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Abstract— Electromyography signals (EMG) are an important source to infer 
motion intention. It has been broadly applied in human-machine interfacing to 
control the neurorehabilitation devices such as prosthesis and rehabilitation 
robot. HD-sEMG is a muscle's activity recorded at the delimited area of the 
skin using 2D array electrode. This strategy permits the analysis of sEMG 
signals in both temporal and spatial domain. Recent studies display that the 
spatial distribution of HD-EMG maps improves the recognition of tasks. This 
work investigates the use of HD-EMG recording to control upper limb 
prosthesis. The classification of eight hand gestures of able-bodied subjects was 
developed. Three feature sets were presented in this work. HOG features, time 
domain features(TD) and the combination of HOG and average intensity 
features (AIH). Combination of features possibly improved the performance of 
the classifier. Results show that the combined of intensity features and HOG 
features achieved higher performance of classifier than other features 
(Acc=99.37%, P=98.375%, S=97.5%). 

Index Terms— HD-sEMG, EMG pattern recognition, electrodes array, SVM classifier, spatial 
features component, HOG approach. 

I. INTRODUCTION 

Myoelectric prostheses employ the electromyography (EMG) signals that generated by 
muscle tissue and detected by surface electrodes to perform their tasks. The recorded signal 
used to control the movement of the robotic appendage with more actuators. These 
prostheses increase the abilities of amputees and other patients that suffer from physical 
damage or cognitive functions as a result of disease, injury, and aging.[1] 

Myoelectric control is divided into two categories: pattern recognition approach and 
the conventional system (Direct control).  In the direct control, each pair of opposite muscle 
site controls one motion of the prostheses. Powered artificial limbs with lots of joint 
movement and grasp options can cause a problem due to the existence of more degree of 
freedom than the control signal obtainable from the human user. Switching control is an 
approach to overcome this problem, whereas the patient should switch between all available 
joints or grasp pattern. However,  switching control was impractical, not intuitive and the 
long time is needed to achieve a complex task.[2] Moreover, the region of muscle activity 
that is recorded by EMG and measured near the surface of the skin may involve the 
contribution of more than one muscle that causes the EMG cross-talk. The limitation of 
direct, switching control system and Cross-talk EMG has been a driving force for the use of 
pattern recognition approach to myoelectric control, which increases the number of Degree 
of freedom (DOF) that can be intuitively controlled.[3-5] 
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Stango [6] use HD-EMG signals for controlling upper limb prostheses based on pattern 
recognition. Spatial features extracted from HD-EMG map making the performance of 
classifier robust to electrode shift with accuracy = 95% for 9 movements. Rojas [7] employ 
three electrodes array for Biceps, Triceps, and forearm to identify 12 gesture classes 
corresponding to 4 motion types with 3 effort levels. Spatial features were extracted by 
mean shift channel algorithm combined with intensity features obtained from five 
segmented map corresponds to muscles. Its classifier achieved higher performance with 
precision =97.5% and sensitivity=97.4%.  Geng et al. [8,9] use 2D array electrodes with 
128 channel organized as a grid of 8*16 matrix.  Geng deal with the instantaneous 
recording of HD-EMG as an image.  Deep convolution network was implemented for 
gesture recognition that classifies instantaneous sEMG images. Higher recognition accuracy 
reached 99.5% obtained by simple majority voting algorithm over 150 frames. 

 In this paper, the spatial features were proposed for gesture recognition based on two 
methods; the first one is the histogram oriented gradient (HOG) algorithm while the other 
method is the average intensity features. These features were calculated in the classification 
of eight hand movements of upper limb prostheses using the SVM classifier.  The proposed 
features extraction methods satisfied the improvement of identification task. The 
experiments and results proved the usefulness of spatial distribution of HD-EMG data of 
myoelectric intensity over the muscle in the classification of tasks. 

 
II. Pattern Recognition Approach 

A. EMG electrodes 

Electromyography (EMG) signals acquired from electrical activities of muscle by 
means of surface, needle or implantable electrodes. The electrode may be invasive or non-
invasive, the invasive required an interface device between the patient and the robotic 
prostheses by surgery. Hence, surface EMG preferred to record non-invasively. The surface 
electrode either dry in direct connection with the patient's skin or gelled electrode that use 
the chemical material as the interface between skin and electrode. Recent research showed 
other types of surface electrodes such as multi-channel electrodes. Multi-channel electrodes 
use more than two channels as the linear array or 2D array of surface electrodes [10,11]. 
HD-sEMG channels organized in a quadrature grid of closely spaced electrodes on the skin 
overlying a muscle area as shown in Fig. 1. 

 
 

 
(a)  (b)

 
FIG .1. (A) THE HD-SEMG ELECTRODE ARRAY; (B) 8 HD-SEMG ELECTRODE  ARRAYS ON THE RIGHT FOREARM [12] 

B. Participant 

Different types of database are available such as CSL-HDEMG database, it consists of 
5 subjects performing 27 gestures. This database uses an electrode array with 192 
electrodes, covering the upper forearm muscles, forming a grid of 7 × 24 channels. NinaPro 
database, a benchmark scientific database with ten electrodes on the forearm for hand 
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prostheses. In the NinaPro dataset, 52 gestures were recorded for 10 trials by 27 subjects in 
sub-database1 (DB1) and 50 gestures were recorded for 6 trials by 40 subjects in sub-
database2 (DB2).[8] 

In this study, the HD-sEMG data obtained from standard benchmark available at http:// 
zju-capg.org/myo/data. It consists of 128 channel prepared in matrix form 8*16 as a 2D 
array of closely spaced electrodes. DB-a is considered with 18 subjects. Each subject 
performed 8 isometric hand gesture. Each gesture repeated for 10 trials. [9] 

CapgMyo database do not enforce definable contraction force when the subject 
performed gestures. The viewpoint of gesture recognition considered the contraction force 
level is a type of feature [9,12]. Identification of gesture is easier by imposing the 
contraction force. Further, in a real-world application, it is difficult to order users to have 
specific contraction force. The gestures implemented in our experiment is shown in Fig. 2. 

 

 
FIG. 2. HAND GESTURES CONFIGURATIONS. 

C. sEMG - Topography 

HD-EMG map is the spatial distribution of intensities of the active motor unit over the 
muscle. sEMG - map or sEMG – topography was proposed for medical application. 
Recently, it has been used for gesture recognition. The EMG map was calculated for a 
single channel as 

 jiji sEMGRMSAM ,,       (1) 

where AM is activation map of the channel (i,j), RMS is the root mean square value of 
EMG signal at location i,j of 2D array,  sEMGi,j is the EMG signal at location (i,j) channel. 
Each pixel in the map corresponds to RMS value of a channel at location (i,j) of 2D 
electrodes array. 

The segmented map was calculated for several non-overlapping 200ms time windows, 
which is the suggested window length for many studies of pattern recognition, based 
prosthetic control [13]. Then averaged the segmented map as 
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where ASMi,j average segmented map located at (i,j) channel, Si,j = EMG signal located 
at (i,j) of 2D arrays, SMi,j is the segmented map located at (i,j) channel 
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N= total number of samples in each window of sEMG signal 
M= number of non-overlapping windows. 

D. Feature extraction 

There are different proposal algorithms use to extract features some of them are 
simple such as RMS value to estimate EMG amplitude or use time domain features 
(TD) or more complex frequency feature such as Fourier and wavelet domain. 
Recent studies display that the spatial distribution of HD-EMG maps improves the 
recognition of tasks. The spatial features relevant to HD-EMG maps were extracted 
and used in identification either individual or combined so as to improve their 
performance [4,14- 16]. 

Many studies propose a non-linear relation between EMG amplitude and 
generated force. Therefore, the intensity features were evaluated as a common 
logarithm of the average intensity of HD-EMG maps [17-20]. 
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where I is the intensity features, AMi,j is the intensity value of the pixel at location (i,j) 
of activation map. 

The average segmented map can be considered as images whereas each pixel 
corresponds to the channel. So, the problem of hand gesture can be reframed as the problem 
of image classification. The Histogram Oriented Gradient (HOG) algorithm is applied to 
extract the spatial features of the average HD-EMG map. HOG is an efficient feature 
extraction technique, which is widely used in image processing for the purpose of object 
detection. HOG counts the occurrences of gradient orientation in localized portions of an 
image. In this study, HOG features that extracted from the average HD-EMD map denoted 
as H features. 

Combined spatial features between Intensity features and H features in a single feature 
vector by concatenation were employed. In this work, Intensity feature (I) was evaluated in 
a different way of Roja[10]. HD-EMG maps were calculated for each non-overlapping 
window in (i,j) channel and compute intensity for each window maps. Then, the average 
intensity for each channel. Accordingly, 128 intensity features correspond to 128 channels 
that combined in sequence with features result from HOG algorithm. These features were 
denoted as AIH (Average Intensity HOG).    

Classical features may be evaluated in time, frequency and time-frequency domain. In 
this work, the classification was also performed using Time Domain features (TD) to 
compare with the two feature sets. Five TD features were computed for each channel: root 
means square value ( RMS), mean absolute value (MAV), the number of zero crossing 
(ZC), waveform length (WL) and variance (VAR). These features computed as:[21] 





N

n
nx

N
RMS

1

21    





N

n
nx

N
MAV

1

1    



 14 

 




 
N

n
nn xxWL

1
1    

  



 

1

1
11*sgn

N

n
nnnn thrasholdxxxxZC    



 


otherwise

thresholdx

0

1
sgn 







N

n
nx

N
VAR

1

2
1

1    

Where Xn is the EMG signal of length N 

Xn+1 is the advance sample value of Xn  

E. Performance of classifier   

SVM classifier was applied due to its simple implementation and ease of training. 
Which classify 8 isometric hand gesture by finding the best hyperplane that separate data 
points of one class from the others. Linear kernel function gave better accuracy than other 
kernels.[1] 

Three different SVM classifier was implemented according to different feature sets 
extracted from HD-sEMG data 

 Classifier-based on H features. 

 Classifier-based on the combined average intensity and H features denoted as (AIH). 

 Classifier-based on TD features. 
The performance of classifier was evaluated in term of Sensitivity (Recal) (S), 

Precision (P) and Accuracy (ACC) as 
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where TP   (true positive) is the number of samples that were correctly classified 
to a certain class; TN   (true negative) is the  number of samples that do not pertain 
to a certain class and were not categorized to that class; FN  (false negative) is the 
number of samples pertaining to a certain class but  erroneously classified into 
another class; FP  (false positive) is the number of samples not pertaining to a 
certain class but incorrectly classified into that class [18,22]. Fig. 3. Show the 
systematic representation of SVM classifier based AIH features. 
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FIG .3. SCHEMATIC REPRESENTATION OF SVM CLASSIFIER BASED AIH FEATURES. 

 
III. simulation and results 

EMG signals were detected from a restricted area of the skin over the muscle using 
HD-sEMG electrodes. These 2D array electrodes organized in 16 rows and 8 columns.   
The acquired HD sEMG data were preprocessed using band-pass filtered at 20-380 Hz and 
sampled at 1000 Hz. Each gesture recorded ten trials for each subject. For each trial, the 
channel was recorded for 1000 sample of instants. The identification was tested on five 
able-bodied subjects for the classification of eight hand gestures. The classifier was trained 
using the first seven trials and tested by the remaining three trails (70% training set, 30% 
test set). 

In our study, two feature sets (H, AIH) were evaluated. the results illustrate the scope 
of each feature set to identify eight gestures. The performance of SVM classifier based H, 
AIH features compared with classifier based classical methods (TD features). The 
performance of each gesture was averaged between five subjects and presented in term of 
mean and standard deviation.  

Table 1. displays the results of gesture recognition based on AIH features. It can be 
observed from Table 1 the SVM classifier based AIH features have higher performance and 
achieved lower standard deviation. 

TABLE 1. ACCURACY, PRECISION AND SENSITIVITY OF 8 GESTURE RECOGNITION USING AIH FEATURES 

AVERAGED BETWEEN FIVE SUBJECTS AND PRESENTED IN TERM OF MEAN AND STANDARD DEVIATION. 

Gestures 
Performance of SVM classifier based on AIH features 

Accuracy% Precision% Sensitivity % 
G1 99.16 ± 1.86% 100 ± 0% 93.3 ± 14.9% 

G2 100    ± 0% 100 ± 0% 100  ± 0% 

G3 99.16 ± 1.86% 95   ± 11.18% 100  ± 0% 

G4 100    ± 0% 100 ± 0% 100  ± 0 % 

G5 100   ± 0% 100 ± 0% 100  ± 0% 

G6 98.3  ± 3.7% 100 ± 0% 86.6 ± 29.8% 

G7 98.3  ± 3.7% 92   ± 17.8% 100  ± 0% 

G8 100   ± 0% 100 ± 0% 100  ± 0% 

Average  99.3  ± 1.4 98.375 ± 3.6 97.5 ± 5.587 
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The performance of three SVM classifier based on different feature sets that shown in 
Fig. 4. As noted AIH considerably outperform all of the compared features and its 
performance was higher than that obtained when using the others feature sets. This is 
explicit in average accuracy (98.3%, 99.3%, 98.7% for H, AIH, TD features respectively). 
Moreover, the performance of TD outperforms that of H. as well as in the average precision 
and sensitivity (95% ± 10%, 93.3% ± 10.15 %, 96.5% ± 7.8%, 94.9% ± 7.86% for H, TD 
features respectively). While, precision and sensitivity for AIH was (98.37% ± 3.6%, 97.5% 
± 5.587%). A significant difference can be noticeable for precision and sensitivity based on 
AIH than other classifiers. Whereas, the standard deviation of precision and sensitivity 
decreased from 10%, 7.8% (for H, TD features respectively) to 3.6% for AIH features. 

 

FIG . 4 THE PERFORMANCE OF SVM CLASSIFIER IN TERM OF ACCURACY, PRECISION AND SENSITIVITY BASED DIFFERENT 

FEATURE SETS H, AIH, TD RESPECTIVELY. 

As compared with the results of Geng in [9] that used the same database (with 50% 
training set and 50 % for testing)  and the power of deep learning to classify 8 gesture DB-
a, the average accuracy reached 99.5 %. His result compared with the SVM classifier that 
has bad performance with nearly 18% average accuracy due to the default configuration 
that has a linear kernel function. While in our study a good performance for SVM classifier 
based AIH features, the average accuracy reached 99.37 %. Our result confirms that the 
choice of features is more important than the choice of the classifier. 

Our results also compared with Rojas in [7]. Rajas used spatial features extracted by 
the mean shift algorithm combined with intensity feature computed in the different way of 
our work. Rojas segmented the HD-sEMG map of the forearm into three maps that covering 
the targeted muscle. Intensity feature is calculated for each map as a single feature. As a 
result, three intensity features are combined with mean shift features. Raja [7] used 70% as 
a training set and 30% for testing.  Its LDA classifier achieved   precision =97.5 % and 
sensitivity=97.4% while in our work, SVM classifier satisfy P=98.37%, S=97.5%. 

The classification accuracy of each hand gesture average between five subjects that 
shown in Fig. 5. As noticed G1, G2, G3, G4, G5, G8 achieved higher accuracy for AIH 
than other features. While G6, G7 attained higher accuracy for TD features. This is 
interpreting the lower standard deviation of AIH features (1.39 %) than TD features 
(2.14%). 

Reduced the number of trials for training the classifier was slightly degenerate the 
performance. Therefore, training the SVM classifier based AIH features on the different 
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number of trials from one to seven trials that shown in Fig. 6. It can be observed that 
accuracy of training classifier on single trial for five subjects were 98.9%, 92.7%, 90.6%, 
89.5%, 91.6% respectively with average accuracy 92.7% which was an acceptable accuracy 
for one trial training. Whereas the training over three trials attained maximum performance 
of 97.9 %. 

 

 

FIG. 5. CLASSIFICATION ACCURACY FOR EIGHT GESTURES BASED DIFFERENT CLASSIFIER 

 

FIG .6. IDENTIFICATION ACCURACY BASED ON A DIFFERENT NUMBER OF TRAINING TRIALS. 

IV. Discussion and Conclusion 

Five subjects performed eight gestures. HD-sEMG data was obtained from the standard 
database CapgMyo database DB-a. It consists of 128 channels configured as 8*16, each 
channel recorded for 1000 sample instants. Each channel was divided into 5 frames of 
200ms non–overlapping window. HD-EMG map was calculated for each segmented 
window by RMS value then averaged intensity of each segmented map per channel to get 
average activation map. Different feature sets were extracted H feature corresponds to 
spatial features extracted of average activation map by HOG algorithm. AIH features 
related to combined HOG features and intensity features. Where the intensity of each 
segmented window averaged to obtain average intensity for each channel as a vector its 
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elements equal to the number of channels. In addition, TD features in which five features 
computed for each channel RMS, MAV, ZC, WL, VAR.  The gesture recognized using 
SVM classifier based features sets. This study shows the possibility of each feature set to 
identify the gesture. It can be observed that the AIH achieved higher performance 
(ACC_AIH= 99.3 %, P_AIH= 98.375%, S_AIH=97.5%) than other feature sets. The spatial 
features considerably improved the classification of motion intents, this event was also 
presented by Rojas in [7, 18]. 

A good performance of the classifier should be robust to fatigue and electrode-skin 
contact impedance. Therefore in the future work, it is interesting to test SVM classifier 
based AIH features with respect to shift electrodes and fatigue. Also may be additional 
features correspond to frequency content can be used to mend even more the identification 
performance.  
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