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Abstract—The even–even rare-earth nuclei in U (5)–SU (3) region at neutron number (N) = 90, have
been systematically studied using the Bohr–Mottelson Model (BM), Interacting Vector Boson Model
(IVBM), and Interacting Boson Model (IBM). The positive ground-state band (GSB) of 152Sm, 154Gd,
and 156Dy nuclei has been calculated by using BM, IVBM, and IBM, while the negative-parity band (NPB)
of those nuclei are calculated by BM and IVBM only. To determine the intermediate structure, the ratio
(r(I + 2)/I) and E-GOS curve (E-Gamma Over Spin) as a function of the spin (I) have been drawn. In
the IBM, the calculated reduced B(E2) transition probabilities of the GSB in the 152Sm, 154Gd, and 156Dy
nuclei are analyzed and compared to the prediction of vibrational U (5) and rotational SU (3) limits. In the
Sm–Dy nuclei with N = 90, the U (5)–SU (3) IBM potential energy surfaces (PES’s) are analyzed and
evolve from spherical to deformed shapes with increasing the boson number. The critical phase transition
points are identified in the space of model parameters and 152Sm, 154Gd, and 156Dy nuclei have been found
to be close to critical points.
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1. INTRODUCTION

In recent years, the phase transition between
spherical and axially deformed quadrupole shapes
of nuclei has been the object of several theoretical
and experimental works and there have been many
attempts to explore the factors responsible for the
onset of large deformation in nuclei of the mass
region A � 150. The even–even Sm–Dy nuclei span
an interesting section of the nuclear chart close to
the well-known transitional region from spherical to
axially deformed shapes of the rare-earth nuclei. In
the case of Sm–Dy, N = 90, there are fewer neutrons
outside the major closed shell (N = 82) and the study
of these nuclei provides us with an insight into the
effect that this might have on the transition from
U (5) to SU (3) symmetry. Many models have been
developed to describe collective properties of nuclei.
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For an example, the geometric model of Bohr and
Mottelson (BM) which found an interpretation of
the vibrations in many nuclei that are associated
with (mainly quadrupole) oscillations of the nuclear
surface and they introduced a relation of the rotational
energy E of an axially symmetric nucleus as a func-
tion of I(I +1) [1]. With the advent of the Interacting
Boson Model (IBM-1) [2], the IBM reveals rich
features of their shape phase transitions [3–6] and
three dynamical symmetries in the IBM were shown
to correspond to three typical shape phase of nuclei,
known U (5), SU (3), and O(6) [7, 8], corresponding to
the three limiting symmetries of the collective model,
viz. spherical vibrator, axially symmetric deformed
rotor, and γ-unstable, respectively. It became easier
to study the nuclear structure of medium and heavy
mass nuclei. Phase transitions between these shapes
which are known as phase transition from a vibrator
to axial rotor and to a γ-unstable rotor, are called
X(5) and E(5), respectively. It was first introduced
by Iachello [9, 10]. The Interacting Vector Boson
Model (IVBM) introduced in the beginning of the
1980s was based on two kinds of vector bosons, the
proton p and neutron n bosons that constitute the
collective excitations in the nucleus. The IVBM has
been developed by Ganev et al. [11, 12] to describe the
ground and octupole bands of the nucleus. In even
nuclei exhibiting octupole deformation the ground-
state band, which contains energy levels with Iπ =
0+, 2+, 4+, . . . is accompanied by a negative parity

201



202 MUSHTAQ ABED AL-JUBBORI et al.

band containing energy levels with Iπ = 1−, 3−, 5−,
. . . After the first few values of angular momentum I
the two bands become interwoven, forming a single
octupole band with levels characterized by Iπ = 0+,
1−, 2+, 3−, 4+, . . . [1, 13–17], while a negative parity
band lying systematically higher than the ground
state band is a footprint of octupole vibrations.

Many experimental and theoretical studies on the
structure of energy level and electromagnetic tran-
sition properties of the even–even rare-earth nuclei
have been investigated [18–26]. Recently, in the
same region of U (5)–SU (3), some nuclei have been
studied like Ba–Dy nuclei at N = 92 [27], even–even
154−164Gd isotopes [28] and Er–Os nuclei for N =
100 [29].

In the present work, by application of BM, IVBM,
and IBM-1 to predict the low positive excitation
states of 152Sm, 154Gd, and 156Dy nuclei and the
calculations of negative-parity state energies of these
nuclei have been studied using BM and IVBM. By
using IBM-1, the reduced transition probabilities
B(E2) of these nuclei are calculated and compared
with their experimental counterparts. The potential
surface energy is plotted for these nuclei.

2. METHOD OF CALCULATIONS

In the Bohr–Mottelson nuclear model, the energy
expansion (GSB and the NPB levels) for deformed
nuclei in the powers I(I+ 1) are given by [1, 30, 31]:

E(I) = AI(I + 1)−BI2(I + 1)2 (1)

+ CI3(I + 1)3,

E(I) = E0 +A′I(I + 1)−B′I2(I + 1)2 (2)

+ C ′I3(I + 1)3,

where E0 is the band head energy of the NPB and
the coefficients A > A′, B > B′, and C > C ′ can be
determined from a fit to the available energy levels of
this band.

The eigenvalues for the GSB and NPB states in
IVBM model are given by [11, 32]

E (I) = βI (I + 1) + γI, (3)

E (I) = βI (I + 1) + (γ + η) I + ζ. (4)

The values of β and γ can be determined from a fit to
the positive GSB, while η and ζ are estimated from
the negative ones.

No distinction is made between proton and neu-
tron degrees of freedom in the original formulation of
the interacting boson model. In even–even nuclei,
the low-lying collective states are described in terms
of a system of Nb interacting bosons with angular

momentum and parity L = 0+ (monopole) and L =
2+ (quadrupole).

The IBM-1 Hamiltonian can be expressed as
[2, 7, 33]:

H = εs(s
†s̃) + εd(d

†d̃) (5)

+
∑

L=0,2,4

1

2
(2L+ 1)

1
2 CL

×
[[

d† × d†
](L)

×
[
d̃× d̃

](L)](0)

+
1√
2
υ2

[[
d† × d†

](2)
×

[
d̃× s̃

](2)

+
[
d† × s†

](2)
×

[
d̃× d̃

](2) ](0)

+
1

2
υ0

[[
d† × d†

](0)
× [s̃× s̃](0)

+
[
s† × s†

](0)
×

[
d̃× d̃

](0) ](0)

+
1

2
u0

[[
s† × s†

](0)
× [s̃× s̃](0)

](0)

+ u2

[[
d† × s†

](2)
×

[
d̃× s̃

](2)](0)
.

The full Hamiltonian H contains six adjustable pa-
rameters, and can be written as [33, 34]:

Ĥ = εn̂d + a0p̂p̂+ a1L̂L̂+ a2Q̂Q̂ (6)

+ a3T̂3T̂3 + a4T̂4T̂4,

where ε is the boson energy, and the operators are:

n̂d = (d†d̃),

p̂ = 1/2[(d̃d̃)− (s̃s̃)],

L̂ =
√
10[d† × d̃]1,

Q̂ = [d† × s̃+ s† × d̃](2) + χ[d† × d̃](2),

T̂r = [d† × d̃](r).

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

Here, n̂d is the total number of dboson operators, p̂

is the pairing operator, L̂ is the angular momentum
operator and T̂r is the octupole (r = 3) and hexade-
capole (r = 4), while the operator Q̂ is the quadrupole
operator (χ is the quadrupole structure parameter and

takes the values 0 and ±
√
7

2
[35–37]). However,

the total number of boson Nb (pairs) is conserved,
Nb = ns + nd [33] and a0, a1, a2, a3, and a4 are the
strengths of pairing, angular momentum, quadrupole,
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octupole and hexadecupole interactions of each term
in the Eq (6).

For some nuclei, the positive parity yrast levels are
connected by a sequence of stretched E2 transitions
with energies from a state with I to a state with I−
2 except around the back-bends while a dramatic
change in the moment of inertia ϑ may occurr by
increasing the angular momentum I. This behavior
causes back (or up)-bending in the value of the en-
ergy �ω which is given by [31, 38–40]:

�ω =
Eγ√

I (I + 1)−
√

(I − 2) (I − 1)
. (8)

The relation between the moment of inertia (ϑ) and
gamma energy Eγ is given by [41]:

2ϑ/�2 =
4I − 2

E (I)− E (I − 2)
=

4I − 2

Eγ
. (9)

For each spin I in a given band, the following ratios
were constructed to define the symmetry for the ex-
cited band of even–even nuclei using Eq. (10) [42–
45]:

r

(
I + 2

I

)
=

[
R

(
I + 2

I

)

exp

(10)

− (I + 2)

I

]
I (I + 1)

2 (I + 2)
,

where R

(
I + 2

I

)

exp

is the ratio of the experimental

energy values between I +2 and I states. In Eq. (10),
the values of (r) are ranging from 0.1 to 1.0 for yrast
bands of even–even nuclei. The ratio of (r) for the
vibrational nucleus should be close to zero, close to
one for rotational nucleus while in γ-unstable nuclei,
it should have intermediate values and be given by
[43, 46]: 0.1 � r � 0.35 for vibrational nuclei, 0.4 �
r � 0.6 for transitional nuclei and 0.6 � r � 1.0 for
rotational nuclei.

The characteristics of the nucleus along its ex-
cited states identity, are discussed and changes are
discerned by plotting the ratio of E(I) as a function
of spin (E-GOS) [47–49]. The relations between
(R = Eγ/I) and the angular momentum I for the
three limits are given by [50, 51]:

U(5) : R =
�ω

I
→ 0 when I → ∞, (11)

O(6) : R =
E2+1
4

(
1 +

2

I

)
→ E2+1

4
(12)

when I → ∞,

SU(3) : R =
�
2

2ϑ

(
4− 2

I

)
→ 4�2

2ϑ
(13)

when I → ∞.

Through using the expression ΔE1,γ(I) (ΔI = 1
staggering) in Eq. (14) (see below), odd–even stag-
gering patterns in octupole bands have been investi-
gated [16, 52, 53] and take alternatively positive and
negative values of equal absolute value as I increases
and are given as:

ΔE1,γ(I) = 1/16[6E1,γ (I)− 4E1,γ(I − 1) (14)

− 4E1,γ(I + 1) + E1,γ(I − 2) + E1,γ(I + 2)],

where
E1,γ(I) = E1,γ(I + 1)− E(I). (15)

In the evolution of nuclear structure, phase tran-
sitional behavior from spherical to deformed shapes
within the framework of the Interacting Boson Model
can be studied through the coherent state formalism
(|Nb, β, γ〉) and this technique described by Dieperink
et al. [54]. By using the intrinsic coherent state
formalism, the potential energy surfaces to the IBM
Hamiltonian [2] have been obtained which yields a
function of shape variables β and γ which is given as
[2, 33, 55, 56]:

E(Nb, β, γ) =
〈N,β, γ|H|N,β, γ〉
〈N,β, γ|N,β, γ〉 . (16)

Simpler expressions, which display the essential de-
pendence on β and γ, have been given by [33, 35]:

E(Nb, β, γ) = εNb[β
2/(1 + β2)] . . . U(5), (17)

E(Nb, β, γ) = a2Nb(Nb − 1)[(1 + 3/4β4 (18)

−
√
2β3 cos 3γ)/(1 + β2)2] . . . SU(3),

E(Nb, β, γ) = a0Nb(Nb − 1)[(1 (19)

− β2)/(1 + β2)]2 . . . O(6).

Here β ≥ 0 and 0 ≤ γ ≤ π/3 are intrinsic shape pa-
rameters which determine the geometrical shape of
the nucleus and the expression give (for large Nb)
βmin = 0,

√
2, and 1 for U (5), SU (3), and O(6),

respectively [33, 57, 58].

3. RESULTS AND DISCUSSION

The first-order phase transition between spherical
U (5) and axially deformed SU (3) shapes [9] has
received widespread attention in the past decade. In
this paper, the even–even rare-earth nuclei (N = 90)
62Sm, 64Gd, and 66Dy have been studied, through
displaying first-order phase transition from spher-
ically to axial symmetric deformed U (5)–SU (3).
152Sm, 154Gd, and 156Dy nuclei have neutron number
N = 90 and have an even atomic number Z = 62
to 66 (Z and N values near mid shell and N value
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Fig. 1. The energy ratio RI/2 in 152Sm, 154Gd, and 156Dy nuclei [64–67] versus spin I .
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Fig. 2. Back (or up)-bending of the ground state band for 152Sm, 154Gd, and 156Dy nuclei [64–67].

near closed shell would suggest the U (5)–SU (3)
transition structure). Phase transitions in nuclei can
be tested by calculating the energy ratios [59, 60]:

RI/2 = EI+1
/E2+1

. (20)

For I = 4, the ratio R4/2 = E4+1
/E2+1

varied from

the values which correspond to vibrations around a
spherical shape R4/2 = 2, 2.5 for γ-unstable nuclei,
∼2.2 for the analytically solvable symmetry E(5) on
the U (5)–O(6) path, ∼2.9 for the approximate X(5)
symmetry on the U (5)–SU (3) path and to the char-
acteristic value for excitations of a well-deformed ro-
tor R4/2 = 10/3 [9, 10, 61–63]. Figure 1 shows the
RI/2 for 152Sm, 154Gd, and 156Dy nuclei compared to
U (5) and SU (3) prediction and show the slope RI/2

is stable with increasing Z, indicating the property

between vibrational and quadrupole deformation, i.e.
the X(5) property for 152Sm, 154Gd, and 156Dy nuclei.

The back (or up)-bending curves, r
(
I + 2

I

)
, the

E-GOS curves and the staggering phenomena are
used to ensure the properties of these nuclei along
their ground state band. The rotational frequency �ω
and moment of inertia 2ϑ/�2 have been calculated
from (8) and (9), respectively.

In Fig. 2, the moments of inertia 2ϑ/�2 are plot-
ted versus the square of rotational energy �ω of the
photons emitted during the transition between the
different states. There is a back-bending curvature
that occurred in the �ω value of the Sm–Dy nuclei
for N = 90. The ratio r((I + 2)/I) as a function of I
for the ground state bands of these nuclei are drawn.
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Table 1. The BM, IVBM and IBM-1 parameters of GSB in MeV except Nb and CHQ for 152Sm, 154Gd, and 156Dy
nuclei

Nucleus Nb
BM IVBM IBM-1

A× 10−2 B × 10−5 C × 10−8 β × 10−3 γ × 10−2 EPS ELL QQ CHQ

152Sm 10 1.8484 4.4041 8.6305 9.8290 4.9978 0.033 0.0313 −0.024 −2.958

154Gd 11 1.8735 4.3748 8.3648 9.9705 5.0968 0.100 0.0327 −0.0218 −2.958

156Dy 12 2.0356 5.3436 10.506 9.8724 6.0537 0.065 0.0381 −0.0201 −2.958

ELL = 2a1 and QQ = 2a2, CHQ =
√
5χ [33].

Table 2. The BM and IVBM parameters of NPB in MeV 152Sm, 154Gd, and 156Dy nuclei

Nucleus
BM IVBM

A′ × 10−3 B′ × 10−6 C′ × 10−9 E0 ζ η

152Sm 12.959 18.726 27.678 0.96336 1.2413 −0.0413

154Gd 9.9494 1.6741 −0.47149 1.2413 1.2425 −0.0473

156Dy 10.405 3.9117 1.7211 1.2932 0.9771 −0.0424

Figure 3 shows the relationship between the ratio
r and the spin I and gives numerical values which
insure the properties of each nucleus. According
to Fig. 3, this study supports the interpretation of
the critical point of 152Sm, 154Gd, and 156Dy nuclei.
Hence, the 152Sm, 154Gd, and 156Dy nuclei are asso-
ciated to X(5) symmetry when the ratio r((I + 2)/I)
started with high value �0.755 and then decreases
with I to >0.5.

In Fig. 4a, the E-GOS curve presents the theo-
retical limits for three schematic nuclei plotted and
shown: (i) a vibrator, which the sharp hyperbolic
decrease in R with spin I, (ii) R decreases with I in
γ-soft nucleus but at a slower rate than for a vibrator;
and by contrast (iii) a rotor, R actually increases at
low spins.

Figure 4b shows theE-GOS curves of the positive
parity yrast band of even–even Sm–Dy nuclei with
N = 90 compared with the ideal limits of vibrational,
rotational, and γ-soft shown in Fig. 4a. Normally, the
Sm–Dy nuclei in Fig. 4b show the sharp drop of the
E-GOS curve and these positive parity yrast bands
have good rotational characteristic in the spin region
(I = 4 to 8), while it has good vibrational character-
istic in the higher-spin region above I � 10. So, it is
interesting to see that the E-GOS curve occurrence
between the two standard curves of U (5) and SU (3)
giving these nuclei the X(5) properties.

The apparent staggering in the differences be-
tween the energies of GSB and NPB is shown in

Fig. 5 for 152Sm, 154Gd, and 156Dy nuclei. In this
figure, the decrease of the staggering with increasing
I, approach to zero at spin above 10 and then the
increase of the staggering with increasing I which
confirms the phase change of this nuclei. Taking
the above studies all together gives the U (5)–SU (3)
properties.

In Sm–Dy nuclei with N = 90, the BM, IVBM
were used to calculate the energy states in GSB and
NPB with MATLAB 7.0 software and IBM-1 was
used to calculate the energy states in GSB only with
PHINT code [68]. The BM, IBM-1, and IVBM
parameters of GSB for these nuclei, the number of
bosons Nb (calculated from the sum of the proton
bosons of the close shells (50 and 82) and the neutron
bosons of the close shells (82 and 126)) and the best
values of the parameters which give the best fitting
between theoretical and the experimental energy lev-
els (GSB) of the above nuclei are presented in Table 1.
Table 2 shows the BM and IVBM parameters of NPB
which give the best fitting to the experimental excited
states. The octupole bands within the IBM realm
can be described in the framework of the spdf-IBM,
introduced by Engel and Iachello [48, 49] and further
are developed by Kusnezov and Zamfir [30, 69–71].
The explicit expression of Hamiltonian [2, 33, 72] is
adopted in the calculations using the following equa-
tion:

Ĥ = εn̂d + a1L̂L̂+ a2Q̂Q̂ (21)

for U(5) − SU(3).
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for 152Sm, 154Gd, and 156Dy nuclei [64–67].
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Fig. 5. Staggering for 152Sm, 154Gd, and 156Dy nuclei [64–67].

The calculated and experimental energies [64–67]
of GSB and NPB of Sm–Dy are plotted in Fig. 6a, 6b,
and 6c and it is shown that the energy levels (GSB

and NPB) rise continuously with increasing I while
N is constant (N = 90) for all the selected rare-earth
nuclei.
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Fig. 6. Comparison of the BM, IVBM, and IBM-1 energy level calculations with the available experimental data [64–67] in
GSB and NPB for 152Sm (a), 154Gd (b), and 156Dy nuclei (c).

In Fig. 6a, 6b, and 6c, the calculated energy levels

are in good agreement with experimental ones for all

these nuclei and for all states with some deviation for

NPB states in 152Sm and 154Gd due to the big gap

between 7 state and 9 state for these nuclei, which

are different from 156Dy nuclei. In general, the calcu-
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Fig. 7. Comparison of the B(I+2)/2 calculations with the experimental ratio of GSB for 152Sm (a), 154Gd (b), and 156Dy (c)
nuclei.

lations of BM, IVBM predictions are in good agree-
ment with the experimental values, while in IBM, the
GSB deviated in the high angular momentum I from
the experimental data (above I = 6) for all rare-earth
nuclei under this study.

The electric quadruple transition probabilities are
the other key for studying and discussion of the other
information on the structure of nuclei which can be
expressed in terms of the reduced E2 matrix element
which must be a Hermiston tensor of rank two when
Nb must be conserved. The electrical transition can
be analyzed in the framework of the IBM, and the
most general E2 transition operator can be written as

Table 3. Parameters (in eb) used to reproduce B(E2)
values for 152Sm, 154Gd, and 156Dy nuclei

Nucleus Nb eB
152Sm 10 0.1230
154Gd 11 0.1183
156Dy 12 0.1074

[2, 33, 73, 74]:

TE2 = α2[d
†s+ s†d](2) + β2[d

†d](2) = eBQ̂, (22)

where (s†, d†) and (s, d) are creation and annihilation
operators for s and d bosons, respectively, while α2

and β2 are two parameters, as (β2 = χα2, α2 = eB
(effective charge of boson)) [33, 75, 76].

The reduced transition probability for the U (5) and
O(6) limits are given by [33]:

U(5) B (E2;L → L− 2) (23)

= e2B (nd + 1) (N − nd) ,

SU(3) B (E2;L → L− 2) (24)

= e2B
3 (L+ 2) (L+ 1)

4 (2L+ 3) (2L+ 5)
(2N − L) (2N + L+ 3) ,

where L is the angular momentum. From the given
and normalized predictions to the experimental value
[64–67] of B

(
E2; 2+1 → 0+1

)
transition, one can cal-

culate the value of the effective charge eB directly
from using the above two equations for each isotope
under this study and shown in Table 3. This value is
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Fig. 8. The potential energy surfaces for 152Sm, 154Gd, and 156Dy nuclei.

used to calculate the reduced transition probabilities
B (E2;L → L− 2) presented in Table 4.

Table 4 shows the B(E2) calculated values for the
GSB with neutron number N = 90 and compared
with the experimental data [64–67] in Sm–Dy nuclei.
It is shown that there is good agreement and strong
consistency between the B(E2) calculated with ex-
perimental reports, except for few cases that deviate
from the experimental data [64–67] in 152Sm, 154Gd,
and 156Dy nuclei.

The ratios B(I+2)/2 = (E2; I +2 → I)/(E2; 2+1 →
0+1 ) of the E2 transition rates for the U (5) and SU (3)

are given by [2, 59]:

B(I+2)/2 =
1

2
(I + 2)

(
1− I

2N

)

for U (5) ,

B(I+2)/2 =
15

2

(I + 2) (I + 1)

(2I + 3) (2I + 5)

(
1− I

2N

)

×
(
1 +

I

2N + 3

)
for SU (3) .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Table 4. The IBM-1 and Experimental [64–67] values of B(E2) (in e2b2 ) of some states in the GSB for 152Sm, 154Gd,
and 156Dy

Nucleus 2+1 → 0+1 4+1 → 2+1 6+1 → 4+1 8+1 → 6+1 10+1 → 8+1

152Sm Exp. 0.699 1.001 1.157 1.412 1.513

Cal. 0.694 1.000 1.127 1.234 1.180

154 Gd Exp. 0.770 1.156 1.323 1.445 1.568

Cal. 0.761 1.069 1.139 1.134 1.086

156 Dy Exp. 0.748 1.211 1.311 1.402 1.546

Cal. 0.743 1.146 1.221 1.323 1.281
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The B(I+2)/2 ratios for the best candidate 152Sm,
154Gd, and 156Dy compared to the U (5) and SU (3)
predictions and the experimental data are shown in
Fig. 7a, 7b, and 7c. Figures 7a, 7b, and 7c gives a
good agreement between the IBM-1 and the experi-
mental data [64–67], i.e. these nuclei have been found
to be close to critical points.

In Fig. 8, the contour plots of the potential energy
surfaces are presented and it is shown that Sm, Gd,
and Dy nuclei under study have the shape phase tran-
sition from vibrational U (5) to rotational symmetry
SU (3).

4. CONCLUSIONS

In the framework of BM, IVBM, and IBM, the
positive ground-state band for the selected rare-earth
nuclei in U (5)–SU (3) region at the neutron num-
ber N = 90 and the results are in good agreement
with published experimental data. The back (or up)-
bending curves, the ratio (r), the E-GOS curves, and
the staggering phenomena between GSB and NPB
states are calculated to ensure the properties of these
nuclei along their many excited states. The ratio
(r(I + 2)/I) and E-GOS curve (Eγ/I) as a function
of the spin (I) are plotted and compared with the ideal
limits of vibrational, rotational, and γ-soft and con-
firmed the X(5) property for 152Sm, 154Gd, and 156Dy
nuclei. Using Interacting Boson Model, the reduced
transition probabilities B(E2) of these nuclei have
been calculated and a good agreement was obtained
with the published experimental data, except for few
cases that deviate from the experimental data. The ra-
tios B(I+2)/2 = (E2; I + 2 → I) /

(
E2; 2+1 → 0+1

)
of

the E2 transition are plotted for 152Sm, 154Gd, and
156Dy and show these nuclei have been found to be
close to critical points. The contour plots of PES
show that the shape phase transitions from U (5) to
SU (3) have been determined for the 152Sm, 154Gd,
and 156Dy nuclei.
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15. P. Schüler, Ch. Lauterbach, Y. K. Agarwal, J. De Boer,
K. P. Blume, P. A. Butler, K. Euler, Ch. Fleischmann,
C. Günther, E. Hauber, H. J. Maier, M. Marten-Tölle,
Ch. Schandera, R. S. Simon, R. Tölle, and P. Zeyen,
Phys. Lett. B 174, 241 (1986).

16. D. Bonatsos, C. Daskaloyannis, S. B. Drenska,
N. Karoussos, N. Minkov, P. P. Raychev, and
R. P. Roussev, Phys. Rev. C 62, 024301 (2000).

17. D. Bonatsos, P. E. Georgoudis, N. Minkov, D. Petrel-
lis, and C. Quesne, Phys. Rev. C 88, 034316 (2013).
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