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Robust Hand Gesture Identification Using Envelope of ‎HD-sEMG 

Signal

 

ABSTRACT 

Electromyography (EMG) pattern recognition has been used for 

different applications such as prosthesis, human-computer 

interaction, rehabilitation robots, and many industrial applications. 

In this paper, a robust approach has been proposed for High 

Density - surface EMG (HD-sEMG) features extraction by using 

envelopes of HD-sEMG signals. HD-sEMG signals have been 

recorded by a two-dimensional array of closely spaced electrodes. 

The recorded signals have been memorized in three datasets of 

CapgMyo database were employed to ensure the robustness of our 

experiment. The results display that the spatial features of 

Histogram Oriented Gradient (HOG) method combined with 

intensity features have achieved higher performance for Support 

Vector Machine (SVM) classifier compared with using classical 

Time-Domain (TD) features for the same classifier. 

KEYWORDS 

HD-sEMG, EMG pattern recognition, electrodes array, SVM 

classifier, spatial features component, HOG approach. 

1 INTRODUCTION 

Artificial limbs have been presented about 60 years ago, but 

amputee’s acceptance for these limbs still low [1]. According to 

the survey performed about using the prosthesis by patients, 28% 

of patients are classified as prosthesis refuses, they may use 

prosthesis no more than a year [2]. The recent researches report 

that three reasons for rejecting the myoelectric prostheses: first, 

the non-intuitive control for the patient; second, the incomplete 

functionality, and feedback from the prostheses are insufficient 

[3,4].   

 

 

 

 

 

The EMG signals are stochastic in nature; also, many factors can  

Significantly influence the characteristic of the EMG signal and 

consequently the performance of EMG pattern recognition. These 

influences appear due to changing the signal over time, shifting 

the locations of electrodes, the muscle fatigue, inter subject 

variation, and variation in muscle contraction intensity [5,6]. 

Controlling the degree of freedom (DOF) of the prosthesis is still 

limited. This restriction essentially depends on the control 

strategies of a myoelectric prosthesis. One of this strategy is 

conventional control that uses the amplitude of EMG signal from 

muscle's pair for controlling one DOF. Hence for more DOF, 

amputees required to achieve more contraction to change 

prostheses mode, accordingly, non-intuitive control can be used to 

solve this problem. Pattern recognition technique reduced this 

limitation by direct mapping the human movements to prosthesis 

function by extracting features of multi-channel EMG signals and 

then classify these features into several gestures [2,3,7]. 

Two techniques are used to measure EMG signals. First, the 

electrode are placed precisely over the muscles (i.e. this is called 

sparse multi-channel). Second, electrodes are arranged in an array 

over specific muscle area such as EMG armband (i.e. electrodes 

organized in a single row) and HD-sEMG electrodes (high-density 

surface electromyography). HD-sEMG electrodes are arranged in 

the two-dimensional array with closely spaced electrodes. Its total 

number of electrodes are ranged from 32 [8] to over 350 [9]. 

While the EMG armband is limited by 16 electrodes as the 

maximum number [10]. 

Saponas [11] employ EMG armband at the forearm with eight 

channels. SVM classifier was presented to recognized 18 gestures 

that divided into 4 subsets (consisting of 4 to 8 classes each). 

Recognition accuracy reached from 78% to 95%. Saponas [12] 

investigate performance over cross session evaluation for different 

days use the wireless armband. Amma [13] introduced Naïve 

Bayes classifier for baseline recognition system using HD-sEMG 

array of 192 electrodes. Amma acquired sets of 27 gestures with 

accuracies reached 90 %. He showed that the best performance 

can be obtained when the number of electrodes increased over 100 

electrodes. Stango[14] presented robust performance of classifier 

to electrode shift using spatial features of HD-sEMG array with 

accuracy 95% for 9 movements. 

The HD-sEMG data recorded is allowed in both temporal and 

spatial domain. This leading to analyze EMG information using 
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an image processing technique. Two methods can be used for 

analyzing HD-sEMG signals; instantaneous images and HD-

sEMG map. The instantaneous image was established from the 

RawssEMG signals such that the number of pixel in the 

instantaneous image corresponds to the number of electrodes. 

Geng in [15,16] used the instantaneous image as an image 

classification problem and classified gestures by deep learning 

method, a simple majority voting is further used to enhance the 

recognition performance. Geng was achieved higher recognition 

accuracy reached 99.5%.  Roja [9] proposed HD-sEMG map 

using three electrode array corresponds to 350 channels. Features 

extracted from five HD-sEMG maps by mean shift method and 

combined with five intensity features of these maps. Its classifier 

achieved higher performance with precision was 97.5% and 

sensitivity was 97.4%.  

In this paper, envelop of HD-sEMG signals will be used which 

features are extracted by combination of Histogram Oriented 

Gradient algorithm (HOG) features and intensity features of 

Average HD-sEMG map. The resultant features denoted as AIH 

features. These features were employed for the classification of 

multiple hand movements of prostheses using the SVM classifier.  

The experiments and results proved the usefulness of spatial 

distribution of HD-EMG maps over the muscle. Our experiment 

was compared with the methods introduced by both Geng [16] 

and Roja [9].The paper is organized as follows: in section 2, 

gestures recognition has been described and study the required 

tools for this task. In section 3, the simulation of SVM classifier 

by MATLAB has been performed to test the accuracy of using 

proposal HD-sEMG features extraction algorithms. The final 

section contains the conclusions and discussions. 

 

2 HD-sEMG PATTERN RECOGNITION  

2.1 HD-sEMG Signal Acquisition 

To ensure robustness and generalization of EMG pattern 

recognition, multiple dataset will be employed. 

The Ninapro (noninvasive adaptive prosthesis) consists of (10-16) 

EMG channels with seven datasets at “http://ninapro.hevs.ch” 

which corresponds to spares electrodes. The HD-sEMG dataset 

contains Csl-hdemg dataset that records 6500 trails of 3s muscle 

For our system, CapgMyo will be used including its three sub-

datasets. DB-a consists of 8 gestures obtained from 18 subjects. 

DB-b includes the same gestures of DB-a but produced from 10 

subjects. Each subject participates in two sessions of the different 

day. DB-c contains 12 gestures acquired from 10 subjects. 

The acquired HD-sEMG data were preprocessed using band-pass 

filtered at 20-380 Hz and sampled at 1000 Hz. Each gesture 

recorded ten trials for each subject. For each trial, the channel 

recorded 1000 samples of instants. HD-sEMG channels organized 

in a quadrature grid of closely spaced electrodes covering a 

muscle area as shown in Fig. 1. 

 

 
Figure 1:  The form of HD-sEMG electrodes arranged as 

(16*8) electrode arrays [16]. 

2.2 Feature Extraction  

Our study divided into two experiments, each experiment used 

SVM classifier to classify multiple gestures through three datasets 

based on two different feature sets (features extraction by AIH, 

and classical TD features respectively). Comparison between the 

performances of two experiments achieved. Moreover, our 

proposal compared with Rojas[9], Geng[16] that used the HD-

sEMG map and instantaneous image for analyzing EMG signals 

respectively. Schematic representation of two experiments were 

shown in Fig. 2. 

 

 
Figure 2: Schematic representation of SVM classifier based AIH, TD features. 
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In the first experiment, AIH features have been employed for HD-

sEMG signals recognition. For each subject, envelopes of HD-

sEMG signals are calculated for all channels by the preprocessing 

procedure, and then the features are extracted from these 

envelopes. Accordingly, envelopes of 128 signals are evaluated 

and formed as an array of 8*16 corresponding to electrodes 

positions. Envelopes of signals are segmented into a non-

overlapping window has a length of 200 ms where there are many 

studies of myoelectric pattern recognition were suggested window 

length to be 150 ms – 200 ms [17]. 

HD-sEMG map is the spatial distribution of intensities of the 

active motor unit over the muscle. sEMG - map or sEMG – 

topography was proposed for medical application. Each pixel in 

map corresponds to RMS value of a channel at location (i,j) of 2D 

array electrodes. 

The segmented HD-sEMG map was calculated for each 

segmented window as [18]  
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EMGi,jis segmented envelope of signal of i,j channel, SM is 

segmented map of envelope window at location i,j, N corresponds 

to samples number in each envelope window of sEMG signal. 

Accordingly, an average segmented map was obtained as  
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Where M relates to number of non-overlapping window, ASMi,j is 

average segmented map located at (i,j) channel. 

The intensity feature was calculated as common logarithmic of 

average segmented map [18,19]. 
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where I is the intensity features. 

The average segmented map can be considered as an images of 

size 8*16 whereas each pixel corresponds to channel. Hence, the 

problem of hand gesture can be reframed as the problem of image 

classification. HOG algorithm is an efficient feature extraction 

technique. Consequently, intensity features concatenated with 

HOG features of average segmented map to form AIH features.  

AIH feature extraction algorithm is shown in Fig. 3.As depicted 

by the flowchart there are three main parts; signals manipulation 

that considered in the first three blocks of Fig. 3. This part 

consists of calculating envelop signal of 128 channels each of 

1000 samples. Then segmented each envelop signal into 5 frames 

of 200ms windows length. The second part is computing HD-

sEMG map for each window by equation (1). Then the average 

segmented map was calculated for five frames according to 

equation (2). In feature extraction part, reframe the average 

segmented map to 8*16 that corresponds to electrode locations 

and extract spatial features by Hog method and combined with 

Intensity features computed by equation (3) to obtain AIH 

features. 

 

 
Figure 3: AIH feature extraction algorithm. 

In the second experiment, TD features were used for HD-sEMG 

signals classification which five features were extracted from HD-

sEMG signals of each channel. These features are zero crossing 

(ZC), Root Mean Square (RMS), Mean Absolute Value (MAV), 

waveform length (WL) and Variance (Var). These features are 

calculated as [20,21]. 
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2.3 Criterion of the Classification Performance 

Fast training and ease of implementation have prompted the use of 

SVM classifier. In order to achieve an honest assessment of the 

true accuracy of our classifier, ten-fold cross-validation was used. 

Whereas, the data set is divided into ten portions or “folds”. One 

fold is designated as the validation set, while the remaining nine 

folds are all combined and used for training. 

The performance of classifier was evaluated in term of sensitivity 

(S), Precision (P) and Accuracy (ACC) as [22,23] 
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where 

TP (true positive) is the number of samples that were classified 

properly to a specific class.  

TN   (true negative) is the number of samples that does not pertain 

to a definite class and were not categorized to that class. 

FN (false negative) is the number of samples pertaining to a 

specific class but erroneously classified into another class.  

FP (false positive) is the number of samples not pertaining to a 

definite class but incorrectly classified into that class. 

 

 

3 SIMULATION AND RESULTS 

HD-sEMG signals recorded by 2D array of electrodes arranged in 

8*16 matrix with 1000 samples. For each trial envelopes of 

signals were evaluated for all channels. SVM classifier based on 

AIH features was trained for 70% of trials and tested on 

remaining 30%. Our first experiment applied for three datasets of 

CapgMyo to ensure the robustness of our proposal for different 

datasets. DB-a, DB-b consists of 8 gestures, DB-c has 12 gestures. 

DB-b consists of two session. However, the second session was 

used for the evaluation.   

Table I displays the performance of SVM classifier based on AIH 

features, it was averaged between five subjects in term of means 

and standard deviation. 

Table (I): The accuracy, precision and sensitivity of SVM 

classifierfor three datasets. 

Datasets The performance of SVM classifier 

 Accuracy % Precision % Sensitivity % 

DB-a 100 ± 0% 100 ± 0% 100 ± 0% 

DB-b 99.15 ± 1.27% 97.5 ± 4.5% 96.6 ± 6% 

DB-c 99.5 ± 0.83% 98.75 ± 2.8% 97.5 ± 6.2% 

 

As noted in Table I, SVM classifier has higher performance for 

DB-a compare with other Datasets. Moreover, the performance of 

SVM for DB-c outperform from that for DB-b although DB-c has 

12 gesture compared with 8 gesture for DB-b. Whereas the 

augment the number of movement can affect the recognition 

accuracies of classifier. 

In experiment 2, the performance of SVM classifier based on AIH 

features compared with TD features as shown in Fig. 4. The 

comparison was performed in term of precision and sensitivity for 

three datasets. As noted AIH, considerably outperform TD 

features. This is explicit in average precision and sensitivity of 

DB-a (100%, 100%, 98.7%, 98.3% for AIH, TD features 

respectively); for DB-b (97.5%, 96.6%, 94%, 94% for AIH, TD 

features respectively) and for DB-c (98.75%, 97.2%, 96.8%, 

96.6% AIH, TD features respectively). It can be noticed that using 

spatial features for gesture recognition improves the performance 

of classifier. 

Moreover, SVM classification based on AIH features can train 

with lower time reached to 0.754 sec compared with SVM 

classification based on TD features that have good average 

accuracy but required more time which reaches to 164.3 s for 

training. The average processing time has measured by the 

personal computer has an Intel Core i7 CPU, 2.6 GHz, and 6 GB 

memory. 
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Figure 4: The performance of SVM classifier in term of 

precision and sensitivity based on AIH, and TD features 

respectively for three sub Databases. 

Reducing the number of trials for training the classifier leads the 

performance has slightly degenerated. Therefore, the SVM 

classifier based on AIH features has been trained for the different 

number of trials as shown in Fig. 5. It can be observed that 

accuracy of classifier training for three subjects over three trials 

were 98.4%, 96.8%, 93.7% respectively with average accuracy 

92.9%, which was an acceptable accuracy for three-trial training. 

Whereas the training for single trials attained minimum 

performance of 91.4 %. 

 
Figure 5: Recognition accuracy based different number of 

training trials. 

Our results of the first experiment were compared with the results 

of both Geng [15,16] and Roja [9]. Geng has used the same 

database of our study, which employed the deep learning to 

classify the instantaneous images by simple majority voting over 

40 to 150 frames to enhance the recognition accuracies. Geng has 

used 50% trails for training (corresponding to odd trials) and 50% 

for testing (corresponding to even trials) accordingly our 

experiment changed to be familiar with the latest work [16]. 

Hence, for each subject, SVM classifier was trained by using 50% 

of trials and tested by the remaining half of the trials. Table (II) 

illustrates the comparison between the results of our experiments 

and Geng results [16]. 

 

Table (II):Comparison of SVM classifier results based on AIH 

with the previous study [16]. 

Datasets Performance Our study Geng[16] 

 

DB-a 

Acc 99.5  ± 0.8 % 

99.5% P 98.45  ± 3.46% 

S 98  ± 3.3% 

 

DB-b 

Acc 99.18  ± 1.67% 
98.6% 

 
P 97.9  ± 4.6% 

S 98  ± 4.45% 

 

DB-c 

Acc 98. 8  ± 1.4% 
99.2% 

 
P 95.8  ± 8.7% 

S 93  ± 11.2% 

 

As noted From TABLE II, our results was altered from Table I 

this is due to change the training sets to 50% of trials rather than 

70% of TABLE I. Consequently, the number of trials that used for 

training and testing can affect the performance of the classifier. 

Furthermore, TABLE II displayed the comparison of our first 

experiment with Geng [16]. As can be seen, the same accuracies 

using DB-a for recognition eight gestures. While slight 

differences for DB-b, DB-c whereas our proposal achieved an 

accuracy of 99.18 % for DB-b with improvement 0.58% than the 

previous study [16]. In other word, the latest work [16] 

outperform our proposal for DB-c with improvement 0.4%. 

Geng in [16] compared his results with conventional classifiers 

such as SVM but he was showed that SVM classifier achieved not 

well performance with recognition accuracy 18%. Whilst our 

SVM classifier was achieved results with high performance with 

respect to approaches of the previous study [16] (D-Ba, 99.5%; 

DB-b, 99.18%; DB-c, 98.8%).This indicate that the choice of 

features to be extracted is more important than the choice of 

classifier.  

Roja [9] has created a dataset by achieved several experiments 

which are different from our database. He has computed the 

activation map for five muscle through three electrodes array of 

192 channels. Features were extracted by mean shift method and 

concatenated with five intensity features corresponds to five 

activations map. As a result, LDA classifier used to recognize 12 

gestures corresponds to four motion type with three effort levels. 

Our intensity features are calculated for each channel to obtain 

128 intensity features. While Rojas was computed intensity 

features for activation map to get five intensity features. Roja's 

experiment has been done for eight subjects, therefore, our 

experiment extended to ten subjects with the same training and 

testing set as Rojas [9] ( i.e The classifier was trained using the 

first seven trials and used the remaining three trails for testing). 

The performance evaluated in term of precision and sensitivity 

averaged between ten subjects of our approach, which the 

comparison is shown in TABLE (III). 

TABLE 3 has introduced the precision and sensitivity results of 

all gestures recognition, which are averaged between ten subjects 

in term of mean and standard deviation. Our experiments were 
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used DB-c to be familiar with 12 gestures as Roja [9]. As noticed 

from TABLE 3, the average precision of our results achieved 

98.2% with an improvement of 0.7%, than Roja [9], on the other 

hand, the average sensitivity of latest work [9] outperform our 

results by 0.4%. 

TABLE (III): Comparision between the precision and 

sensitivityof roja [9] and our aih approach for   12 gesture 

recognition averaged between ten subjects and presented in 

term of mean and standard deviation. 

Gesture

s 

Rojas [9] Our results 

Precision% 
Sensitivity

% 

Precision

% 

Sensitivity

% 

G1 99.9±0.3% 98.2±2.8% 
97.5±7.9

% 
93.3± 21% 

G2 97±3.1% 98.7±1.1% 100±0% 100±0% 

G3 98.6±1.1% 97.7±2.9% 100±0% 100±0% 

G4 99.6±1.1% 99.7±0.6% 100±0% 96.6±10% 

G5 97.5±2.1% 97.4±3.4% 95±10% 100±0% 

G6 98.2±2.9% 97.7±2.3% 100±0% 
96.6±10.5

% 

G7 99±0.2% 99.7±0.5% 
97.5±7.9

% 

96.6±10.5

% 

G8 96±5.1% 95.2±7.1% 100±0% 
96.6±10.5

% 

G9 95.4±6.3% 96.6±4.9% 100±0% 
96.6±10.5

% 

G10 99.4±1.1% 99.8±0.2% 
94.28±18

% 
100±0% 

G11 93±11.3% 
93.8±12.3

% 

97.5±7.9

% 
93.3±14% 

G12 
94.2±11.9

% 

93.7±11.9

% 
96±12.6% 93.3±21% 

Averag

e 
97.5±3.9% 97.4±4.2% 

98.2±5.4

% 
97±9% 

4 DISCUSSION AND CONCLUSION 

In this paper, robust recognition for HD-sEMG signals has been 

achieved. HD-sEMG signals have extracted by the two-

dimensional array of closely spaced electrodes which it did not 

required exact position of muscle as sparse electrodes. Further 

HD-sEMG electrodes have significantly augmented the size of 

data. Our proposal was AIH features related to combined of H 

features and intensity features, whereas, these features extracted 

from the envelopes of the HD-sEMG signals.  In addition, TD 

features have been used for gesture recognition in which five 

features computed for each channel RMS, MAV, ZC, WL, VAR.  

The gesture recognized using SVM classifier based features sets. 

Moreover, three dataset were used to demonstrate the efficiency 

of AIH. Our proposal reported that spatial features have a 

significant impact on classifier type selection with respect to 

achieve good performance. SVM classifier based AIH features 

have good results compared with classifier based TD features(i.e. 

the performance of SVM classifier in term of precision and 

sensitivity based AIH features outperform TD features with 

improvement for DB-a  1.3% , 1.7%  respectively, for DB-b 3.5%, 

2.6% respectively, and for DB-c 1.95%, 0.6% respectively). 

Accordingly, this offered that the choice of features has an 

important effect on the performance of the classifier. 
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