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ABSTRACT

An improved approach for modeling discrete cracks in two-dimensional anisotropic functional graded
materials FGMs by XFEM is described. A general node meshing type-T3 with sub-triangle technique
for enhancing the Gauss quadrature accuracy near the crack is applied to increase the accuracy of
numerical results. Also, the useful incompatible interaction integral method (M-integral method) is
used to calculate the stress intensity factors. Numerical simulations have proved that provides accurate
results by less number of nodes (DOFs) in comparison with reference. The results of LEFM (liner
elastic fracture mechanics) have been compared with the reference results, showing the reliability,
stability, and the efficiency of present meshing of XFEM. Matlab program (M-file) is used to solve the
aim of this paper.

KEYWORDS: XFEM, Anisotropic Functional Graded Materials, Interaction Integral, Stress Intensity
Factors.
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1. INTRODUCTION

Today, functionally graded materials (FGMs) are very significant materials to use in many branches of
engineering applications in aerospace, automobile, medical equipments, and turbine industries.

A formulated concept of functionally graded materials (FGMs) was proposed in 1984 by material
scientists in Sendai area, Japan, as a means of preparing thermal barrier materials, and a coordinated
research was developed in that country since 1986. The idea, that continuously changes in the
composition, microstructure, porosity, etc., of these materials resulting in gradients in such properties
as mechanical strength and thermal conductivity, has spreaded world-wide in the recent research [1].
Where in these materials smoothly continuously change in microstructure porosity, bonding, etc
resulting in gradients in such properties as mechanical strength and thermal conductivity, has spread to
use FGMs in different applications rather than use of the ordinary composites by improving a number
of useful, relevant properties against the problem of interface regains. Clearly and recently, the use of
FGMs rather than composites materials has been developed such as shown in [2-4].

Various method have already presented to the fracture analysis of functionally graded materials. In the
calculation of the stress intensity factors in isotropic, the order of singularity of stress field in vicinity
of the crack is same as isotropic materials [5]. The study of the fracture analysis of FGMs were
increased in the previous forty years. The major information on these types of materials had been
extracted by using the numerical methods rather than the theoretical methods that had inability to
analyze the complicated material problems. Where, Dolbow and Gosz [6] presented approach that was
applicable to the analysis of any FGM in which the form of the asymptotic near-tip fields match those
of a homogeneous material and it does not required detailed knowledge of the higher order terms. In
the derivation, an interaction energy contour integral was expressed in domain form and evaluated as a
post processing step in the X-FEM. Rao and Rahman [7] used meshless method (EFGM) for
calculating the fracture parameters of isotropic FGM by developing new two interaction integrals by
depending on homogenous and non- homogenous auxiling field. In addition, Kim and Paulino [8]
developed with using FEM as a numerical method, an accurate scheme for evaluating mixed-mode
SIFs by means of the interaction integral (M-integral) method considering arbitrarily oriented straight
and curved cracks in two-dimensional (2D) elastic orthotropic FGMs. The interaction integral proved
to be an accurate and robust scheme in the numerical examples where various types of material
gradation, such as exponential, radial, and hyperbolic-tangent, were considered. They observed that
material orthotropy, material gradation and the direction of material gradation may have a significant
influence on SIFs. Dai, et. al. [9] used a meshfree model for the static and dynamic analyses of
functionally graded material (FGM) plates based on the radial point interpolation method (PIM). In the
method, the mid-plane of an FGM plate was represented by a set of distributed nodes while the
material properties in its thickness direction were computed analytically to take into account their
continuous variations from one surface to another. Based on the current material gradient, it was found
that as the volume fraction exponent increases, the mechanical characteristics of the FGM plate
approach those of the pure metal plate blended in the FGM. Also, Kim, and Paulino [10] provided a
critical assessment and comparison of three consistent formulations: non-equilibrium, incompatibility,
and constant-constitutive-tensor formulations to use in the calculation of stress intensity factor in
FGMs. Gao, et. al. [11] presented crack analysis in 2D, with continuously inhomogeneous, isotropic
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and linear elastic FGMs. For this purpose, a boundary-domain integral equation formulation was
applied. Recently, XFEM fracture analysis of orthotropic functionally graded materials, with
orthotropic crack tip enrichments was used by Bayesteh, and Mohammadi [12]. It was cleared that the
efficiency of the numerical method in crack analysis of isotropic and anisotropic functionally graded
materials (FGMs).

Extended finite element method XFEM [13-14] is a powerful numerical tool in modeling discontinuity
and has been taken into consideration in recent years. XFEM is a development of standard finite
element method which employs local enrichment of a region using the concept of partition of unity.
Consequently, XFEM is moved beyond the limitations of standard finite element method in numerical
simulation of discontinuity and also, it has the general advantages of standard FEM. Applying
Heaviside function in XFEM, there will be no need to geometric model of crack and as a result, crack
propagation problem can be solved without remeshing. Standard FEM employs the ordinary
polynomials in modeling cracks and therefore, it is unable to simulate the nonlinear behavior of crack
tip and is resulted in mesh dependency of outcomes. Although implementing singular elements is
resolved mesh dependency in FEM, the exact displacement field at crack tip can be reproduce by
XFEM and there is no mesh.

The type of the element in XEFM is very important for depicting of the behavior of the different
complex problems. The division into elements may partly correspond to natural subdivisions of the
structure [15].Proved that higher order element such as triangular element gives more fit result in
comparing with the analytical solution. Also, the complexity of the material properties (functionally
graded materials FGM, or weak /discontinuous problems) of the whole problem needs proper element
with higher order to capture the finest traits of the complex materials [16].

To the best knowledge of authors, XFEM has not been employed to model crack in FGM media under
mechanical. So, the purpose of this paper is to study crack in the complex material as FGM mechanical
using XFEM with appropriate T3-element. To reach on this goal, formulation of the XFEM model is
discussed by considering orthotropic enrichment to achieve higher accuracy and less DOFs. Afterward,
changing of the material properties effects on the formulation are represented. Also, the sub-triangular
technique for numerical integration near the crack tip, effective nodal distribution near crack tip and
for the whole geometry, and interaction integral method (M-integral) with the incompatibility form to
calculate SIF are used to capture more accuracy. Numerical example is employed to verify and
compare XFEM models with previous reference. All the work is verified by developed code using
Matlab environment.

2. FORMULATION OF PROBLEM

In section, governing equations for FGM fracture analysis including stress-strain relationship, stress
and displacement field, extended finite element method and standard finite element approach is
discussed and the parameters are explained.

2.1 Stress- Strain Relationship

The governing relationship of plane stress-strain in this problem is the form of Hook’s low and can be
written as [17]

gt =gm4 gth (1)
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et,e™ and e'are total, mechanical and thermal strain, respectively. Where &™

Eq' = Aap0p (a, =1,2,6) (2

And £t equals zero in this work.

In which
&1 = €11, & =&, & = 2&; (3)
01 = 0711, 0 =032, O0Og =073 (4)

In the case of plane strain, a,z should be substituted,

(aij — M) - aj; (5)

ass

As can be seen in Eq. (2), the components of material compliance tensor s;j;,; can be expressed by a,g

d17 d12  dje S1111 S1122 251112

A1z Az Az6| = S2211 Sa222 252212 (6)
d16 d26 dee 281211 281222 4S1212

Where

m __ g —

&} = SijkiOki (i,j, k1 =123) (7

Considering the stress function ¢ = ¢ (x + uy)for an anisotropic case and employing the basic theory
of elasticity, the characteristic equation is obtained in the following form

a11u4 - 2a16ﬂ3 + (2a;; + (166)/«‘2 — 20361 +ay; =0 (8)

It is obvious that the roots of Eq. (8) are complex and can be define in the form of conjugate pairs,
U, ﬁl and U, lIZ [17]1

U =& +ify

. 9
P2 =&+ 1B, ®)
or in the general form of
P =H2 =5 +ip (10)
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2.1. Stress and Displacement Field

The displacement and stress field for the problem has been developed [18-19], the obtained asymptotic
displacement crack tip can be expressed as

= Ko [ Re { o [14pag, (0) — b, O]} + K [ZRe ([ [pog, ) - pig, @)} (1)

u; = K \/?;rRe (= [11428,(0) — ko8, (O]} + Ku \/?;rRe (——[028,(0) —a18,®]}  (12)

H1—HU2
where (X,Y) are considered the components of global coordinate system,(x, y) the components of the
local crack tip system and the local crack tip polar coordinate system (r, 6) can be defined by
x+iy=re”, which are demonstrated in Figure (1). Moreover, Re implies the real part of complex

displacement functions. Also, u;and u, are defined as the components of displacement in x and y
directions, respectively.

g (6) = \/COS(Q) + u; sin(0) (i=12) (13)
Dr = Qy1Hf + a1p — A1l (k=1,2) (14)
Qi = A2l + CL_Z: — Qe (k=12) (15)

Furthermore, the components of asymptotic stress are in the form of

K tapz [ w2 | Ky 1 [ w3 ui |
01 = Re — » Re — > 16
1= Vzar Hi—p2 18,(0) g, (0)] + v2mr {ﬂl_ﬂz g,(8) g,(8)] (16)

_ K (1 [ _me |], Ku 1 [ 1]
922 _vzﬂrRe Hi—p2 18,(0)  g,(0)] +\/2mRe {#1—#2 5,(0)  g,(6)]) (17

K; g | 1 1| Kip 1 [ m ta |
= K pel — , R - , 18
912 = Zm R e ln @ n@)) T Vo e{ul—uz 5.0 " 5,0 (18)

In the FGMs, the components of material compliance tensor, a;;, are changing on the material volume.
As a result, there are different amount of py, gk, and u; at one point compared to another.

For this reason, material properties for the auxiliary field (in contour integral) and crack tip enrichment
functions are calculated at the crack tip.
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According to the explanations, the parameter y;, should be replaced with )(,ii” in Egs. (11-18) to
modify the equations for the FGM materials.

Xi = Xg' (19)
where y; is the representation of a;j, pk, gk and uy , and )(,ii” states these parameters at the crack tip.

2. STRESS INTENSITY FACTORS
2.1. Calculating J-Integral

Non-equilibrium, incompatibility, and constant-constitutive-tensor are three different methods have
been employed by Kim et al [10] for this side. The incompatibility formulation is employed in this
paper as the method is used to approximate J-integral for the reseason that this procedure requires less
complicated derivatives with the same accuracy of non- equilibrium formulation [10,19]. Also,

constant-constitutive-tensor method leads to inaccuracy with C° finite element formulation. The
incompatibility procedure satisfies the following equations

1
Uij = Cijkl(X)EIT(rll ) gij * E(ui,j + uj,l-) ) O-L'j,j =0 (20)

which includes constitutive and equilibrium equations and c¢;j, is the material modulus while it does
not satisfy compatibility.

Inversing the first part of Egs. (20) yields
&xt = Sijr1(X)oxy (21)

where s=c™. On the whole, Using the equivalent domain integral (Figure (2)), J-integral can be
expressed as

] = fA (O'l'jui’l - W(sl])quA + fA (O'ijui‘l - Wdlj)']qu (22)

where g is a smooth function from g=1 on interior boundary of A and g=0 on the outer one, as
depicted in Figure (2). And n; is the jth component of the outward unit normal to T, §;; is the

Kronecker delta and the Cartesian coordinate system whose x axis is parallel to the crack surface. w is
the strain energy density which can be presented as

1
w=z (011611 + 022875 + 2012€73) (23)
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For plane stress and

—_ 1 m m m m
W=z (011611 + 022675 + 033633 + 207,€73) (24)

For plane strain. Since in the plane strain condition,

gl =0 - et = —ellt = —q AT (25)

Eq. 25 is useful if the analyze is done with thermal and mechanical load.

2.2 Different Parts of Stress Intensity Factors

To calculate stress intensity factors of mode | and I, the interaction integral is applied. J° can be
divided into three components including J, /¥ and M!

]s :] +]aux + Ml (26)

In which the auxiliary and actual field J-integral are expressed by j*“* and ] , respectively.
Considering

— t  _
(juxul,lj aux (u’l 1j + u] 11) U(juxgu 1~ aux(gl] 1 + Sl] 1) (27)
interaction integral M* can be expressed as

M! = M™ 4 Mth (28)

where by some manipulating, M™ can be expressed as
1
M™ = {0-1] ;lilx + O_auxul' (legaux + O_l(;(uxelr’rcl)61j} q,jdA
A

+J, {Gll(sljkl siji (X))ot Jad A (29)

It should be mentioned that there is no thermal effect in auxiliary field and €*** is mechanical strain.
Also,
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033€33" = 0337 €33 = 0 (30)
In the plane stress condition. Furthermore
033854 =0 and o0%5%ely #0 (31)

In an elastic media, the released energy rate can be expressed as

G =] = ci1K}? + cioK Ky + 222K (32)
Where

€11 = —%Im (%) (33)
C12 = —%Im (ﬁ) + % Im (u1pa2) (34)
C22 = %Im(lh + uz) (35)

The effect of two superimposed fields can be considered using the expression [20]
M' = 2¢y, KPP Ky + ¢ (K Ky + KFYKD + 260K Ky (36)

Substituting K** = 1, K7** =0 and K** =0,K7* =1 into Eq. (36), the equation will be
simplified in the form of

{M:{ = 2C11KI + ClZKII (Klaux == 1 and K]C]lux == O)} (37)

Mé = ClZKI + ZCZZKII (Klaux == O and K]C]lux == 1)

and stress intensity factors of actual modes | and Il can be achieved easily.

2.3 A Review of Extended Finite Element Method

The extended finite element method (XFEM) is a numerical method has been implemented
comprehensively for fracture analysis of various problems in past two decades. XFEM is a standard
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finite element method development which is more appropriate for the problems with discontinuity and
singular fields. The partition of unity finite element method PUFEM can be implemented to create
more convergent and effective numerical methods. XFEM employed the concept of partition of unity
(PU) to reproduce the displacement, strain and stress fields. The minimum requirement for a function

g, which can be used in PU is to satisfy the following condition [13]
m
). &@=1 (e (39)

The definition of reproducing condition or completeness can be considered for an arbitrary function
in the domain of Eq. (38) and yields,

m

D &l =Y (€ Qp) (39)

As the set of isoparametric finite element shape functions N; , satisfy Eq. (38), these functions can be
employed as local enrichment functions to reproduce the desired fields

P = ziENenrNi(x)lp(x)ai (x € Qenr) (40)

where N,,, expresses the enriched nodes, N; are the shape functions and a; are the additional DOFs.
Considering M collection as the following

M = {lplr 1/)2» ""lpm} (41)

The arrays of M are the enrichment functions. Introducing Eq. (41) into Eqg. (40) gives

BN = > NGO (mew Y (i) (¢ € Q) (@2)
iENenr

To accurate the results of the solution, small elements with higher order (T3-triangular elements) are
used rather than Q4 (quadratic elements) elements of the relevant references. The T3-elements are used
for whole domain to control on behaviors of the complex materials such as FGMs.

Employing XFEM, the obtained displacement field will be added to the displacement field achieved by
standard finite element method in the form of

u= uFEM + uXFEM (43)
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In which u*FEM can be expressed (for the element near the crack) as

uXFEM — uTip + uHe + uBlend (44)

where u?, u'’® and uB"¢ are the displacement of tip enrichment domain, Heaviside enrichment
domain and transition domain, respectively.

On the whole, discretization of domain geometry in XFEM is performed in the same way of the
traditional finite element method.

x = Yiea Ni(§, ) X, (45)

To describe and to model the crack, level set method is used [13]. In this approach, only nodal data
were used to describe the crack; no geometrical entity was introduced for the crack trajectory, and no
partial differential equations need to be solved to update the level sets as that needed in conventional
FEM. Where, the nodal description can be updated as the shape function equations.

3. ENRICHMENTS
3.1 Heaviside Enrichment for Discontinuity

The XFEM ability in simulating discontinuity is originated from applying Heaviside function for
enrichment. Different types of Heaviside function are proposed in the literature, one of these form is

no={1, iy (46)

In which to evaluate the amount of &(x), the sign distance function is implemented, as shown in
Figure (3).

For a point x in the Heaviside enriched domain, and x as the projection of point x on the crack,
&(x) is defined as

§(x) =d.n (47)
In which
d=x—xp (48)

and the unit normal vector of crack line at x is denoted by nZ.

Considering S as the set of nodes which have the Heaviside function enrichment, u’®can be expressed
as
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uf’® = Yies Ni(X)H(E) @; (49)

3.2 Enrichments at the Crack Tip

He implementing of enrichment functions at the crack tip leads to reproducing the highly non-linear
stress and displacement fields around the crack with higher accuracy. Due to the difference between
the behavior of these fields near the crack and other areas, the standard finite element shape functions
are not able to approximate the fields in both areas with high accuracy. Consequently, considering
appropriate crack tip enrichments in the elements near the crack tip can improve the obtained results in

this area. The enrichments will be determined according to the nature of these fields. Considering F
as a set of tip enrichments, yields,

F = {fpfz' "'me} (50)

The displacement field at the crack field can be estimated by
uT? = ¥cri Ni () (Sker fre )by ) (51)

Where Tip are the enriched nodes using the tip enrichments functions and by, are the extra DOFs due
to the enrichments. The chosen tip enrichments functions for isotropic homogeneous materials can be
represented in the form of [21-22].

F = {\/7 sin (g),\/? cos (g),ﬁ sin (g) sin(8), Vr cos (g) sin(H)} (52)

3.3 Obtaining Displacement Field in XFEM

Introducing Heaviside and tip enrichment displacement field in standard finite element method
displacement field gives [21-22].

u(x) = [Ties N (OB + [ses Ns (O (H()) ] + [Zeerip Ne(®) (Zier fu(bre)]  (53)

where the first expression is corresponding to standard finite element method, Heaviside enrichment
and tip enrichment.

3.4 Enrichment Functions for Orthotropic Materials

Increasing number of studies on orthotropic materials, more researches are performed in
obtaining enrichment functions for these materials. Several functions for crack tip enrichment are
achieved by the following expression is proposed in the polar local coordinate for crack tip enrichment
[21-23].
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F(r,9)={\/7605( )m\/_cos( )\/gZT\/_sm( )\/m \/_sm( )@} (54)

Where
g;j(0) = \/(cos(@) +¢; Sin(ﬁ))2 + (,Bj sin(ﬁ))2 G=12) (55)
6:(60) = tan™ (e 2 s) (k= 12) (56)

In which &; and g; are the same as Eq. (10).

4. NUMERICAL INTEGRATION

Usually the Gauss quadrature rule is employed for numerical integration inside the background cell.
Generally, four Gauss points are used in the standard four-node cell. Existence of discontinuity within
a background cell may result in substantial accuracy reduction. Also, many researchers demonstrated
that a regular increase in order of Gauss integration does not necessarily improve the integration over a
discontinuous element/cell, whereas independent integration of each side of the discontinuity with
even low order rules does guarantee an accurate integration [19]. So, an efficient technique is required
to define the necessary points needed for the integration within these background cells, while remains
consistent with the crack geometry. An approach similar to the one proposed by [24] and originally
utilized by [19] is adopted for the first time for fracture analysis of FGMs by EFGM. Any background
cell which intersects with a crack is subdivided at both sides into sub-triangles whose edges are
adapted to the crack faces, as illustrated in Figure (2). It is important to note that, while triangulation
of the crack tip element substantially improves the accuracy of integration by increasing the order of
Gauss quadrature, it also avoids numerical complications of singular fields at the crack tip because
none of the Gauss points are placed on the position of the crack tip.

5. NUMERICAL CASE STUDY

Proper case study is presented in this section to illustrate the application of the XEFM with T3-element
for crack analysis of functionally graded materials (FGMSs). To accurate the results of the solution,
small elements with higher order (T3-triangular elements) are used for the whole problem. The T3-
elements are used for whole domain to control on behaviors of the complex material properties such as
in the behavior of FGMs. Matlab program (M-file) is used to illustrate the aim of this paper.

The sub-triangular technique near the crack tip (13 gauss point at crack tip and with crack surface, and
7 gauss points for others), the proper nodal distribution for local crack region and for the whole
geometry, and the interaction integral method with the incompatibility formulation to calculate SIFs
are used the crack analysis in FGM. The level set method is used to represent the crack.

Therefore, A square plate with a center crack is presented (L/W=1), as shown in Fig. 5. A center crack
of length 2a located in a finite two-dimensional plate under fixed grip loading, the complete finite
element mesh, a mesh detail with mesh type T3, and a zoom of the crack tip region, are depicted in
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Figure (6) and (7) respectively. For fixed-grip loading, the applied load results in uniform strain
€22 (X1,X,) = g, for a corresponding uncracked plate.

The variations of Ejj, Ez,and Gy, are assumed to be an exponential function of x; and proportional to
one another, while the Poisson's ratio v, is constant (v;, = 0.3 and k, = 0.5). The XFEM mesh has
3042 T3, with 1600 nodes as shown in Figure (6) for mesh distribution, where the nodes are applied
on the edges of elements to be following the rules of background technique that explain well in [17,
20]. Comparison well be made with [25] that used mesh 1666 Q8, 303 T6, and 32T6qp crack-tip
singular finite elements with a total of 2001 elements and 5851 nodes. Firstly, the present work will be
less time cost where DOFs less than that used in reference [25].

The following data were used for the XFEM analysis:
Eyy = Efy eF%1, Eyy = B9, eF%1, Gy = Gy eF* 2= 0.1, L/W =1

fa=0-—1,EY =10000 N/mm?,EJ, = 1000N/mm?,G, = 1216 N/mm?

It can be observed from Table (1) that the good agreement of the normalized SIF of the present work
in comparison with the reference value under the changing of material non-homogeneity of
functionally graded material. Where six statues of the material properties changing is taken as explain
in Table (1).

To further verification of present work on the solution accuracy and the stability of T3-element using
with other useful applied techniques, Figure (8) clearly shows that no sensitivity (very small change)
is occurred at the change of the radius of J integral/a (0.2-1) with the value of the normalized stress
intensity factor. So, from Table (1) and Figure (8), one can show the stability and good agreement of
the present work with less DOFs in comparing with the relevant reference. Incompatible M-integral
method is used to calculate the stress intensity factors as explain in section 2.

The problem that studied and presented is done by developing a MATLAB code. All items of the
XFEM and the applied-fracture mechanics LEFM are presented completely. So in the programming
package, any geometry preprocessing and post-processing with any boundary conditions and
substations, and other advanced problems can be easily depicted and studied.

6. CONCLUSION

The development of this work for isotropic and FGMs crack analysis by XEFM that uses of the T3-
element, sub-triangle technique for the numerical integration, with proper enrichment functions in the
crack location has significantly increased the accuracy of the solution. The triangulation (element and
technique) substantially improves the accuracy of integration by increasing the order of DOFs/ Gauss
quadrature. The use of the interaction integral method with the mode of the incompatibility provides
very accurate answers for the values of SIFs. The study of thermal loading on crack in FGMs is
required for the future work.
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Table (1): The effecting of material non-homogeneity on normalized mode | SIF in a non-
homogeneous orthotropic plate under fixed grip loading

Ki(-a)/Ko Ki(-a)/Ko [29] Ki(-a)/Ko [29]
pa (present) M integral MCC
0.00 0.9958 0.9969 0.9986
0.10 0.9267 0.9247 0.9251
0.25 0.8307 0.8245 0.8233
0.50 0.6717 0.6706 0.6680
0.75 0.5341 0.5404 0.5358
1.00 0.4250 0.4335 0.4285
t
p
X1
Xo o
a
Ex(X1,X3)
E_Z(XJIXZ)

X2

X

Figure (1): Crack Tip Geometry
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Figure (2): Equivalent domain integral

Figure (3): Sign distance function parameters [19]
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@ | o)

Figure (4): Gauss points around the crack: (a) sub-triangles technique and (b) conventional (ordinary)
distribution [21]

Figure (5): Complex FG plate with a crack parallel to material gradation.
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Figure (6): structured mesh of whole domain; the crack is modeled by level set method

Figure (7): zoom for crack region
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Figure (8): the verification of the present work that occurred between the radius of J integral
and normalized SIF
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