (5) to the system 

( 1 )  - (4) as 

~,.]n.. + 1 N 
v -n~ + ( E (  " - " )  ~'-) n"+~ 

A t  ~°, Uij2~kik -- UAik ) ' * k j  + 

M 
E ,  ---(~)_ r,a(2))Oi~+x tv~,~, ,  . - ~ ,  = 0 ~  (18) 
1=1 .I a 

~ . A  (2), t~n + 1 M (2) n + l  n + l  
+ ~ A , t  qYa = - ~oij (19) k~=l"'ik - - k j  ,=I " 

N 
n+l __ ~A(1)~]~n+ 1 n+l _ ~-~A(1)%D.n + 1 

Uij i~l'*Jl - - i t  a n d  v i i  - - k~=l..ik = k i  (20) 

where ( i  , j ) ' s  should be all internal grid points (2~ . i  

- ~ ( N  - 1 ) , 2 ~ j ~ ( M  - 1) ) .  Generally, if we assume 

that 

Z~ = [ O ( 2 , 2 ) , - . - , O ( M -  1 , 2 ) , . . . , 0 ( 2 , N -  1 ) , - . . ,  

n(M-1,N-1) ] T 

Z2 = [ W ( 2 , 2 ) , ' " , W ( M -  1 , 2 ) , . . . , W ( Z , N -  1 ) , . . - ,  

~ F ( M -  1 , N -  1)] r 

We can write Eqs. ( 1 5 ) , ( 1 6 ) , ( 1 8 )  and (19) in the 

form of a linear system of algebraic equations, respec- 
tively as 

[ I  + A t P R c ] Z ~  = ~ -  A t  hR + A t O  (21) 

QRcZ~ = - Z ;  - gR ( 2 2 )  

[ I + z S t P R c ] Z ~ I + I = Z ;  - A t  h R + A t e *  (23) 

Q R ~ 2  +1 = - Z n + l  - g R  +1 ( 2 4 )  

where,  ! is the ( N  - 2) x ( M  - 2) identity matrix,  

P ,  P * and Q are the (N  - 2) x (M - 2) unsymmetri- 

cal matrices, 

PRC = ~ ,  [ - ( Ub + US)  - PA~,~ ) ] + 

~ ,k[  - ( Vb + V f )  - VA~?] 
PRC 3i*[u *A(1 )  -- P A ( 2 ) ]  ÷ f~ikr *-- (1)  (2) = i # ' i k  " ' * i k  t V i i ~ j z  - F A i l  ] 

= ~ . A ( 2 )  + 2 . A ( 2 )  QRc oj~. ik wi~ .  jl 

h R = [ -- ( U b ÷ U f )  - FA¢,~ ) ] n~i + [ - ( Ub + Ur )  - 

/ 'A<2)ln " + [ - (Vb + VI) - / ' A ~ )  In:'1 + iNJ Ni 

[ - ( V b  + V f )  - , - ' , '~2) ]n"~ 
• r *--(i) FA(Z) ] o* *--(I) ra(2)]o* hR [ Ui/iia il J " l j  ÷ [ -- = -- Uij21iN * ~ i N  J ~ N  i + 

• A ( 1 )  (2)]~"~;1 + [ v * A  (1) -- F'A(2)]~']i M [ ?) i j ' ' j l  -- FAil i i ' ' iM " "¢'jM 
. = a ( 2 )  a ( 2 ) q f *  (2) * ~_ a ( 2 ) ~ *  

gR "*il ~ [ j  + "*i~ - -Nj  + A i l  1T2eil -- "*iM=iM 

n + l  = A(2) n + l  A(2)ID.n + 1 A(2) n + l  A(2)ID, n + 1 
gR " ' i l  ~ l j  + ' X l N = N j  + ' ' j l  1~ i l  + ~ i M X i M  

The subscripts R and C are defined by i ,  j ,  l ,  k in 

the following form: 

C = ( l  - 2 ) ( N -  2) + k - 1 and 

R = ( j - 2 ) ( N - 2 ) + i - 1 ,  

i , k  = 1 , 2 , - - - , N  and j , 1  = 1 , 2 , - ' - , M .  3jt and &k are 

the Kronecker delta, defined by 

I1 i f j = l  t 1 i f i = k  
Sit = 0 if j=/=l and #ik = 0 if i=/=k 

At the first step we assume that a / ' ,  T n , ~ " ,  u n and 

v '~ are known, and then use Eqs. (21)  and (22)  to 

compute co", T * ,  ~ *  ; and use Eq. (17) to compute 

u *,  v * and the boundary conditions of co * by Eq. 

(13). From Eqs. (23) and (24 ) ,  we compute ~'~+~, 

T .+1 ,  ~ + ~ ;  a n d E q . ( 2 0 )  to compute u"  +1, v ~+ 

and the boundary conditions of , + 1  by Eq. (13).  The 

sufficient condition for the convergence of numerical 

solution given by the DQ method which should satisfy 

max I co" + 1 _ ~o,~ I ~ e (where ¢ is an iterative accura- 

cy given previously, n and n + 1 denote the local val- 

ues at the beginning and the end of n th i teration).  

Then the steady-state solutions of the incompressible 

flow can be obtained. 
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4 Numerical Results and Discussion 

The computationally efficiency of the MDQM with 

the Chebyshev-Gauss-Lobatto points for the numeri- 

cally accurate results has been well demonstrated 

here. The results presented in this section are at- 

tempted to illustrate our study has extend the applica- 

tion of the TDQM, and the effect of sampling grid 

spacing with the force field on the numerical solution. 

The numerical computations were carried out by em- 

ploying the TDQM & MDQM for the incompressible 

flow coupled 2D Navier-Stokes equations and heat 

equation with some values of 0 < Re < 1000,0 < a < 

410,and iterative accuracy • = 10 -6, a = b = 1 ,and F 

= aT,  a > 0 .  The numerical results for 9 x 9 grid DQ 

model with Re = 100,At = 0. 025 and different values 

for a are shown in Figs 2 and 3, and for a = 400 with 

different values for Re in Fig 4. The comparisons be- 

tween two methods ( i .  e . ,  the TDQM & MDQM) in 

terms of iteration number for convergence for some 

values of Re and maximum absolute error of vortex 

calculation for some values of a ,  are listed in Tables 2 

and 3. respectively with the Chebyshev-Gauss-Lobatto 

spacing points. 

Table 2 I t e r a t i on  number  in the numer ica l  solut ion obta ined by 

the TDQM & MI~M, with At = 0. 025 and a = 400 
(a) (9 x 9) DQ Model 

Re 0.1 1 10 50 100 400 800 

TDQM - - - 155 137 124 123 

MI)QM 324 188 74 51 46 42 41 

(b) (11x  11) DQMOdel 

Re 0.1 1 10 50 100 400 800 

TDQM - - - 144 136 131 130 

MDQM 218 132 59 45 43 41 40 

than the TDQM to tend the steady state solution. 

From the present calculation for Re = 100 with 9 x 9 

grid DQ model, at the beginning, we notice convec- 

tive motion starts weakly and the numerical solution 

of this model problem is unstable. Then in the final 

stage(see Figs. 2 , 3 , 4 )  this motion becomes stronger 

and the results more stable. 

All the test cases for Re = 100 with the different 

values of a are convergent by using the SOR iterative 

method to solve asymmetrical linear systems (21) - 

(24) for a damping factor 0 < O < 1 and a residual R~ 

= 10-5. Furthermore, for Re larger than 1000, the 

solution with the DQM will either oscillate or con- 

verge only slowly. Also the DQ method does not con- 

verge when a becomes large. From Table 1 we note 

that the TDQM with the Chebyshev-Gauss-Lobatto 

points (II) gives good results for three DQ grid mod- 

els, while equally sampling spacing (I) is not conver- 

gent for the last two grid models, irrespective of the 

regions which does not converge or converge slowly. 

Generally, the type ( I I )  gives results more accurate 

than the type ( I ) ,  and this fact has been shown in 

many papers for solving different problems. The ve- 

locities ( u & v) are increased (see Fig. 2. ),  when 

the force field increases (dependent on the values of 

temperature and parameter a ). The convective mo- 

tion becomes stronger and the results more stable. 

The temperature profiles are not plotted in the output 

because the results vary slowly with respect to time 

and they are still accurate in the present computation. 

The numerical solution of the governing equations 

leads to a final state, at which the system may be said 

to be most stable under imposed temperature condi- 

tions. 

The result with the MDQM for each value of Re < 

1000 and a < 410 is convergent, with limited values of 

number of iteration at very high values of Re. From 

Table 2 and 3, we note that the MDQM has better 

convergency and accuracy than the TDQM. Also, we 

see Re and a are the controlling parameters in the re- 

sults. Moreover, we notice that the MDQM is faster 

5 Conclusions 

The improved method (MDQM) with the sampling 

points of type ( II ) is used for solving the coupled 2D 

Navier-Stokes equations and heat equation. The accu- 

rate numerical results can be obtained by the MDQM 

using only a few grid points and requires much less 

Table 3 Max imum absolu te  e r r o r  of vo r t ex  ca lcu la t ion ,  Re  = 100 

At = 0.025 At = 0.03125 
~t 

1 10 20 1 10 20 

TDQM 6 . 6 8 x  10 -6 7 . 2 2 x  10 -e 6 . 1 9 x  10 -e 7.63 x 10 -6 8 . 3 4 x  10 -s 9 . 5 4 x  10 -~ 

MDQM 1 . 8 7 x  10 -s 6.41 x 10-;' 5 . 2 7 x  10 -e 4 . 6 6 x  10 -9 3 . 2 7 x  10 -~ 5.36 x 10-:' 
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Fig.2 The effect of the force field on the velocity components for Re = 100, At = 0.025 
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storage and computational effort, compared with the 

conventional low-order finite difference method, in 

which a large number of grid points, must usually be 

used. The effect of the force field is clear when a in- 

creases (see Figs. 2, 3 and Table 3).  Consequently. 

The excellent numerical solutions are obtained and are 

in good agreement with existing results. The MDQM 

with the Chebyshev-Gauss-Lobatto points has been 

successfully applied to overcome the divergent cases 

in Ref. [11]. The application of the MDQM to solve 

this problem in the case of a varying as a function 

with respect to a variable and more general problems 

will be reported in future work. 
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