SYNTHESIS AND PROPERTIES OF CHLOROTRIS(1,3-DIBENZYLIMIDAZOLIDIN-2-YLIDENE)RHODIUM(I) AND OF SOME RELATED COMPOUNDS

BEKIR CETINKAYA^a, PETER B. HITCHCOCK,^b HATAM A. JASIM,^b and MICHAEL F. LAPPERT^b
^aInönü Üniversitesi, Fen-Edebiyat Fakültesi, Malatya 44069, Turkey. ^bSchool of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ.

ABSTRACT. The electron-rich alkene $\{CNR(CH_2)_2NR\}_2$ (L₂) (R = CH₂Ph) has been used as a source of various carbenerhodium(I) complexes: [RhCl(cod)(L)] (1), [RhCl(L)₃] (2), [RhCl(CO)(L)₃] (3), and trans-[RhCl(CO)(L)₂] (4), and of the iridium(I) complex [IrCl(L)₃] (5). Compounds (2) and (5) are of particular interest as they contain no other neutral ligand apart from the carbene $:CN(R)(CH_2)_2NR$ (L) (R = CH₂Ph); their chemistry is in many ways related to that of the well known complexes [MCl(PPh₃)₃] (M = Rh or Ir). Thus, compound (2) readily loses a carbene ligand upon treatment with either carbon monoxide [ultimately to lead to (4)], or O_2 to yield a compound tentatively formulated as [RhCl(L)₂(O₂)] (6). The X-ray structures of complexes (2) and (4) have been determined.

1. Introduction

The objectives of this work were to investigate the potential of the electron-rich alkene $\{\text{CN}(\text{CH}_2\text{Ph})(\text{CH}_2)_2\text{NCH}_2\text{Ph}]_2$, abbreviated as $[\text{L}^{\text{CH}_2\text{Ph}}]_2$, particularly in the context of the chemistry of derived carbenemetal complexes of rhodium(I) and iridium(I). Previously we have examined extensively a similar series of electron-rich alkenes $[\text{L}^R]_2$ (in which R = Me, Et, or Ph). A limited amount of work has also been carried out on $[\text{L}^{\text{CH}_2\text{Ph}}]_2$ in the context of RuII and OsII chemistry.

In much of the transition metal chemistry of compounds $[L^R]_2$, the alkene behaved as a C-centred nucleophile giving rise to carbenemetal complexes, e.g., the reaction of $[Au(Cl)PPh_3]$ with $[L^{Me}]_2$ gave $[Au(L^{Me})_2]Cl.^1$ Thus, it is evident that in many ways the electron-rich alkene behaves in an analogous fashion to a tertiary phosphine. Moreover, some compounds, e.g., cis- $[RhCl(cod)(L^{Me})]$ $[L^{Me} = :CN(Me)(CH_2)_2NMe]$, have been shown to display catalytic properties similar to their tertiary phosphine equivalents. 3